

Estrategias de administración de calcio en el periparto y su influencia sobre el desempeño al momento de parir, mortinatos y viabilidad de los lechones

Autors: Abigail K. Jenkins¹, Sierra M. Collier¹, Joel M. DeRouchey¹, Mike D. Tokach¹, Jason C. Woodworth¹, Katelyn N. Gaffield¹, Jordan T. Gebhardt¹, Robert D. Goodband¹, Kyle F. Coble², Paul J. Corns², Erick Barerra², Isis Arteaga², Jimmy Karl², y Tag Bradley²
¹Kansas State University, ²JBS Live Pork

CONCLUSIONES:

- 1. Administrar una inyección de gluconato de calcio mejora la viabilidad de la camada, logrando un menor número de mortinatos y un mayor porcentaje de lechones nacidos vivos en cerdas consideradas de alto riesgo.
- 2. Aunque el cloruro de calcio mostró resultados prometedores para las cerdas en pruebas anteriores, la investigación más reciente no pudo confirmar una mejora en el rendimiento del parto. Esta variabilidad podría deberse a la dosis de CaCl₂, al tiempo que se suministró o a las diferencias inherentes en la productividad de las cerdas.

¿Por qué puede estar relacionado el calcio con las tasas de mortinatos?

Muchos factores, incluyendo la nutrición, el manejo del parto, la supervisión, los protocolos de intervención y el entorno general, han sido examinados por su influencia en la incidencia de lechones mortinatos (Vanderhaeghe et al., 2013). Entre las granjas porcinas de EE. UU. con la menor cantidad de lechones destetados por cerda cubierta al año, los mortinatos representan el 8.8% del total de lechones nacidos (MetaFarms, 2024).

Los factores de riesgo asociados con un aumento de la tasa de mortinatos incluyen cerdas de paridad avanzada, duración prolongada del parto, grandes tamaños de camada, orden de nacimiento tardío y falta de supervisión del parto (Le Cozler et al., 2002; Adi et al., 2024). Además de aumentar el riesgo de mortinatos, el parto prolongado se asocia con una mayor incidencia de lechones recién nacidos asfixiados. Los lechones asfixiados consumen menos calostro, lo que aumenta su susceptibilidad a la hipotermia y la inanición (Trujillo-Ortega et al., 2007).

Las investigaciones recientes (Craig et al., 2024) identificaron que el bajo nivel de calcio en sangre es un potencial factor de riesgo fisiológico en las cerdas, ya que se observó un aumento en la tasa de mortinatos cuando los niveles de calcio en suero se encontraban por debajo de 2.5 mmol/L antes del parto.

Esto es relevante porque el calcio es crucial para la contracción del músculo liso, incluyendo las contracciones uterinas necesarias para un parto eficaz. Esta función explica la conexión entre los niveles bajos de calcio y la mayor incidencia de partos difíciles y, por ende, de mortinatos.

Dado el gran énfasis que se ha puesto en la hipocalcemia

(fiebre de la leche) en el ganado lechero, el calcio ha cobrado importancia en la investigación porcina. No obstante, las respuestas fisiológicas de las cerdas a las distintas formas de calcio aún no están claras. Esta brecha de conocimiento fue lo que motivó la realización de este estudio y el resumen de resultados.

El cloruro de calcio (CaCl₂) es un suplemento alimenticio que se ha utilizado en las dietas de las cerdas desde el ingreso a la sala de parto hasta el alumbramiento para mantener los niveles de calcio y potencialmente reducir la incidencia de mortinatos. Investigaciones previas generalmente indican que la suplementación con CaCl puede disminuir la cantidad de los mortinatos (Elrod et al., 2015; Bents and Soto, 2023; González-Sánchez et al., 2023). Sin embargo, algunos estudios informan beneficios principalmente en cerdas sin supervisión (Ruampatana et al., 2024) o de paridad media (DeRouchey et al., 2005), mientras que otros, incluido Craig et al. (2024), no encontraron ningún efecto. Más allá de simplemente aportar calcio, el CaCl₂ reduce la diferencia catión-anión de la dieta (DCAD), un mecanismo conocido por mejorar la absorción y movilización de calcio en el ganado lechero (Abu Damir et al., 1994). Aunque la homeostasis del calcio en el parto no se comprende tanto en las cerdas (DeRouchey et al., 2003) informaron un aumento del calcio ionizado cuando se redujo el DCAD.

Otro suplemento de calcio utilizado en los sistemas de producción porcina de EE. UU. para apoyar el rendimiento en el parto es el gluconato de calcio inyectable (CaG). Este compuesto se administra comúnmente en ganado lechero para tratar la hipocalcemia, una condición desencadenada por el aumento repentino en la demanda de calcio antes del parto debido al rápido incremento en la producción de leche (Oetzel, 2022). Aunque no se han evaluado ensayos

de investigación controlados sobre el uso de inyecciones de CaG durante el parto en cerdas, hay estudios de casos que sugieren que puede aliviar los síntomas de distocia (Durrell, 1942; Chutia et al., 2018; Reshma et al., 2020).

Evaluación de protocolos de administración de calcio en el parto

Para comparar estos protocolos de administración de calcio, los investigadores de la Universidad Estatal de Kansas (Kansas State University) completaron recientemente un estudio comercial a gran escala en asociación con JBS Live Pork (Jenkins et al., 2025). Se utilizaron un total de 933 cerdas (paridad promedio de 3.3, línea PIC 1050) y sus camadas para evaluar los protocolos de administración de calcio periparto en la viabilidad de los lechones, el rendimiento de la cerda antes de la adopción cruzada y los parámetros sanguíneos de la cerda y el lechón.

Las cerdas se agruparon por paridad y promedio de mortinatos en partos anteriores y luego se asignaron a uno de tres tratamientos aproximadamente el día 112 de gestación.

Los tratamientos incluyeron: 1) Control: Cerdas que no recibieron intervención. 2) 25 g de un producto a base de cloruro de calcio (CaCl₂; TRIAD, Alltech, Inc., Nicholasville, KY) agregado a la ración diariamente cada mañana, desde aproximadamente el día 112 de gestación hasta el parto, o 3) Inyección de Gluconato de Calcio (CaG) administrada a cerdas primerizas y multíparas (inyección de 15 mL o 20 mL, respectivamente), si la cerda se clasificaba como "de riesgo". La clasificación "de riesgo" se define como aquella cerda que pare más de 16 lechones, presentar un intervalo de más de una hora sin que nazca un lechón (parto detenido). 2 o más mortinatos, o una duración del parto que excede las 4 horas.

También se analizó la duración del parto, los metabolitos sanguíneos de la cerda, el pH de la orina de la cerda y el inmunocrito del lechón en un subconjunto de cerdas. Las cerdas recibieron el ${\rm CaCl}_2$ agregado a la ración de alimento (una mezcla patentada de ${\rm CaCl}_2$, extracto de Yucca schidigera y saborizantes encapsulados en una matriz lipídica) durante un promedio de 4.8 ± 0.14 días antes de la parto. Se alimentó a todas las cerdas con aproximadamente 4 lb/día (2 lb cada mañana y tarde) desde el día 112 de gestación hasta el parto.

El equipo de parto de la granja registró las características de la camada (incluyendo nacidos vivos, mortinatos y momificados) en una tarjeta individual para cada cerda. Realizaron estos registros durante cada ronda de vigilancia en el cuarto de parición, los cual se observaron aproximadamente cada 15 minutos.

Si la cerda mostraba signos de angustia o si pasaban más de 30 minutos sin que ningún lechón naciera, el personal intervenía y asistía a la cerda en parto (manipulación manual o braceado). Cuando encontraban un lechón en el canal de parto, procedían a extraerlo manualmente. El equipo documentó cada caso de asistencia en la tarjeta de la cerda, sin importar si lograron extraer un lechón o no.

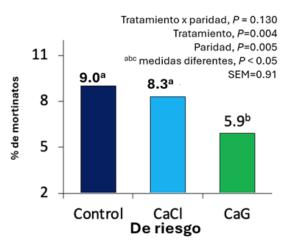
Se utilizó oxitocina de forma muy limitada; solo 8 cerdas recibieron el fármaco durante todo el ensayo, distribuidas equitativamente entre los tratamientos CaG y CaCl₂ (4 cerdas en cada grupo).

En un subconjunto de cerdas se analizaron (74 por tratamiento) para medir la duración del parto, los metabolitos sanguíneos y el pH de la orina de la cerda, así como el inmunocrito de los lechones.

Las cerdas también se clasificaron en dos subconjuntos para un análisis estadístico adicional a través de los tres tratamientos: cerdas de riesgo (n=411) y otras cerdas (n=522).

Las cerdas de riesgo fueron identificadas como aquellas que cumplieron con los criterios para recibir la inyección de CaG (gluconato de calcio) y, además, parieron dentro del horario de trabajo del personal (de 6:00 AM a 3:00 PM).

Los criterios específicos para recibir la inyección de CaG fueron:


- Tener más de 16 lechones.
- Presentar un intervalo de más de una hora sin que haya nacido un lechón (es decir, un parto detenido).
- · Tener dos o más lechones mortinatos.
- Una duración total en parto superior a 4 horas.

Dado que las cerdas fueron asignadas al tratamiento antes del parto, también hubo cerdas asignadas al tratamiento de CaG que posteriormente no se clasificaron como cerdas de riesgo y, por lo tanto, no recibieron la inyección de CaG. El grupo de "otras cerdas" incluyó a aquellas que parieron durante las horas de trabajo (6:00 AM a 3:00 PM) pero no cumplieron con los criterios para recibir la inyección de CaG, así como a aquellas que parieron durante la noche, cuando no fue posible intervenir en el proceso de parto

¿Qué hemos aprendido?

En la población general de cerdas, no hubo diferencias en el total de nacidos, el porcentaje de nacidos vivos ni en el porcentaje de los mortinatos entre los tratamientos. Sin embargo, al comparar a las cerdas de riesgo, la administración de CaG (gluconato de calcio) disminuyó la tasa de mortinatos e incrementó el porcentaje de lechones nacidos vivos. Hubo un aumento en la mortalidad desde el nacimiento hasta la adopción cruzada de lechones en

Nacimiento de mortinatos

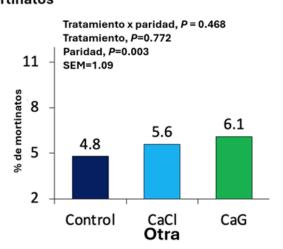


Figura 1. Efecto del protocolo de administración de calcio en los mortinatos dentro del grupo de riesgo.

aquellas cerdas que recibieron CaCl₂ en comparación con las cerdas de control, siendo las cerdas CaG un grupo intermedio.

En cuanto a las mediciones en sangre, al considerar a todas las cerdas, aquellas que fueron alimentadas con CaCl₂ presentaron un aumento del cloro (Cl) y del calcio ionizado (Ca) en sangre en comparación con las cerdas de control o CaG. Las cerdas a las que se les administró CaG tuvieron niveles de glucosa en sangre más altos que las cerdas de control, siendo las cerdas CaCl₂ intermedias. En este estudio, la única diferencia en los metabolitos de las cerdas CaG de riesgo, en comparación con las cerdas de control y CaCl₂ de riesgo, fue la elevación de la glucosa circulante.

Aquellas cerdas que recibieron CaCl₂ o CaG mostraron una disminución en el pH de la orina en comparación con las cerdas de control. Se observó una tendencia a que los cocientes de inmunocrito de los lechones variaran según el protocolo de calcio. Los lechones de las cerdas tratadas con CaG tuvieron un aumento numérico en estos cocientes, lo que se interpreta como una señal de que podrían haber consumido más calostro.

Conclusión

El protocolo de suplementación de $CaCl_2$ en la dieta de la población general de cerdas, previo al parto, modificó los niveles de metabolitos plasmáticos y urinarios durante el proceso del parto, si bien no se observó una influencia significativa en los parámetros de desarrollo asociados a este. En contraste, en el subgrupo de cerdas clasificadas como de alto riesgo (definidas como aquellas con >16 lechones, >1 h entre partos, \geq 2 mortinatos, o una duración del parto superior a >4 h), la aplicación de una dosis inyectada de CaG (Gluconato de Calcio) consiguió

disminuir la tasa de mortinatos, incrementando el porcentaje de lechones que lograron nacer con vida.

REVISORES: Jason Woodworth, Jordan Gebhardt, Joel DeRouchey, y Bob Goodband Kansas State University

REFERENCIAS:

- Abu Damir, H., M. Phillippo, B. H. Thorp, J. S. Milne, L. Dick, and I. M. Inevison. 1994. Effects of dietary acidity on calcium balance and mobilisation, bone morphology and 1,25 dihydroxyvitamin D in prepartal dairy cows. Res. Vet. Sci. 56:310–318. doi:10.1016/0034-5288(94)90147-3.
- Adi, Y. K., R. Boonprakob, R. N. Kirkwood, and P. Tummaruk. 2024. Factors affecting birth weight and stillbirth in sows housed in a tropical environment. Reprod. Domest. Anim. 59:e14500. doi:10.1111/ rda.14500.
- Bents, A., and J. A. Soto. 2023. Characterization of acidbase status and nitrogen metabolism of pre-farrow sows fed diets supplemented with a combination of fat encapsulated Calcium Chloride and Yucca schidigera extract. In: Allen D. Leman Swine Conference Proceedings. University of Minnesota College of Veterinary Medicine.

- 4. Chutia, T., F. A. Ahmed, G. Kalita, K. Lalrintluanga, and K. Saikia. 2018. Management of uterine inertia and post farrowing complicacy in sow: A case report. Haryana Vet. 57:232–233.
- Craig, S., S.-E. R. Khaw, K. R. Petrovski, and R. N. Kirkwood. 2024. Effect of feeding a calcium chloride supplement on sow stillbirth rate. Animals. 14:516. doi:10.3390/ani14030516.
- DeRouchey, J. M., J. D. Hancock, R. H. Hines, K. R. Cummings, D. J. Lee, C. A. Maloney, D. W. Dean, J. S. Park, and H. Cao. 2003. Effects of dietary electrolyte balance on the chemistry of blood and urine in lactating sows and sow litter performance. J. Anim. Sci. 81:3067–3074. doi:10.2527/2003.81123067x.
- DeRouchey, J. M., M. D. Tokach, R. D. Goodband, J. L. Nelssen, S. S. Dritz, and B. Christopherson. 2005. Influence of WEANMOR+ fed to sows on urine pH, stillbirth rate and preweaning mortality. J. Anim. Sci. 83:51–52.
- 8. Durrell, W. B. 1942. Hypocalcaemia in sow. Can. J. Comp. Med. Vet. Sci. 6:305–306.
- Elrod, N. D., R. M. Harp, and K. G. Bryan. 2015. Effect of calcium ion supplementation on swine parturition. Tex. J. Agric. Nat. Resour. 28:12–17.
- González-Sánchez, D., A. Wealleans, and M. Di Benedetto. 2023. The use of coated calcium chloride to reduce stillborn piglets and interventions around farrowing. Animal. 14:724. doi:10.1016/j. anscip.2023.08.013.
- Le Cozler, Y., C. Guyomarc'h, X. Pichodo, P.-Y. Quinio, and H. Pellois. 2002. Factors associated with stillborn and mummified piglets in high-prolific sows. Anim. Res. 51:261–268. doi:10.1051/animres:2002017.

- MetaFarms. 2024. Production Analysis Summary for U.S. Pork Industry: 2019-2023. National Pork Board, Des Moines, IA.
- Oetzel, G. R. 2022. Non-infectious diseases: Milk fever.
 In: Encyclopedia of Dairy Sciences. Elsevier. p. 414–422.
 Available from: https://linkinghub.elsevier.com/ retrieve/pii/B9780128187661001641
- Reshma, A., A. S. Gowda, and V. Aswathanarayanappa.
 2020. Dystocia due to primary uterine inertia in a primiparous sow: A case report. J. Entomol. Zool. Stud. 8:277–278.
- 15. Ruampatana, J., J. Suwimonteerabutr, U. Yamsrikaew, P. Rukklang, and M. Nuntapaitoon. 2024. Calcium chloride supplementation in sows: enhancing farrowing efficiency and piglet viability during transition period. Theriogenology. S0093691X24004795. doi:10.1016/j. theriogenology.2024.11.017.
- 16. Trujillo-Ortega, M. E., D. Mota-Rojas, A. Olmos-Hernández, M. Alonso-Spilsbury, M. González, H. Orozco, R. Ramírez-Necoechea, and A. A. Nava-Ocampo. 2007. A study of piglets born by spontaneous parturition under uncontrolled conditions: could this be a naturalistic model for the study of intrapartum asphyxia? Acta Bio-Medica Atenei Parm. 78:29–35.
- 17. Uehata, M., T. Ishizaki, H. Satoh, T. Ono, T. Kawahara, T. Morishita, H. Tamakawa, K. Yamagami, J. Inui, M. Maekawa, and S. Narumiya. 1997. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 389:990–994. doi:10.1038/40187.
- 18. Vanderhaeghe, C., J. Dewulf, A. De Kruif, and D. Maes. 2013. Non-infectious factors associated with stillbirth in pigs: A review. Anim. Reprod. Sci. 139:76–88. doi:10.1016/j.anireprosci.2013.03.007.

Este proyecto fue apoyado por la National Pork Board (PR-005981) y la Foundation for Food and Agriculture Research.

Esta institución es un proveedor que ofrece igualdad de oportunidades a todos. Para ver la declaración de no discriminación o consultar por la adaptación, visite www.extension.iastate.edu/legal.

