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Deploying Al workloads in the cloud for loT

Major requirements:
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ml Microsoft
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e Short tail latency

* High power efficiency
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Deploying Al workloads at the edge for loT

Major requirements:

* Real-time ability

* Energy efficient design

* Area/form-factor constraint




Al Challenge #1: Huge Compute Demands
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https://openai.com/blog/ai-and-compute/

Al Challenge #2: Massive Memory Footprint
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Al Challenge #2: Massive Memory Footprint

» HD inputs for real-life applications

1) Larger memory space required for input feature maps

2) Longer inference latency
Size: MB W 125.8 MB

110 Input image size:

» Harder for edge-devices o mHD-1080p = 896x896
80 448x448 m224x224
1) Small on-chip memory s
. . 50
2) Limited external memory 0
access bandwidth 20 ' ’ '
0 L L L
O OO @ 4‘0 O 400 N \s AN
00% & 00% STITITIT IS Cotx &

Input feature map sizes for VGG-16 CONV layers



Industry Landscape of DNN Acceleration

Cerebras
Google TPU

BrainWave Graphcore
Baidu SDA Groq

Deephi Tech Intel Nervana
ESE Movidius
Teradeep Wave

Etc. Computing

Mooy ———— ool

Soft DPU Hard a
(FPGA) DPU ASICs

, Key advantages of soft DNN processing units (DPUs) |

Excellent inference performance at low batch sizes
Ultra-low latency serving on modern DNNs

>10X lower than CPUs and GPUs
Scale to many FPGAs in single DNN service

Performance

FPGAs ideal for adapting to rapidly evolving ML
Flexibility CNNs, LSTMs, MLPs, reinforcement learning, feature extraction,
decision trees, etc.
Inference-optimized numerical precision
Exploit sparsity, deep compression for larger, faster models

[source: Materials adapted from Microsoft BrainWave presentation at HotChips’2017]



DNNBuilder — Building DNN from Ground UP

An end-to-end automation tool for mapping DNNs onto

FPGAs for both edge and cloud computing

Design Generation

' Trained data DNN def. w@) Parsing i Parallehsm
¥

' Guidelines |

‘@ Optimization »ﬁ i
'® Construction 7 |

I
|
I
|
I
/

Deep learning . Pestim. €= | Bitfiles |

frameworks [@ Generation‘ﬁH' ﬁ »

Execution

\

Detection,
Classification, Scene

understanding,

etc.
y

CPU + GPU CPU

FPGA

* DNN IPs as the building block

* Low initial latency

e Efficient use of FPGA on-chip memory
e Automatic on-chip resource allocation

ICCAD’18, BPA



PE Array Architecture

External memory

v v

Layer 1 Weight buffer Layer i1 | weight buffer
WW*KPF,*CPF, bitsfi WW,,,*KPF,,,*CPF,., bilsf$

CONV | L4t 1
Re- /> PE#I J r Re- |1,

: shape , )’ 1 shape e IP array 000|:>

4

. A

Buffer | | Buffer
j—» PE#3 4 /L’
DW.,*CPF, bits DW,,,*KPF, bits  DW,,,*CPF,,, bits
 2-dim parallelism * Arbitrary quantization
KPF - kernel parallel factor DW - bit-width for feature map

CPF - channel parallel factor WW - bit-width for weight/bias



A “Cache” Architecture

E> e Save on-chip memory

Column-based cache scheme + Enable layer overlapping

Input FM width

For example:

Kernel size = 3 E"

Stride = 1 : Lol o
| |Slice1 slice2|slice3 slice4 ﬁ‘. depth

buf. width

4 slices cache on-chip instead of keeping the whole feature maps
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Special Pipeline Architecture

A fine-grained layer-based pipelined architecture

DNN layer

W

y

Trans. delay of Frame 1

Trans. delay of Frame 1

Time Time

Input e B Input — >

frame { Framel | Frame?2 | ®®© frame | Framel | Frame?2 (@ ®®
Layerl i LA Layerl E
Layer2 i o0 Layer2 i
Layer3 i Results || Results (®#®e® Tayer3 E Results || Results
Output !‘T,:‘ L\_,| Output E: :i: =I

Startup latency Output time-slot of frame 1

Startup latency Output time-slot of frame 1

Proposed design

General design

* Lower latency vs. general pipeline structure

* Higher throughput vs. recurrent structure

Reduce 7.7x latency for running YOLO

11



BRAM Usage Reduction
Ox 9x 20x

3_20x 114x
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]
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# of required BRAM
- o

BRAM usage reduction for storing feature maps: 320x ~ 7x

Reduce 43x BRAM usage on average for running YOLO
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DNNBuilder Performance for Edge Devices

Reference [1] [2] DNNBuilder
Categories Edge-computing platforms
TPGA chip Zynq XC7Z015 | Zynq XC7Z045 | Zynq XC7Z045
Frequency 150 MHz 100 MHz 200MHz
Network VGG VGG VGG
Precision Fix16 Fix16 Fix16 (Fix8)
DSPs (used/total) 780/900 824/900 680/900
DSP Efficiency 14.0% 69.6% 96.2%
Performance (GOPS) 137 230 262 (524)
Power Efficiency (GOPS/W) 14.2 24.4 36.4 (72.8)

Zynq XC72045

LUT: 218,600
FF: 437,200
BRAM: 545
DSP: 900

Peaking at 524 GOPS
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DNNBuilder Performance for Cloud Computing

Reference [5] (6] [10] DNNBuilder
Categories Cloud-computing platforms
FPGA chip Arrial0-1150 | Arrial0-1150 Stratix-V GXA7 + CPU KU115
Frequency 303 MHz 385 MHz 200 MHz & 2~3 GHz(CPU) 235 MHz
Network Alexnet VGG Alexnet VGG
Precision Float16 Fix16 Fix16 in FPGA Fix16 (Fix8)
DSPs (used/total) 2952/3036 2756/3036 512/512 in FPGA 4318/5520
DSP Efliciency 77.3% 84.3% - 99.1%
Performance (GOPS) 1382 1790 781 2011 (4022)
Power Efficiency (GOPS/W) 30.7 47.8 - 90.2 (180.4)

KU115

* LUT: 663,360
* FF:1,326,720
* BRAM: 2160

* DSP: 5520

Peaking at 4022 GOPS

14



Al Challenge #3: Real-time Requirement

Top-1 accuracy [%]
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1) Need to deliver high

throughput: 24FPS, 30FPS ...

2)
e.g., millisecond-scale
response for self-driving
cars, UAVs ...

Image processed per
second using NVIDIA TX1
(batch size =1)

[Bianco, IEEE Access 2018]

Need to work for real-time:
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What Can Be an Effective Solution?

» Existing solutions
* Top-down (independent) Al algorithm and accelerator
design
* Severe drawbacks for edge Al

» A new design methodology for Edge Al
e Algorithm and hardware (accelerator) co-design

16



Top-down (independent) DNN Design and Deployment

Various key metrics:

Accuracy; Latency; Throughput;

Energy/Power; Hardware cost, etc.

7

DNN Design
and Training

N\

SWe-related
Optimization

r

HW-related
Optimization

7~

N

Implementation on
embedded devices

= More focus
on accuracy

= Excessively
complicated
for IoT

Step 1

= (Quantization
* Pruning
>- Layer fusion

= (Conv variation

Step 2

Parallel factors
adjustment
Resource
allocation

I/O optimizations

Step 3

17



Drawbacks of Top-down DNN Design and Deployment

1) Hard to balance the sensitivities of DNN designs on software
and hardware metrics

SW metrics: HW metrics:
Accuracy; < Throughput / latency;
Generalization; ’Resource utilization;
Robustness; Energy / power;

2) Difficult to select appropriate reference DNNs at the beginning

* Choose by experience
 Performance on published datasets

18



Drawbacks of Top-down DNN Design and Deployment

3) Long iterative procedure, tedious
engineering efforts, especially for:
 Resource limited edge devices
e Strict performance requirement

— E.g., faster than 35 FPS for real-
time video processing

Sub-optimal (hardware-unfriendly) DNN
models and accelerators on edge devices

@ DNN models and accelerators co-design!

Application,
QoS & QoR Target, etc.

1. Software:
DNN model design

|
Well Designed| DNN Model

2. Hardware:
Accelerator Design

deployment

19



Simultaneous Algorithm / Accelerator Co-design Methodology

Conventional

hardware-aware NAS

e The hardware accelerator
design space is fixed

Simultaneous

algorithm/accelerator co-design

 Both the algorithm and
accelerator design spaces are
parameterized and co-
searched simultaneously.

Algorithm
Design

T Latency, etc.

Accelerator

(a) Hardware-aware NAS

—————— —————— ——————

\ ’ \ 4 \
I I | | [ I
I [ | 1 | I
I I I | [ I
Algorithm %q :@:_A%‘:_ﬁ
Design | I . |
I I I [ | 1
: A I : 1 : 4 I
[ Bi- dlrectlonal I : ! :
I | |
=t ey
I I I [ | 1
Accelerator ! I | I ! I I
< | | —> | | =1 | >
Design I . I I I i
| \ T | |
I I I [ | I
| [ | [ | [

________________________

(b) Simultaneous algorithm/accelerator co-design 20



Highlight of Our DNN and Accelerator Co-design Work

Deep Neural Network Model and FPGA Accelerator Co-Design: Opportunities and Challenges,
Cong Hao and Deming Chen. IEEE ICSICT, 2018. ¢ The very first work that discussed co-design

FPGA/DNN Co-Design: An Efficient Design Methodology for l1oT Intelligence on the Edge,
Cong Hao, et al., ACM/IEEE DAC, 2019
NAIS: Neural Architecture and Implementation Search and its Applications in Autonomous Driving,

Cong Hao, et al., ACM/IEEE ICCAD, 2019
SkyNet: a hardware-efficient method for object detection and tracking on embedded systems,

Xiaofan Zhang, et al., Machine Learning and Systems (MLSys), 2020
EDD: Efficient Differentiable DNN Architecture and Implementation Co-search for Embedded Al

Solutions

Yuhong Li, et al., ACM/IEEE DAC, 2020
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Our Co-design Method Proposed in ICSICT 2018

Inputs | | Performance Constraints: Target Application: 7 )
: Speed > 20 FPS Image Classification / Recognition / Object Detection, etc. Configuration Data
Power < 5W . Parallelism = 16:
Throughput > 20 GOPS 11" Pool [ —_ LUTs (5000)
etc. I Depth-wise vee Cloriv cee C5OI;V 5 > DiPls. (18) "
3x i | Ix1 | 5x5 arallelism = 32:
| | FPGA Resources: ‘/3’”— e LUTs (12000) i
5 BRAM, DSP, Max Relu MM DSPs (42) ;
E LUTs, etc. iwg_-’ a W-‘ | - i
Co-Design Engine
Outputs Solution 1 , = Solution 2 , = 5
| * Conv 1x1: Parallelism=32 |+ Conv 3x3: Parallelism=64
Configured IPs * Conv 3x3: Parallelism=64 Configured IPs *  Conv 5x5: Parallelism=128
..l *  Max pooling (str=2), etc. ..l * Avgpooling (str=1), etc.
NN VoIR depth-wise conv layers Neutal Nt Ok depth-wise conv layers
Strichire total 20 layers Stractare total 16 layers
..l *  maximum 512 channels ..l *  maximum 256 channels
FPGA 8 !I)lt weight, 16 bit activation FPGA 8 ‘.:)lt weight, 8 bit activation
Implementation 3 instances of Conv 3x3, etc. Implementation * 1 instance of Conv 5x5, etc.
P ) folded structure P o folded structure

 The objective of the proposed co-design is: “to automatically generate both DNN models and
their corresponding implementations as pairs” and “shorten the DNN development time by
avoiding tedious iterations between DNN model and its accelerator designs”

[ICSICT 2018]



Co-design Idea Materialized in DAC 2019

* Bottom-up: architecture template guided DNN model search

* Top-down: evaluate DNN through architecture template mapping

e Bi-directional co-search for both DNN and FPGA accelerator

Hardware Accelerators
On Edge Devices

Quality

Solution

/@,@

Co-Design
Solution

Aty

DNN Model

Hardware Accelerator

___________________ [DAC 2019]

lterations
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The Co-design Framework in DAC 2019

Challenges
* High quality DNN design and its accelerator design are both challenging
e Co-design significantly expands design space
e Difficult to converge
* Requires novel search methodology

L ! L 4
Co-Design Flow Inputs Auto-DNN: DNN Exploration |0 Auto-HLS: Accelerator Generation d Tile-Arch:
v ) Accelerator template
* Target ML task Auto-Bundle SR—
* FPGA device (resource) Step 1: Bundle/DNN| Step 3: Hardware-aware DNN search and update Generation ght e
* Performance targets Modeling Resource , Synthesis Tool i 2 data tiling
DNN Initialization . ‘ ‘ P
¥ Resource & Constraints & AmtoDNN | | oo | F"Ee
Latency|Model <bund; Stk, PF, Qt> |_ Target Latency > | DNN resource P pipelining
e | + Al AT T
e 4 FPGA Design 7 3 4
DW- | =3 Evaluation Stochastic Coordinate| iA Latency/Resource Synthesizable C code I “““““““““““““
i ' Coarse-Grained | Descent (SCD) Unit | Model |
| || | 3x3 ) 5x5 e - . -Desig p
gonlv Po)i)l- = Fine-Grained v J'ﬁ' DNN Training Framework Co-Design Flow Outputs
ing Relu I DNN Model Update » DNN candidates I, Training DNN 5 Software: Hardware:
“ee Bundle 7 TOp'N promising I A Constraints met Scnpt Accuracy DNN Model FPGA Desigﬂ
Configurable IP Pool Bundles | ¥ ‘

[DAC 2019]




Basic Building Blocks : Bundles

* Bundle: a set of sequential DNN layers as basic DNN
building block
* Also represents a combination of IP instances used

for DNN computation
Conv 3x3 /
DW-Conv 3x3

deterrlnmes

“Bundle”
Basic building block

Conv 1x1

Activation

Input

1st Bundle
21d Bundle

3rd Bundle

Output

DW-Conv
3x3

Parallelism: 32

Bit-width: 8

DW-Conv 3x3

Activation

Conv
1x1

Parallelism: 128
Bit-width: 10
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Output of the Co-design: the SkyNet!

» Three Stages:

(D Select Basic Building Blocks = () Explore DNN and accelerator architectures
based on templates > (3 Add features, fine-tuning and hardware deployment

[
Conv3 i Conv5
TH :‘\ctiva- n
BN tion 3
Bundle / 2
e ‘ --------------------- 1
E Conv3 || Conv5 BN
‘[ DW- DW- || Activa-
i| Conv3 || Conv5 || tion
[ DW- |[ PW-
i| Conv7 || Convl
E DNN Components

Q
e
=
<
W
A

Q

Q

=

=

w
A

BN

RelLLU

~
S

Dim1: Potential

channel expansion —
i Conv layers

Dim?2: Potential
pooling position

Bundle evaluation on the targeted device Stack the selected Bundle i
and explore DNN in two
dimensions using PSO

Front-end
o ¥ ® Bundle | b 2
~ 507 ?_??g’—‘—""’ ° ® Bundic?2 )
S o ° Bundle 3 Bundle i
2 i °
=451 Qe ® Bundlc 4 T —

& ﬁ“ o ® ® Bundle 5 T

g 40 1 . _ ® | @ Bundle6 Bundle i )

8 ‘ Bundle 7

2 ® ® L .
£ 30/ ® Bundle i
m ‘. o ° “ o <+
251 e o "o + -
he Back-end
10 20 30 40 =
Stage 1 Bundle Latency on FPGA (ms) Stage 2

Add advanced
DNN features

- FM Bypass

- Channel shuffle
- HW-efficient
activation func.

Stage 3

jd

[DAC SDC 2019] & [MLSys 2020]
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The HW Deployment

» Hardware (FPGA) accelerator using our proposed template

PS  Input image - — Pre-process

....................................... DRAM
PL Off-chip data transfer —
Input
BRAM On-chip On-chip Data
Weight Buffers Data Buffers
1 7 DNN
: On-chip data transfer Weights
Logic . ____ - ) pEw— TEEE
If CONV 3x3 CONV 1x1 Pooling : Off-chip
: IP instance IP instance IP instance || | |Data Buffer
______________ Bundle

Overall system

=I
=
QA

Input feature maps: ~ Bundle outputs
8x8 tiling = oo
Off-chip data transfer
AN
e B
T
'CONV IxI | .. . . B _
. Pooling ' [ 2 [
Write back - _ .

Accelerator




Demo #1: Object Detection for Drones

» System Design Contest for low power object detection in the
IEEE/ACM Design Automation Conference (DAC-SDC)

LAS VEGAS, NV «JUNE 2 -6,2019« DAC.COM

Get Ready To Participate! _&5"%\"} ‘\%?/;/,\Z

COMPLIMENTARY REGISTRATION S ——

TOWARDS GRAND CASH PRIZE! 9 V
'fﬂ?,»x\ TX2 GPU Ultra96 FPGA

» DAC-SDC targets single object detection for real-life UAV applications
Images contain 95 categories of targeted objects (most of them are small)

» Comprehensive evaluation: accuracy, throughput, and energy consumption

TS: = RIoU.,; ) 4 (1 -4 ESZ)



Demo #1: DAC-SDC Dataset

31% targets < 1% of the input size 2000

1000

&
)

# of boxes 1 o

L . 6000 _—791% e,

» The distribution of target relative sk 8% 0.8 2
size compared to input image 4000 | 0.6 %
3000 0.4%

=

91% targets < 9% of the input size

0

1% 2% 9% 16% 25% 36%
Area of output box / Area of input image
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Demo #1: the SkyNet DNN Architecture

Ch. 48 Ch. 192 Ch. 384 Ch. 512

Input
3x160x320

_____.l______

Bundles | DW-CONV3x3 CONV1xl |  MaxPooling
! Batch Norm Batch Norm;  2x2
| RelU ReLU i

]
Pass the feature map
after reordering

Ch. 96

Output
20x40x10

—

TN\

CONV 1x1

13 CONV with 0.4 million parameters  cpu Image
Thread 1 | Pre-process

Image

Pre-process

4

v

For Embedded FPGA: Quantization,

Input Image Queue

\

\

Batch, Tiling, Task partitioning GPU/FPGA

SkyNet

SkyNet

For Embedded GPU: Task partitioning

v

\d

CPU
Thread 2

Last Layer Output Queue

\d

\d

Bounding Box
Regression

Bounding Box

Regression
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Demo #1: SkyNet Results for DAC-SDC 2019

» Evaluated by 50k images in the official test set

0.75
0.70
0.65

2 0.60
0.55
0.50

0.45

2.3X faster

!

and A 15t SkyNet-GPU

N\
A

- 10.1% more accurate
@ 5t \ 4

mGPU-19 A GPU-18

7 nd ‘
- FPGA-19 ®FPGA-18

15 25 35 45 05 65 FPS

Designs using Ultra96 FPGA
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Demo #2: Generic Object Tracking in the Wild

» We extend SkyNet to real-time tracking problems
» We use a large-scale high-diversity benchmark called Got-10K
* Large-scale: 10K video segments with 1.5 million labeled bounding boxes
* Generic: 560+ classes and 80+ motion patterns (better coverage than others)

"

person

surfing skiing |

[From Got-10K]
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Demo #2: Results from Got-10K

» Evaluated using two state-of-the-art trackers with single 1080Ti

SiamRPN++ with different backbones

Backbone AO SRoso | SRo7s | FFPS
AlexNet 0.354 0.385 0.101 >2.36
ResNet-50 | 0.365 0411 0.115 25.90
SkyNet 0.364 0.391 0.116 41.22
SiamMask with different backbones

Backbone AO SRo.50 SRo7s | FPS
ResNet-50 | 0.380 0.439 0.153 17.44
SkyNet 0.390 0.442 0.158 30.15

Similar AO, 1.6X faster
vs. ResNet-50

Slightly better AO, 1.7X faster

vs. ResNet-50
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Conclusions and Future Work

» We presented DNNBuilder

» |IP reuse and scheduling for design automation and on-chip memory usage reduction
» Customized pipeline solution to improve throughput

» We presented SkyNet & a hardware-efficient DNN design method
 Abidirectional DNN/accelerator design flow for embedded systems
 An effective way to capture realistic HW constraints

» Co-design is an exciting research direction
e Co-design for distributed Al
 Co-design for heterogeneous and large-scale Al

 Co-design for emerging Al technologies
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