
Design of Reconfigurable 
Computing Systems for 
Smart IoT Applications

Deming Chen
Abel Bliss Professor of Engineering

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

IDEAL 2021



Deploying AI workloads in the cloud for IoT

Major requirements：
• High throughput performance
• Short tail latency
• High power efficiency

Recommendations Auto-gen Sport HighlightsFacial recognition

Speech
recognition,
translation

2



Major requirements：
• Real-time ability
• Energy efficient design
• Area/form-factor constraint 

Deploying AI workloads at the edge for IoT

3



AI Challenge #1: Huge Compute Demands 

https://openai.com/blog/ai-and-compute/

PetaFLOP/s-days
(exponential)

1e+4

1e+2

1e0

1e-2

1e-4

2012 2014 2016 2018

Compute Demands During Training

300,000X

[Canziani, arXiv 2017]Compute Demands During Inference

4

https://openai.com/blog/ai-and-compute/


AI Challenge #2: Massive Memory Footprint 

[Bianco, IEEE Access 2018] 5



Ø HD inputs for real-life applications

1) Larger memory space required for input feature maps
2) Longer inference latency 

Ø Harder for edge-devices

1) Small on-chip memory
2) Limited external memory 

access bandwidth

AI Challenge #2: Massive Memory Footprint 

6



Industry Landscape of DNN Acceleration

EFFICIENCYFLEXIBILITY

Soft DPU
(FPGA)

Cont
rol 

Unit 
(CU)

Registe
rs

Arithm
etic 

Logic 
Unit 

(ALU)

CPUs GPUs
ASICs

Hard
DPU

Cerebras
Google TPU
Graphcore
Groq
Intel Nervana
Movidius
Wave 
Computing
Etc.

BrainWave
Baidu SDA
Deephi Tech
ESE
Teradeep
Etc.

Excellent inference performance at low batch sizes
Ultra-low latency serving on modern DNNs

>10X lower than CPUs and GPUs
Scale to many FPGAs in single DNN service

Performance

FPGAs ideal for adapting to rapidly evolving ML
CNNs, LSTMs, MLPs, reinforcement learning, feature extraction,  

decision trees, etc.
Inference-optimized numerical precision
Exploit sparsity, deep compression for larger, faster models

Flexibility

[source: Materials adapted from Microsoft BrainWave presentation at HotChips’2017]

Key advantages of soft DNN processing units (DPUs)

7



DNNBuilder – Building DNN from Ground UP
An end-to-end automation tool for mapping DNNs onto 
FPGAs for both edge and cloud computing

• DNN IPs as the building block
• Low initial latency
• Efficient use of FPGA on-chip memory
• Automatic on-chip resource allocation

8ICCAD’18, BPA



PE Array Architecture

• 2-dim parallelism

KPF - kernel parallel factor

CPF - channel parallel factor

• Arbitrary quantization

DW - bit-width for feature map

WW - bit-width for weight/bias

9



A “Cache” Architecture 

Column-based cache scheme

For example:

Kernel size = 3

Stride = 1

4 slices cache on-chip instead of keeping the whole feature maps

1 2

• Save on-chip memory
• Enable layer overlapping

10



Special Pipeline Architecture 
A fine-grained layer-based pipelined architecture

Proposed design General design 

• Lower latency vs. general pipeline structure

• Higher throughput vs. recurrent structure

Reduce 7.7x latency for running YOLO
11



BRAM Usage Reduction

Reduce 43x BRAM usage on average for running YOLO

BRAM usage reduction for storing feature maps: 320x ~ 7x 

12



DNNBuilder Performance for Edge Devices

Zynq XC7Z045
• LUT: 218,600
• FF: 437,200
• BRAM: 545
• DSP: 900

Peaking at 524 GOPS
13



DNNBuilder Performance for Cloud Computing

KU115
• LUT: 663,360
• FF: 1,326,720
• BRAM: 2160
• DSP: 5520

Peaking at 4022 GOPS

14



AI Challenge #3: Real-time Requirement

[Bianco, IEEE Access 2018]

30 FPS

Image processed per 
second using NVIDIA TX1 
(batch size =1)

1) Need to deliver high 
throughput: 24FPS, 30FPS …

2) Need to work for real-time: 
e.g., millisecond-scale 
response for self-driving 
cars, UAVs …

15



Ø Existing solutions
• Top-down (independent) AI algorithm and accelerator 

design
• Severe drawbacks for edge AI

Ø A new design methodology for Edge AI
• Algorithm and hardware (accelerator) co-design

16

What Can Be an Effective Solution? 



Various key metrics: Accuracy; Latency; Throughput; 
Energy/Power; Hardware cost, etc.

DNN Design 
and Training

Top-down (independent) DNN Design and Deployment

17



Drawbacks of Top-down DNN Design and Deployment

1) Hard to balance the sensitivities of DNN designs on software 
and hardware metrics

2) Difficult to select appropriate reference DNNs at the beginning 

SW metrics:
Accuracy; 
Generalization; 
Robustness;

HW metrics:
Throughput / latency;
Resource utilization;
Energy / power;

• Choose by experience
• Performance on published datasets

18



Drawbacks of Top-down DNN Design and Deployment

1. Software: 
DNN model design

2. Hardware:
Accelerator Design

deployment

Application,
QoS & QoR Target, etc.

Well Designed DNN Model

Sub-optimal (hardware-unfriendly) DNN 
models and accelerators on edge devices

3) Long iterative procedure, tedious 
engineering efforts, especially for:
• Resource limited edge devices
• Strict performance requirement 
– E.g., faster than 35 FPS for real-

time video processing

DNN models and accelerators co-design!

19



Simultaneous Algorithm / Accelerator Co-design Methodology

Conventional 
hardware-aware NAS
• The hardware accelerator 

design space is fixed

Simultaneous 
algorithm/accelerator co-design
• Both the algorithm and 

accelerator design spaces are 
parameterized and co-
searched simultaneously.

20



Highlight of Our DNN and Accelerator Co-design Work

• Deep Neural Network Model and FPGA Accelerator Co-Design: Opportunities and Challenges, 
Cong Hao and Deming Chen. IEEE ICSICT, 2018.

• FPGA/DNN Co-Design: An Efficient Design Methodology for IoT Intelligence on the Edge, 
Cong Hao, et al., ACM/IEEE DAC, 2019

• NAIS: Neural Architecture and Implementation Search and its Applications in Autonomous Driving, 
Cong Hao, et al., ACM/IEEE ICCAD, 2019

• SkyNet: a hardware-efficient method for object detection and tracking on embedded systems,
Xiaofan Zhang, et al., Machine Learning and Systems (MLSys), 2020

• EDD: Efficient Differentiable DNN Architecture and Implementation Co-search for Embedded AI 
Solutions 

Yuhong Li, et al., ACM/IEEE DAC, 2020

← The very first work that discussed co-design

21



Highlight of Our DNN and Accelerator Co-design Work

• Deep Neural Network Model and FPGA Accelerator Co-Design: Opportunities and Challenges, 
Cong Hao and Deming Chen. IEEE ICSICT, 2018.

• FPGA/DNN Co-Design: An Efficient Design Methodology for IoT Intelligence on the Edge, 
Cong Hao, et al., ACM/IEEE DAC, 2019

• NAIS: Neural Architecture and Implementation Search and its Applications in Autonomous Driving, 
Cong Hao, et al., ACM/IEEE ICCAD, 2019

• SkyNet: a hardware-efficient method for object detection and tracking on embedded systems,
Xiaofan Zhang, et al., Machine Learning and Systems (MLSys), 2020

• EDD: Efficient Differentiable DNN Architecture and Implementation Co-search for Embedded AI 
Solutions 

Yuhong Li, et al., ACM/IEEE DAC, 2020

← The very first work that discussed co-design

22



Our Co-design Method Proposed in ICSICT 2018 

• The objective of the proposed co-design is: “to automatically generate both DNN models and 
their corresponding implementations as pairs” and “shorten the DNN development time by 
avoiding tedious iterations between DNN model and its accelerator designs”

23[ICSICT 2018]



Co-design Idea Materialized in DAC 2019
• Bottom-up: architecture template guided DNN model search

DNN Models

Bi-directional Co-Design

Hardware Accelerators
On Edge Devices

Bottom-up

Top-down

Solution
Quality

Iterations

DNN Model

Hardware Accelerator

Co-Design 
Solution

• Top-down: evaluate DNN through architecture template mapping

• Bi-directional co-search for both DNN and FPGA accelerator

24[DAC 2019]



The Co-design Framework in DAC 2019
Challenges
• High quality DNN design and its accelerator design are both challenging
• Co-design significantly expands design space 

• Difficult to converge
• Requires novel search methodology

25[DAC 2019]



Basic Building Blocks : Bundles

“Bundle”
Basic	building	block

determines

determines

Software

Hardware

DNN

Accelerator

2nd Bundle

1st Bundle

3rd Bundle

Input

Output

…

Conv 3x3

Conv 1x1

DW-Conv 3x3

Activation

DW-Conv
3x3

Parallelism:	32
Bit-width:	8

Conv
1x1

Parallelism:	128
Bit-width:	10Pooling

Relu
Conv 3x3

Conv 1x1

DW-Conv 3x3

Activation

• Bundle: a set of sequential DNN layers as basic DNN 
building block

• Also represents a combination of IP instances used 
for DNN computation

26



Ø Three Stages:
① Select Basic Building Blocks  → ② Explore DNN and accelerator architectures 
based on templates → ③ Add features, fine-tuning and hardware deployment

Output of the Co-design: the SkyNet! 

27[DAC SDC 2019] & [MLSys 2020]



The HW Deployment

Ø Hardware (FPGA) accelerator using our proposed template

1 2

3 4

Input feature maps: 
8x8 tiling

Load data

B
un
dl
e CONV 3x3

CONV 1x1
Pooling

Write back

Time1
1

1
1

1

2
2

2
2

2

3
3

3
3

3

4
4

4
4

4

Off-chip data transfer

Bundle outputs

Overall system Accelerator

28



Ø DAC-SDC targets single object detection for real-life UAV applications
Images contain 95 categories of targeted objects (most of them are small)

Demo #1: Object Detection for Drones
Ø System Design Contest for low power object detection in the 

IEEE/ACM Design Automation Conference (DAC-SDC) 

TX2 GPU Ultra96 FPGA

Ø Comprehensive evaluation: accuracy, throughput, and energy consumption

29



Demo #1: DAC-SDC Dataset

Ø The distribution of target relative 
size compared to input image

31% targets < 1% of the input size
91% targets < 9% of the input size

30



• 13 CONV with 0.4 million parameters

• For Embedded FPGA: Quantization, 
Batch, Tiling, Task partitioning

• For Embedded GPU: Task partitioning

Demo #1: the SkyNet DNN Architecture

31



Ø Evaluated by 50k images in the official test set

Demo #1: SkyNet Results for DAC-SDC 2019

10.1% more accurate

Designs using Ultra96 FPGA

32

2.3X faster1st SkyNet-FPGA

Designs using TX2 GPU



Ø We extend SkyNet to real-time tracking problems

Demo #2: Generic Object Tracking in the Wild

Ø We use a large-scale high-diversity benchmark called Got-10K
• Large-scale: 10K video segments with 1.5 million labeled bounding boxes
• Generic: 560+ classes and 80+ motion patterns (better coverage than others)

[From Got-10K] 33



Demo #2: Results from Got-10K
Ø Evaluated using two state-of-the-art trackers with single 1080Ti 

SiamRPN++ with different backbones

SiamMask with different backbones

Similar AO, 1.6X faster 
vs. ResNet-50 

Slightly better AO, 1.7X faster 
vs. ResNet-50 

34



Conclusions and Future Work

Ø We presented DNNBuilder
Ø IP reuse and scheduling for design automation and on-chip memory usage reduction
Ø Customized pipeline solution to improve throughput

Ø We presented SkyNet & a hardware-efficient DNN design method
• A bidirectional DNN/accelerator design flow for embedded systems
• An effective way to capture realistic HW constraints

Ø Co-design is an exciting research direction
• Co-design for distributed AI

• Co-design for heterogeneous and large-scale AI

• Co-design for emerging AI technologies

35



Thank you


