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Intra-Slice Motion Correction of Intravascular
OCT Images Using Deep Features

Atefeh Abdolmanafi , Luc Duong, Nagib Dahdah , and Farida Cheriet

Abstract—Intra-slice motion correction is an important
step for analyzing volume variations and pathological
formations from intravascular imaging. Optical coher-
ence tomography (OCT) has been recently introduced
for intravascular imaging and assessment of coronary
artery disease. Two-dimensional (2-D) cross-sectional
OCT images of coronary arteries play a crucial role to
characterize the internal structure of the tissues. Adjacent
images could be compounded; however, they might not
fully match due to motion, which is a major hurdle for
analyzing longitudinally each tissue in 3-D. The aim of this
study is to develop a robust tissue-matching-based motion
correction approach from a sequence of 2-D intracoronary
OCT images. Our motion correction technique is based
on the correlation between deep features obtained from
a convolutional neural network (CNN) for each frame of
a sequence. The optimal transformation of each frame is
obtained by maximizing the similarity between the tissues
of reference and moving frames. The results show a good
alignment of the tissues after applying CNN features and
determining the transformation parameters.

Index Terms—Motion correction, tissue characterization,
deep features, coronary artery, optical coherence tomogra-
phy (OCT).

I. INTRODUCTION

CORONARY arteries, which are responsible to deliver
oxygenated blood to the heart muscles can be affected

by arterial stenosis and lead to myocardial infarction [1], [2].
Functionality of the cardiac tissues significantly depends on the
coronary blood flow to the myocardium. Therefore, coronary
artery disease (CAD) is the main leading cause of myocardial
infarction and sudden death [1], [2]. Angiographic images allow
to visualize the trajectory of the contrast agent but they cannot
provide any information on the underlying coronary tissue
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layers. Considering the limitations of coronary angiography to
evaluate coronary artery disease, catheter based Intravascular
Ultrasound (IVUS) has been used for many years to evaluate
coronary artery tissue layers and pathological formations on
different coronary artery layers [3]. The IVUS imaging is
restricted by limited spatial image resolution (100-150 μm) to
detect the thickness of various pathological formations, and low
pullback speed. In contrast, Optical Coherence Tomography
(OCT) is another catheter-based imaging system, which plays
a significant role in the development of medical imaging
modalities with interesting advantages over IVUS imaging
modality [3]. OCT is an interferometric imaging modality
that maps the backscattered near-infrared (NIR) light to create
cross-sectional images of the tissues under review in microme-
ter scale [4]. The image-wire is inserted into the coronary artery
using an over-the-wire balloon catheter from patient’s groin. A
sequence of cross-sectional images of coronary artery segment
is recorded using the backscattered light from the arterial wall
through each pullback. Considering the fact that light can be
attenuated by blood before reaching the vessel wall, blood
clearance is required before starting the image acquisition [5],
[6]. OCT has been developed for the diagnosis and treatment
guidance of coronary artery disease. It has high resolution
ranging from 10 to 20 μm to characterize the internal structure
of tissues such as vessel wall layers and plaque accumulation
[7]. In cross-sectional view, normal coronary artery has a three-
layered structure. Intima is the first layer, which is composed of
endothelial collagen and is connected to lumen by a single layer
of endothelial cells. The second layer, media, consists of muscle
cells and is determined by internal and external elastic lamina.
Media is enclosed by the outermost layer, adventitia [8].

Intravascular assessment of coronary artery tissues is a chal-
lenging task considering the pathological formations due to var-
ious coronary artery complications, limitations and the possible
artifacts of the imaging system. 2D cross-sectional OCT images
of coronary arteries play a crucial role to estimate the thickness
variations of arterial wall layers and evaluate the severity of the
disease by detecting the various scarring remodelling features
[9]. But, the accurate assessment of pathological formations is
obtained by considering the information of the adjacent frames
and analyzing the volume variation of each tissue using 3D re-
construction. This can be useful to evaluate the dynamics of
coronary artery motion and distensibility variation as a result
of calcium deposits in a specific coronary artery segment. Vol-
umetric measurements of different tissues are significant for
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studying the progression and regression of various pathological
formations particularly to evaluate the aneurysmal regions and
stenotic segments of the arterial wall [10]–[12].

3D assessment of the morphological tissues is problematic
because they are highly affected by motion artifacts resulted
by the rotation and translation of the imaging catheter along
the artery during image acquisition. Generally, heart beating
and respiration during OCT acquisition are the main sources of
both axial and longitudinal motions [13]. Furthermore, when
the vessel dimensions are changed during a cardiac cycle, it
results in larger lumen area in cross-sectional images [13]. The
frequency-domain OCT with the pullback speed of 20 mm/sec
is 10 - 20 times faster than the previous generation of OCT
(time-domain OCT). Therefore, accelerated image acquisition
within fewer numbers of cardiac cycles reduces motion artifacts
but they cannot be entirely eliminated [14].

A. Related Works

1) Motion Correction: Since the OCT probe moves freely
in coronary artery pathway, cross sectional images might be
misaligned. This is problematic to evaluate longitudinally each
tissue and to design robust clinical measurements. Since OCT
is recently used in cardiology, motion correction methods are
mostly focused on intracoronary IVUS images and OCT retinal
images.

Intravascular Ultrasound (IVUS) has been used for many
years as an intracoronary imaging modality in cardiology.
Therefore, many of the motion correction and 3D reconstruc-
tion methods are focused on IVUS images. Zheng et al. focused
on 3D reconstruction method of intracoronary IVUS images by
reconstructing the pullback path using snake algorithm. The pre-
cision of the 3D reconstruction method is increased by focusing
on 3D axial position, spatial orientation, and surface fitting [15].
3D artery is registered with intracoronary IVUS cross-sections
using distance mapping algorithm in the work of Tu et al. [16].
The other study is focused on 3D reconstruction of IVUS images
using the biplane angiography to detect the 3D centerline. The
IVUS frames are distributed along the reconstructed centerline
in equivalent time intervals [17]. Athanasiou et al. proposed a
3D reconstruction of intracoronary IVUS images by estimating
the lumen and the outer vessel wall borders using the approx-
imation of the arterial centerline to evaluate plaque formations
[18]. Karlas et al. proposed a 3D reconstruction method based on
the fusion of IVUS and preoperative CT data. The alignment of
the detected lumen borders is performed using the ellipse fitting
technique and CT data is used to detect the arterial shape [19].
Zhao et al. developed a 3D reconstruction method using EM
sensor to detect the catheter pose. Lumen contours are detected
by applying a radial scan method [20].

Some works are performed on OCT images of coronary
arteries. 3D reconstruction of coronary artery images is
performed by Ellwein et al. using graph theory applied on
computed tomography (CT) and OCT data of a single patient
after stent placement [21]. Athanasiou et al. proposed a
semi-automated 3D reconstruction method using OCT images
and biplane angiography [22].

Nevertheless, very few studies addressed the problem of non-
rigid, intra-slice motion correction in intravascular OCT images
using tissue information, rather than the lumen outline. Con-
tour based motion corrections are not reliable enough to solve
the problem of motion correction, particularly in pathological
cases. When the arterial wall tissue is affected by disease, the
lumen does not show a complete circular shape and in some
cases it is not detectable properly. Intimal hyperplasia with me-
dia disappearance is the common coronary artery complication
as a result of coronary artery disease. In most of the patholog-
ical cases, there is no media-adventitia border to be detected.
However, tissue based motion correction can be generalized to
all the normal and pathological cases. Also, accelerated image
acquisition within fewer numbers of cardiac cycles reduces the
motion artifacts. Therefore, we need to have more accurate mo-
tion correction technique to deal with the small variations in
the rotation and translation of the catheter from one frame to
another due to the accelerated image acquisition. We looked at
the problem from the perspective of tissue matching. As much
as we can align the tissues, we have more accurate assessment
of deformation and pathological changes from one tissue to an-
other. In some cases, the tissue borders are not clear and the
shape of the arterial wall is not specific and visible due to patho-
logical formations in coronary artery tissue layers. Therefore,
the motion correction model should be based on tissue infor-
mation rather than the lumen outline to be generalizable to all
the cases.

2) Convolutional Neural Network (CNN): Convolutional
Neural Networks (CNNs) have been demonstrated very effective
in different study fields [23]–[26]. Recently, CNNs are widely
used in medical image analysis to perform segmentation and
classification tasks [27]–[29]. Considering the fact that it is
rare to access sufficient data to train a network from scratch,
specifically in the field of medical image analysis, it is wise to
transfer the preserved knowledge of a pre-trained network to a
new application. Transfer learning is one of the most efficient
characteristics of CNNs, which is demonstrated by the work of
Azizpour et al. [30] in the field of medical imaging. Pre-trained
networks have been used as feature generators [31]–[34]. Also,
fine-tuned pre-trained networks have been used recently for
classification tasks for different applications of medical image
analysis [35]. A framework of tissue classification is introduced
in our previous work using deep feature learning. Fine-tuned
network is used to generate features from each coronary artery
layer to train random forest for classification of various arterial
wall layers [34].

In this study, we demonstrate the application of deep features
to solve the problem of motion correction for intracoronary
OCT images considering the movement of the catheter during
the image acquisition, and the challenges of the OCT imaging.
Our motion correction algorithm is designed to correct the ro-
tation and translation of the catheter as well as the arterial wall
deformation through image acquisition by finding the best trans-
formation parameters that will maximize the similarity between
deep features extracted from the reference and moving frames
at each transformation.
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Fig. 1. The three layered structure of coronary artery: Intima is char-
acterized as a signal rich pattern in OCT images, which is the first layer
of coronary artery (white arrow). Media is the second layer, which is
shown as signal poor layer in OCT imaging (blue arrow), and Adventitia
is visualized as the signal rich layer in intracoronary OCT images (yellow
arrow). All the three layers are covered by surrounding tissues.

The originality of this approach is as follows:
� Application of deep learning on intracoronary OCT

images for motion correction for the first time.
� Intra-slice motion correction in intravascular OCT images

using tissue information rather than the lumen outline.
� Using the similarity between deep features extracted by

CNN to perform registration.
� This study is not limited to our application and it can be

a key to evaluate different plaque formations, and tissue
deformations.

This study is organized as follows: We start with a brief expla-
nation of data and pre-processing steps in Section II-A. Then,
we present the CNN feature learning process and introduce our
motion correction approach in Section II-B. The results using
patient dataset are shown and discussed in Section III. Finally,
we conclude with possible extensions of this work in Section IV.

II. MATERIAL AND METHODS

A. Data Collection and Pre-Processing

Normal coronary artery has three-layered structure, intima is
the first coronary artery layer, which is characterized as a signal
rich well-delineated layer in OCT imaging. The second layer,
media, appears as a homogeneous signal poor pattern in OCT
images and the outermost layer is adventitia, which is visualized
as a signal rich layer. Surrounding tissues are covered the three
coronary artery layers as it is shown in Fig. 1 [1], [9], [11].

Kawasaki Disease (KD), mucocutaneous lymph node syn-
drome, is an acute vasculitis syndrome in infants and young
children, which is characterized by fever, rash, conjunctivitis,
and swollen erythematous hands and feet and leads to inflamma-
tion in the walls of medium-sized arteries throughout the body.
Coronary arteries are affected by arterial inflammation. Intimal
thickening is the most distinguished pathological feature of late

coronary artery lesions in Kawasaki disease. In severe cases,
it can lead to localized stenosis, extensive intimal hyperplasia,
and consequently disappearance of media [1], [2].

The experiments are performed on 26 retrospective cases
comprising of pullbacks of intracoronary cross-sectional images
obtained from different pediatric patients with KD using ILU-
MIEN OCT system (St. Jude Medical Inc., St. Paul, Minnesota,
USA). The axial and lateral resolutions of the OCT system are
12–15 μm and 20–40 μm respectively. FD-OCT is used for im-
age acquisition with the pullback speed of 20 mm/sec and frame
rate of 100 frames/sec. Each pullback consists of 270 frames of
DICOM images per patient. Permission to conduct this study
on retrospective OCT studies was granted by the institutional
review board.

For the pre-processing, the approximate region of interest
(ROI) including the lumen, arterial wall layers, and the catheter
are recognized and extracted using active contour while the
Gaussian filter is applied to smoothen the catheter. Active con-
tour does not perform properly to remove the catheter and un-
wanted red blood cells, specifically when the catheter is located
very close to the arterial wall. Therefore, for the last step of
the pre-processing, we removed the catheter and unwanted red
blood cells by applying the smallest connected components ap-
proach [36] (Fig. 2). The original OCT images (RGB images)
are used for feature extraction using AlexNet (the OCT images
after pre-processing with the size of 352 × 352 × 3 are resized
to 227 × 227 × 3 to be used as the input of the network).
We converted the images to gray scale for transformation and
building the 3D model.

B. Motion Correction Model

1) Deep Feature Extraction: As it is mentioned in the re-
lated works, pre-trained CNNs work efficiently as fixed feature
generators for OCT images by removing the uppermost fully
connected layer (classification layer) from the network archi-
tecture and using the activations of the last fully connected
layer, right before the classification layer, as deep features of
the new images. The process of feature extraction using CNNs
is briefly explained in the diagram of Fig. 3.

AlexNet is one of the pre-trained networks, which is used
commonly in medical image analysis domain [37], [38]. It is
categorized in the group of shallow and simple pre-trained net-
works. Since AlexNet is trained on natural images, to extract
the features which can describe coronary artery tissues more
accurately, we prepared the network for our application using
transfer learning and fine-tuning. Using AlexNet, the fine-tuning
and training process is fast since the network is not very deep.
Therefore, we have fewer numbers of parameters for the fine-
tuning process compared against deeper networks. In addition,
extracted features from fine-tuned AlexNet are strong enough to
describe coronary artery tissues as they are used in our previous
work to classify different coronary artery layers with high preci-
sion [34]. In this study, fine-tuned AlexNet is applied to generate
the features for our dataset for motion correction of intracoro-
nary OCT images. The AlexNet model is built on 60 million
parameters and 650000 neurons and is trained on 1.2 million
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Fig. 2. Pre-processing steps: Original image is shown in (a). The star shows the shadow of the catheter in the image. (b) Gaussian filter is applied
to smoothen the catheter to apply active contour and detect the approximate ROI including lumen, catheter, intima, media, and surrounding tissues
as it is shown in (c). Then, catheter and unwanted blood cells are removed using connected components approach as shown in (d).

Fig. 3. Feature Extraction Using Convolutional Neural Networks
(CNNs): Convolutional operation is performed by moving the filters with
fixed stride through the input image and computing the convolution be-
tween each filter matrix and input image matrix. Non-linearity is intro-
duced after each convolutional operation by applying a Rectified Linear
Unit (ReLu) since convolution is a linear operator. Features are extracted
from the fully connected layer right before the classification layer.

Fig. 4. Modified architecture of AlexNet with five convolutional layers
and three fully connected layers, which is used in our experiments.

images from ImageNet dataset. It consists of five convolutional
layers (conv1 to conv5) , three max pooling, and three fully con-
nected layers (fc6, fc7, and fc8) [39]. Network architecture is
shown in Fig. 4. Each convolutional filter or kernel has the role
of feature detector of the images to create the feature maps by
sliding through the whole image with defined stride and com-
puting the convolution of the filter matrices and the input image
matrix. The depth of the network is determined by the number
of kernels. It is also important to mention that each layer ex-
tracts the features from the output of the previous layer [40].
The process of updating the weights at each layer and for each
iteration, i, is as follows:

Vi+1 = μVi − γiα∂L/∂W (1)

Wi+1 = Wi + Vi+1 (2)

Where μ is the momentum, α is the learning rate, γ is the
scheduling rate which reduces the learning rate at the end of
the iterations [34], [39]. L is the cost function which is aimed
to be minimized with respect to the weights, w, at each layer
and during the training process. To start inductive transfer, we
used the same architecture as the pre-trained network and the
weights of each layer are initialized by transferring the weights
from the pre-trained network. To start fine-tuning, two facts are
considered: 1. There is a risk of overfitting by deep fine-tuning
the network, 2. Deep features extracted from the upper layers
are more dataset specific, which characterize distinctive fea-
tures of the images. To fine-tune the network, we evaluated the
performance of the network using each set of parameters by cal-
culating the accuracy of classification of coronary artery layers,
intima and media, on validation set. For this purpose, different
coronary artery layers are annotated manually for all the frames
of all 26 pullbacks. Then, we divided the data into the three
equal sets of training, validation, and test sets. The images are
resized to 227 × 227 × 3 to be used as an input of the network.
For the first step, we removed the last three layers (fc8, prob,
and classification layer), which are designed for classification
task and replaced them by the new classification layers, which
are designed for two class classification to classify coronary
artery layers, intima and media. Therefore, fine-tuning is started
from the last fully connected layer (fc7) using grid searching
for an extensive interval of learning rates and we evaluated the
performance of the network by measuring the accuracy of clas-
sification on validation set using each set of learning parameters.
The optimal learning parameters are chosen when the classifi-
cation accuracy stopped improving. After finding the optimal
learning rates, network is retrained by applying the learning
rate of 0.1 for fc7 and the learning rate values are decreased
to 0.01 from the layer fc6. Also, fine-tuning is stopped at the
third convolutional layer since continuing the fine-tuning does
not improve the network performance. The learning rates of the
first and the second convolutional layers are fixed at zero to keep
the weights constant. Also, μ and γ are fixed at 0.9 and 0.95
respectively for the whole process of fine-tuning. Table I shows
the learning rates of fine-tuned network. The features used for
motion correction are extracted from the last fully connected
layer (fc7).

2) Motion Correction: Translation and rotation should be
considered in the problem of motion correction, since the
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TABLE I
LEARNING RATES AT EACH STEP OF FINE-TUNING THE ALEXNET MODEL IN
OUR EXPERIMENTS:μ AND γ ARE FIXED AT 0.9 AND 0.95 RESPECTIVELY AT
ALL THE STEPS OF FINE-TUNING. LEARNING RATES ARE MODIFIED FROM

FC7 TO THE THIRD CONVOLUTIONAL LAYER (CONV3)

position of the catheter is generally out of the center due to the
blood flow and high heart beat particularly in infants and chil-
dren. Also, movements of the interventionist hand can cause a
very small rotation of the catheter. Arterial wall as a soft tissue
has some deformations due to the cardiac motion, which should
be considered in the problem of motion correction. The mo-
tion correction is formulated as a non-rigid registration problem
when the first frame is considered as the reference frame. The
deep feature vector for the reference frame is extracted using
the fine-tuned CNN as it is described in the previous section.
In this step of the work, the original images before applying
pre-processing are used to ensure that all the tissue information
is considered during feature extraction. To perform the motion
correction, other frames are considered as the moving frames.
For the first step, by translating the images at each value of ρ,
ρ =

√
x2 + y2 , deep feature vectors are extracted using CNN

model and the cosine similarity is computed as the dot product
of the feature vectors of the fixed and moving frames at each
translation. To capture the rotation, at each rotational angle, the
CNN features are extracted and the cosine similarity between the
extracted feature vectors from reference and moving frames is
computed. The same process is performed for scaling and shear-
ing in both x and y directions to find the optimal parameters to
correct vessel wall deformation. When we evaluated the per-
formance of our proposed method for each translation, rotation,
shearing and scaling separately, the final optimal transformation
matrix is obtained by performing all the steps simultaneously.
The final transformation matrix to map a pair of input coordi-
nates P = (x,y) to a pair of output coordinates P′ = (x′, y′) can
be summarized in the following equation,

P ′ = MP (3)

Where M is the final transformation matrix, which is defined
as follows,

M = Mshear ∗Mscale ∗Mrigid

=

⎡

⎢⎢
⎣

1 λy 0

λx 1 0

0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

vx 0 0

0 vy 0

0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

cos θ − sin θ tx

sin θ cos θ ty

0 0 1

⎤

⎥⎥
⎦

(4)

WhereMrigid ,Mscale , andMshear are rigid transformation, scal-
ing, and shearing matrices respectively. tx and ty are translation

Fig. 5. Cosine similarity between the feature vectors of fixed and mov-
ing frames: The calculations are performed in a small interval of angles
considering that the probe can not have a huge movement during image
acquisition using OCT system.

Fig. 6. Motion correction process for one frame of a sequence: The first
frame is considered as the reference frame, the second one is moving
based on ρ and θ. At each transformation the cosine similarity between
the deep feature vectors of both fixed and moving frames are computed.
The process is terminated when the maximum similarity between the
feature vectors is reached.

parameters along x and y axes respectively, θ is the angle of
rotation in 2D, vx and vy are scaling parameters, λx and λy are
shearing parameters along x and y directions.

The objective function is defined based on cosine similarity
between the feature vectors of reference and moving frames as
follows,

argminψ f(ψ) = argminψ (1 − cos(ψ)) (5)

cos(ψ) = (a.b)/ | a || b | (6)

Where ψ is the angle between the extracted feature vectors
from reference and moving frames (a and b respectively) at
each transformation. Unlike other similarity measures, cosine
similarity is a measure of the direction-length correspondence
between vectors, which is mostly used in high dimensional space
and large-scale studies.

Since we aimed to investigate the robustness of CNN features
to be applied for motion correction, the optimal transformation
parameters are solved using exhaustive search for all the possible
transformations. At each translation, rotation, and deformation,
we look for the angle which can maximize the cosine similarity
of two feature vectors. Since using the OCT system, it is unlikely
to have a large rotation of the probe during image acquisition.
Therefore, we bounded our exhaustive search in the interval
of [−10, 10] although we know that the rotation of the probe
is even less than that as it is demonstrated by the experiments
(see Figs. 5 and 6). After obtaining the optimal transformation
parameters, all the pre-processing steps are performed on the
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Fig. 7. Comparison of Euclidean distances between the centerline of
the 3D model and the reference centerline before and after motion cor-
rection, which are shown in blue and red respectively. Error bars show
the standard deviation. Euclidean distance is reported as mean± std for
each patient.

moving frame. The 3D matrix is built based on the information
of the reference frame and the moving frames after applying the
optimal transformations. The number of frames in each pullback
is considered as the length of the z-axis.

3) Validation: Since OCT is a new imaging system which
is recently used in cardiology, to the best of our knowledge,
there is no ground-truth available for OCT images. The motion
correction of intracoronary OCT images is visually validated
by the expert cardiologist. Also, the quantitative validations are
performed in two steps:

� The centerlines of the 3D models are compared against
each other before and after motion correction: For each
sequence of images, the approximate center of the lumen
for each frame is calculated before and after motion cor-
rection. Since a reference centerline is required to eval-
uate the centerlines before and after motion correction,
the Euclidean distance between the lumen center and the
corresponding point on the fixed straight line centered on
the lumen of the reference frame (the first frame of each
pullback) is calculated using equation (7). The results are
reported in Fig. 6.

D(x, y) =
√

(x2 − x1)2 + (y2 − y1)2 (7)

Where D is the Euclidean distance between the points
(x1 , y1) and (x2 , y2), which are respectively the lumen
center of each frame and the corresponding point on the
fixed straight line centered on the lumen of the reference
frame.

� Intra-slice tissue alignment for each 3D model before and
after motion correction: To validate the alignment of tis-
sues, we evaluated the alignment between the tissues of
each frame and the previous one by estimating the joint
entropy of two consecutive frames before and after motion
correction (equation (8)). The results are shown in Fig. 7
for all 26 pullbacks.

H(f1 , f2) = −ΣjΣkP (j, k)log2 [P (j, k)] (8)

Where f1 and f2 are two consecutive frames with pixel
values of j and k. P(j,k) is the joint probability of appearing
the pixel values j and k at corresponding pixels in the two
consecutive frames. Joint entropy is calculated for every
two consecutive frames. Then, the result is reported as

Fig. 8. Percentage of improvement in the calculated mean Euclidean
distance between the centerline of the 3D models before and after motion
correction for each OCT pullback.

Fig. 9. Intra-slice joint entropy to evaluate tissue matching before and
after motion correction, which are shown in blue and red respectively for
all 26 pullbacks. Error bars show the standard deviation. Joint entropy is
reported as mean± std for each patient.

mean± std of all the calculations for each volume before
and after motion correction.

III. RESULTS AND DISCUSSION

Motion correction is performed on 26 OCT pullbacks ob-
tained from 26 different patients with KD. The results are shown
in Fig. 7 demonstrate the measured Euclidean distance between
all the points along the centerline of the 3D model and the corre-
sponding points on the fixed straight line centered on the lumen
of the first frame before and after motion correction. For each
patient, the mean value of all the measured Euclidean distances
and standard deviations are calculated. As it is illustrated in
Fig. 7, there is a considerable improvement of measured values
of Euclidean distance after motion correction. The percentage
of improvement in the Euclidean distance between the center-
lines of the 3D models before and after motion correction is
shown in Fig. 8. To ensure that all the aspects of the quantitative
validation of motion correction are considered, the alignment of
the corresponding tissues are evaluated by estimating the joint
entropy between the region of interests of every two consecutive
frames for each volume before and after motion correction. As
it is illustrated in Fig. 9, the lower joint entropy after motion
correction shows the higher dependency and good alignment of
the tissues between the frames for each patient. Fig. 10 demon-
strates the percentage of improvement in joint entropy after
motion correction.

The results of motion correction of intracoronary OCT im-
ages are visually illustrated in Figs. 11 and 12 for two differ-
ent patients. The centerlines of the 3D models show a good
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Fig. 10. Percentage of improvement in the calculated mean joint en-
tropy for each OCT pullback before and after motion correction.

alignment of the frames, since the center of the frames are well
aligned. Joint entropy is estimated for each two consecutive
frames, which demonstrates the robustness of the proposed mo-
tion correction approach to align the tissues. The longitudinal
cross-section of the 3D model after motion correction shows a
good alignment of different coronary artery layers. The param-
eters of transformation are changed slightly from one frame to
the other as it is expected based on very small movements of the
catheter and probe along the artery.

The whole process of finding the optimal transformation pa-
rameters takes ∼ 119 minutes for each OCT pullback. Matlab
2017b is used for all the experiments in this study. The com-
puter configuration is as follows: Intel core i7-6700k, 16 GB of
RAM. The experiments are performed on GPU (GeForce Titan
X, RAM: 12GB), Windows 10 (64 bit).

The proposed motion correction method is based on deep
features extracted from fine-tuned CNN and is aimed to find the
best possible correspondence between tissues to facilitate the 3D
assessment of tissues and pathological formations. The results
show the susceptibility of deep features to describe and charac-
terize different coronary artery tissues while the images obtained
from young children with very small size of blood vessels, high
heart rate, and lack of collaboration of the patient during the
imaging process. Considering different artifacts caused by the
imaging system, which definitely leave some deteriorating ef-
fects on the image quality, intravascular assessment of coronary
artery tissues is a challenging task. In some cases, the cross-
section is positioned at a side branch that can cause fold over
artifact and can complicate the tissue alignment process.

Since, this is the first time that tissue information is used to
solve the problem of motion correction, our method is not com-
parable with any of the existing methods. Therefore, we discuss
some limitations of the existing models, which motivated us to
propose tissue based motion correction model. First of all, tissue
information is more reliable than lumen and media-adventitia
borders to perform the registration, since it can give us detailed
information of the tissues. In this study, the experiments are
performed on 26 sequences of intracoronary OCT images with
three-layered structure. In all the 26 cases, which are used for the
experiments, the lumen and media-adventitia borders can be de-
tected, although they are affected by Kawasaki disease. Because
as a result of disease, the arterial wall layers can be thickened
while the three-layered structure is maintained. We proposed
a motion correction approach, which does not contradict with

other existing methods since in normal arterial structure, those
methods can also work while their performance is not as robust
as tissue based motion correction as it is shown in Fig. 13. Al-
though the contour based motion correction can be applied for
the frame registration of all 26 OCT pullbacks, but the results
show lower joint entropy using our proposed method. This is ex-
pectable since more accurate information regarding the tissues
are used to match them properly frame by frame.

However, the feature based motion correction, which is pro-
posed in this study can be generalized to all the cases when
the lumen does not show a complete circular shape, media de-
struction happens due to the disease, and when we have various
imaging artifacts. Some examples of these cases are shown in
Fig. 14. As an example, intimal hyperplasia with media disap-
pearance is one of the significant coronary artery complications
caused by Coronary artery disease (Fig. 15). Therefore, we do
not have any information regarding the media-adventitia border.
As it is shown in Fig. 16(a), motion correction is performed us-
ing our proposed method by extracting deep features from each
frame of the pullback of Fig. 15. Also, we used the information
of lumen, and media-adventitia borders to solve the problem of
motion correction (Fig. 16(b)). As it is shown in the Fig. 16(a),
tissue based motion correction approach has a good performance
for all the frames of the OCT pullback. But, contour based mo-
tion correction is failed in performance after forty three frames
since intimal hyperplasia and disappearance of media border
caused by KD on coronary artery layers started from the frame
forty four and it continued to the end of the sequence. Therefore,
there is no information regarding the media-adventitia border to
be used for registration (Fig. 16(b)).

To demonstrate the robustness of the tissue based motion
correction, we selected 11 KD patients with intracoronary
pathological formations while we do not have the three-layered
structure of the arterial wall in the whole pullback or part of
the pullback. The results of measured intra-slice joint entropy
for motion correction using contour based and tissue based
methods are shown in Fig. 17. The calculated joint entropy
is considerably lower using tissue based motion correction
compared against contour based registration. The reason is
that the contour based motion correction fails in performance
when the lumen or media-adventitia borders are not detectable
due to coronary artery disease. Fig. 18 shows the percentage
of improvement in joint entropy using tissue based motion
correction than contour based motion correction.

In addition, the shadow of the catheter on arterial wall causes
loss of information in OCT imaging. As a result, even in the
least challenging cases, the lumen border does not appear in a
complete circular shape. When the registration is based on the
geometry of the lumen border, the algorithm tries to find trans-
formation parameters that can match the lost part of the lumen
border along each other. This sometimes causes large rotational
angles, which is not possible in the reality of OCT imaging,
since the probe has very small rotations during image acqui-
sition. Also, Gaussian filter that is used in some techniques to
detect the lumen border is not reliable enough, since it is not
edge preserving. In some studies, EM sensors are attached to the
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Fig. 11. Patient 1: Motion correction of intracoronary OCT images: (a) shows the x-z projection of centerlines in green and purple before and after
motion correction respectively compared against the fixed straight line centered on the lumen of the first frame (black). Joint entropy between each
frame and the previous one is calculated in (b) for the whole sequence of frames before and after motion correction (blue and red respectively). The
Longitudinal Cross-section is shown in (c) to illustrate tissue matching after motion correction.

Fig. 12. Patient 2: Motion correction of intracoronary OCT images: (a) shows the x-z projection of centerlines in green and purple before and after
motion correction respectively compared against the fixed straight line centered on the lumen of the first frame (black). Joint entropy between each
frame and the previous one is calculated in (b) for the whole sequence of frames before and after motion correction (blue and red respectively). The
Longitudinal Cross-section is shown in (c) to illustrate tissue matching after motion correction.

Fig. 13. Intra-slice joint entropy to evaluate tissue matching before and
after motion correction, which are shown in blue and red respectively for
all 26 pullbacks. The joint entropy using contour based motion correction
is shown in green. Error bars show the standard deviation. Joint entropy
is reported as mean± std for each patient.

tip of the catheter to facilitate the accessibility of spacial position
of the catheter. But, using EM sensors can reduce the manip-
ulability of the catheter. Using mutual information and joint
entropy as objective functions for registration has some limi-
tations. Both measures have low performance with increasing
noise. In monomodal image registration, both mutual informa-
tion and joint entropy can be insensitive to intensity variations

Fig. 14. Three examples of lumen deformation caused by the disease
and the artifacts of the imaging system.

between the images. Therefore, they are used for multimodal im-
age registration. From another perspective, deep features give
us detailed information of the tissues, which are more reliable
than distribution of pixel values to be considered for motion cor-
rection and registration problem. The limitations of mentioned
studies demonstrate the advantages of using deep features and
tissue information for the problem of motion correction in OCT
imaging. As the limitation of the proposed motion correction
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Fig. 15. Intracoronary OCT pullback with three layered arterial wall
structure for the first 43 frames and intimal hyperplasia with media dis-
appearance as a result of KD from frame 44 to the end of the sequence.
The original frames and corresponding manual segmentation of different
arterial wall layer borders are shown for some frames of the sequence.

Fig. 16. Intra-slice motion correction is performed (a) using the sim-
ilarity between deep tissue features, and (b) using lumen, and media-
adventitia contours. Using contour information, the registration fails in
performance when media-adventitia border is disappeared as a result of
the coronary artery disease, particularly KD in this case.

Fig. 17. Intra-slice joint entropy to evaluate the motion correction using
tissue-based and contour-based models (red and green respectively).
Error bars show the standard deviation. Joint entropy is reported as
mean± std for each patient.

method in this study, the proposed non-rigid motion correction
approach may lead to a deformation of the artery that should be
considered in future works.

To discuss the usefulness of the CNN features in our motion
correction model, we investigated the features that the network
learns. We extracted features using CNN from one of the OCT
images, which is shown in (Fig. 19). Then, we projected acti-
vations at each layer to the input pixel space to compare the
activations with the original image. The channels in each layer
learn different features, which starts from the abstract level fea-
tures in the earlier layers and ends up to the complex features in
the deeper layers. Since there are many channels in each layer
and there are many images to investigate while we project the ac-
tivations of each layer, we focused on projecting the 16 strongest

Fig. 18. Percentage of improvement in the calculated mean joint en-
tropy for each OCT pullback using tissue-based motion correction com-
pared against contour based motion correction.

Fig. 19. The original OCT image, which is used for visualization of the
CNN features.

Fig. 20. Projection of the 16 strongest activations of the first to fifth
convolutional layers using AlexNet for feature extraction of intracoronary
OCT images.

activations at each convolutional layer. Considering the fact that
only the positive activations are used to build the final feature
map because of applying the Rectified linear unit (ReLu) after
each convolutional layer, we visualized the activations of both
convolutional layers and ReLu layers to project the positive ac-
tivations as well. As it is shown in the Figs. 20 and 21, layers one
and two excite the information regarding the shape, corners, and
edges of the original image and deeper layers (layers four and
five); demonstrate the significant and more complex invariances
by capturing the similar textures. Therefore, all the details of the
images are considered from the edges and borders of the images
to the complex texture information of the tissues. Therefore,
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Fig. 21. Projection of the 16 strongest activations of the first to fifth
ReLu layers using AlexNet for feature extraction of intracoronary OCT
images.

when one information is missing, there are other details that
can be considered and the problem of motion correction is not
restricted to using a specific feature in the images. The informa-
tion of contours and borders can be used in normal cases, but
in the pathological cases if there is no information, regarding
the contours, combination of texture information can be used
to find the maximum similarity between the tissues. Therefore,
the motion correction model can be generalized to all the cases,
normal and disease.

The analysis of coronary artery tissues is a broad study field,
which consists of four main steps: 1. Classification of coro-
nary artery layers to recognize characteristic attributes of each
layer. 2. Characterizing the abnormalities caused by disease on
coronary artery tissues. 3. Measuring the dimensions of the ab-
normal segments of the artery, which requires both longitudinal
and transversal assessment of different pathological formations.
4. Evaluating the functionality of coronary arteries by estimating
the stiffness of coronary artery tissues, which affects vascular
elasticity and can reduce the vascular distensibility. This work is
another complimentary study of our framework for tissue anal-
ysis of coronary artery in pediatric cardiology, which is open
for any improvement.

IV. CONCLUSION

In this study, a framework for motion correction of the OCT
images is proposed. The main contribution of this work is the
application of deep features in solving the problem of motion
correction of intracoronary OCT images. This will contribute
to evaluate the functionality of coronary arteries by analyzing
the volume variation and considering the motion of the vessel.
Also, it is a robust method to assess the pathological forma-
tions by finding the correlation between the tissues of adjacent
frames which are recognized using deep features. Since there
is no technical method proposed in the literature for longitudi-
nal assessment of the coronary artery abnormalities caused by
KD in pediatric patients, this study paves the way for iden-
tifying and precisely evaluating vascular wall abnormalities
to prevent future complications in young adults who suffered
from KD.
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