

# Design of Reconfigurable Computing Systems for Smart IoT Applications

Deming Chen Abel Bliss Professor of Engineering Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

**IDEAL 2021** 

# Deploying AI workloads in the cloud for IoT

#### Major requirements:

- High throughput performance
- Short tail latency
- High power efficiency





**Facial recognition** 





Recommendations

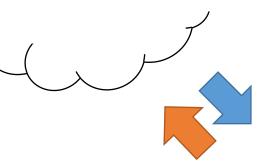


**Auto-gen Sport Highlights** 

# Deploying AI workloads at the edge for IoT

#### Major requirements:

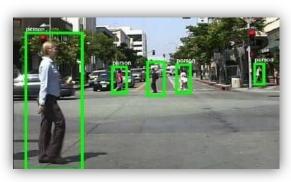
- Real-time ability
- Energy efficient design
- Area/form-factor constraint





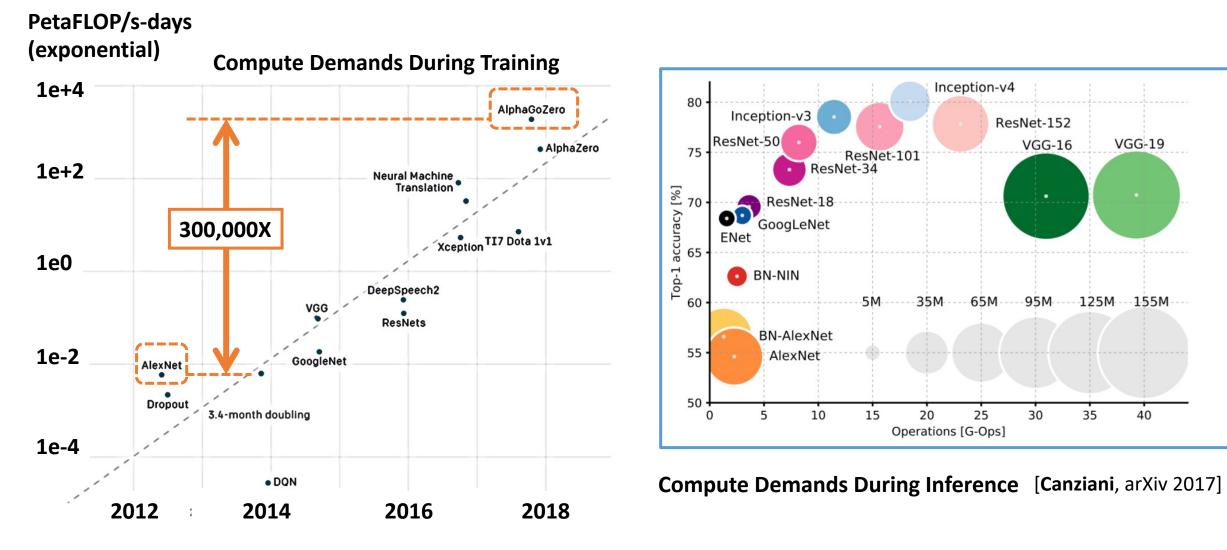






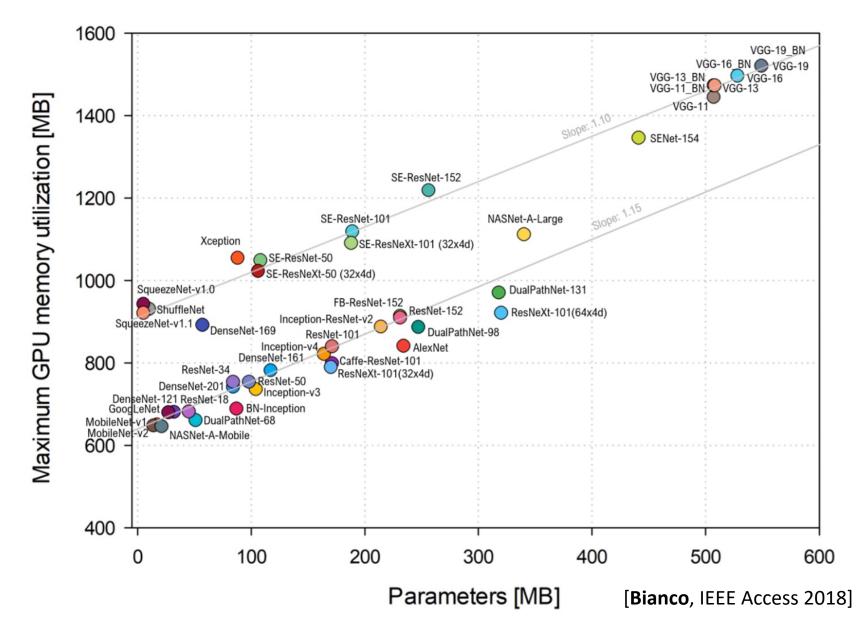


# AI Challenge #1: Huge Compute Demands



https://openai.com/blog/ai-and-compute/

### AI Challenge #2: Massive Memory Footprint

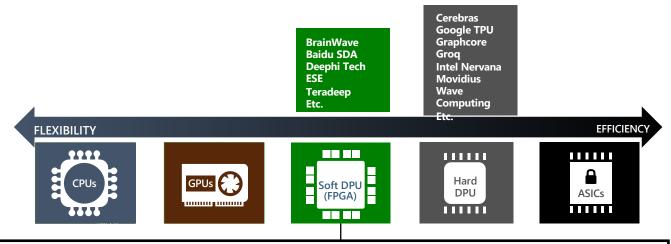


# **AI Challenge #2: Massive Memory Footprint**

- HD inputs for real-life applications
  - Larger memory space required for input feature maps 1)
  - 2) Longer inference latency
- Harder for edge-devices
  - 1) Small on-chip memory
  - 2) Limited external memory access bandwidth



### **Industry Landscape of DNN Acceleration**



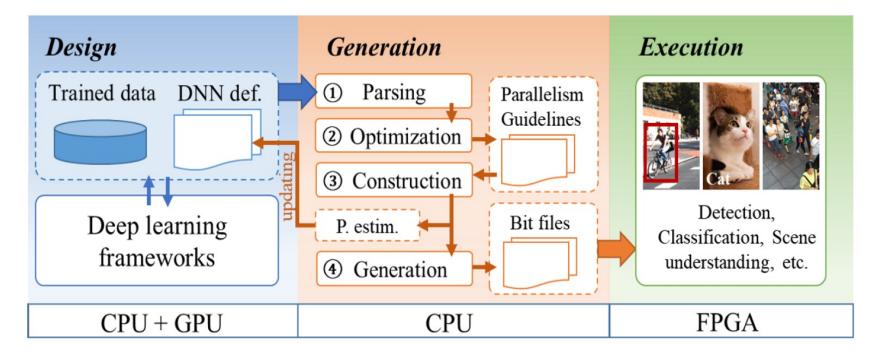
Key advantages of soft DNN processing units (DPUs)

| Performance | Excellent inference performance at low batch sizes<br>Ultra-low latency serving on modern DNNs<br>>10X lower than CPUs and GPUs<br>Scale to many FPGAs in single DNN service                                                                                                            |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flexibility | <ul> <li>FPGAs ideal for adapting to rapidly evolving ML</li> <li>CNNs, LSTMs, MLPs, reinforcement learning, feature extraction, decision trees, etc.</li> <li>Inference-optimized numerical precision</li> <li>Exploit sparsity, deep compression for larger, faster models</li> </ul> |

[source: Materials adapted from Microsoft BrainWave presentation at HotChips'2017]

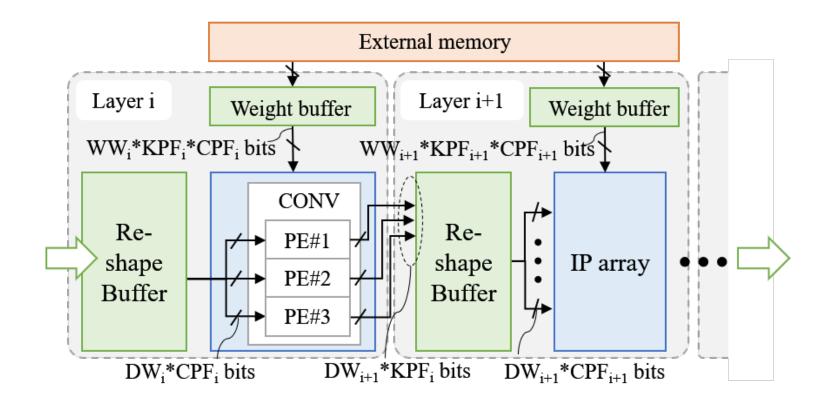
# **DNNBuilder – Building DNN from Ground UP**

An end-to-end automation tool for mapping DNNs onto FPGAs for both edge and cloud computing



- DNN IPs as the building block
- Low initial latency
- Efficient use of FPGA on-chip memory
- Automatic on-chip resource allocation

#### **PE Array Architecture**



- 2-dim parallelism
- KPF kernel parallel factor
- CPF channel parallel factor

Arbitrary quantization

DW - bit-width for feature map WW - bit-width for weight/bias

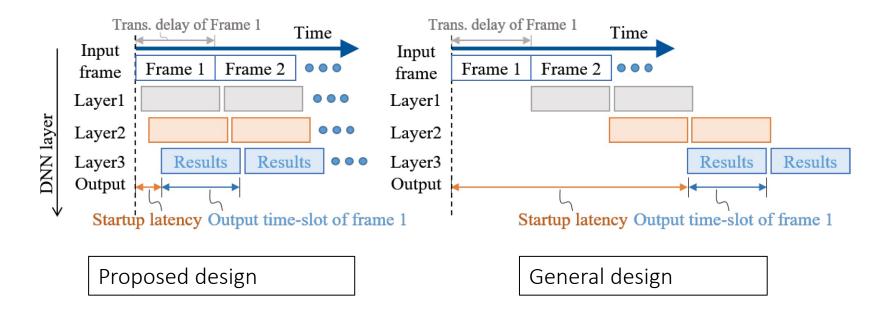
### A "Cache" Architecture

Save on-chip memory ٠ Column-based cache scheme Enable layer overlapping ٠ Input FM width Input FM heigh For example: 2 buf. height Buffering dir. Kernel size = 3۲ Stride = 1buf. depth Input FM depth Slice1 Slice2 Slice3 Slice4 buf. width

4 slices cache on-chip instead of keeping the whole feature maps

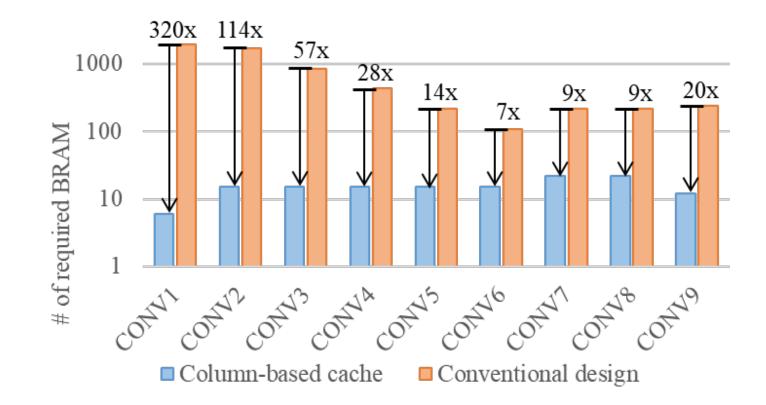
# **Special Pipeline Architecture**

#### A fine-grained layer-based pipelined architecture



- Lower latency vs. general pipeline structure
- Higher throughput vs. recurrent structure

#### **BRAM Usage Reduction**



BRAM usage reduction for storing feature maps: 320x ~ 7x

Reduce 43x BRAM usage on average for running YOLO

### **DNNBuilder Performance for Edge Devices**

| Reference                 | [1]                      | [2]          | DNNBuilder   |  |
|---------------------------|--------------------------|--------------|--------------|--|
| Categories                | Edge-computing platforms |              |              |  |
| FPGA chip                 | Zynq XC7Z045             | Zynq XC7Z045 | Zynq XC7Z045 |  |
| Frequency                 | 150 MHz                  | 100 MHz      | 200MHz       |  |
| Network                   | VGG                      | VGG          | VGG          |  |
| Precision                 | Fix16                    | Fix16        | Fix16 (Fix8) |  |
| DSPs (used/total)         | 780/900                  | 824/900      | 680/900      |  |
| DSP Efficiency            | 44.0%                    | 69.6%        | 96.2%        |  |
| Performance (GOPS)        | 137                      | 230          | 262 (524)    |  |
| Power Efficiency (GOPS/W) | 14.2                     | 24.4         | 36.4 (72.8)  |  |

Zynq XC7Z045

- LUT: 218,600
- FF: 437,200
- BRAM: 545
- DSP: 900

Peaking at 524 GOPS

# **DNNBuilder Performance for Cloud Computing**

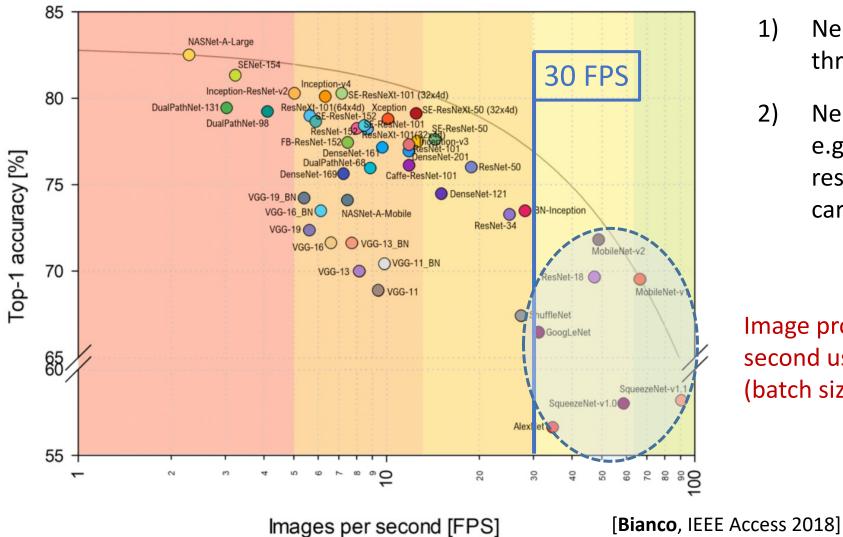
| Reference                 | [5]                       | [6]          | [10]                   | DNNBuilder   |  |
|---------------------------|---------------------------|--------------|------------------------|--------------|--|
| Categories                | Cloud-computing platforms |              |                        |              |  |
| FPGA chip                 | Arria10-1150              | Arria10-1150 | Stratix-V GXA7 + CPU   | KU115        |  |
| Frequency                 | 303 MHz                   | 385 MHz      | 200 MHz & 2~3 GHz(CPU) | 235 MHz      |  |
| Network                   | Alexnet                   | VGG          | Alexnet                | VGG          |  |
| Precision                 | Float16                   | Fix16        | Fix16 in FPGA          | Fix16 (Fix8) |  |
| DSPs (used/total)         | 2952/3036                 | 2756/3036    | 512/512 in FPGA        | 4318/5520    |  |
| DSP Efficiency            | 77.3%                     | 84.3%        | -                      | 99.1%        |  |
| Performance (GOPS)        | 1382                      | 1790         | 781                    | 2011 (4022)  |  |
| Power Efficiency (GOPS/W) | 30.7                      | 47.8         | -                      | 90.2 (180.4) |  |

KU115

- LUT: 663,360
- FF: 1,326,720
- BRAM: 2160
- DSP: 5520

Peaking at 4022 GOPS

### AI Challenge #3: Real-time Requirement



- 1) Need to deliver high throughput: 24FPS, 30FPS ...
- 2) Need to work for real-time: e.g., millisecond-scale response for self-driving cars, UAVs ...

Image processed per second using NVIDIA TX1 (batch size =1)

## What Can Be an Effective Solution?

- Existing solutions
  - <u>Top-down</u> (independent) AI algorithm and accelerator design
  - Severe drawbacks for edge AI
- A new design methodology for Edge AI
  - Algorithm and hardware (accelerator) <u>co-design</u>

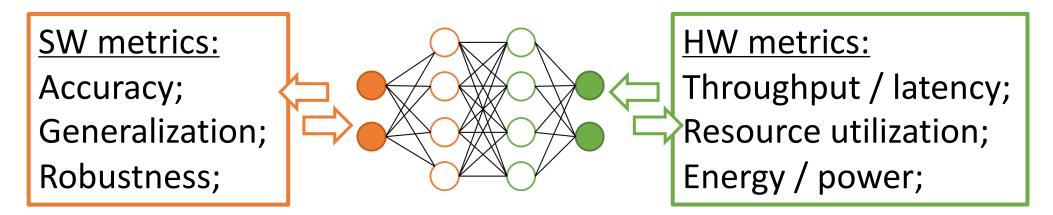
# **Top-down (independent) DNN Design and Deployment**

Various key metrics: Accuracy; Latency; Throughput; Energy/Power; Hardware cost, etc.

| DNN Design                                                                                                             | SW-related                                                                                                             | HW-related                                                                                                                             | Implementation on |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| and Training                                                                                                           | Optimization                                                                                                           | Optimization                                                                                                                           | embedded devices  |
| <ul> <li>More focus<br/>on accuracy</li> <li>Excessively<br/>complicated<br/>for IoT</li> <li><i>Step 1</i></li> </ul> | <ul> <li>Quantization</li> <li>Pruning</li> <li>Layer fusion</li> <li>Conv variation</li> <li><i>Step 2</i></li> </ul> | <ul> <li>Parallel factors<br/>adjustment</li> <li>Resource<br/>allocation</li> <li>I/O optimizations</li> <li><i>Step 3</i></li> </ul> | File 4            |

# **Drawbacks of Top-down DNN Design and Deployment**

1) Hard to balance the sensitivities of DNN designs on software and hardware metrics



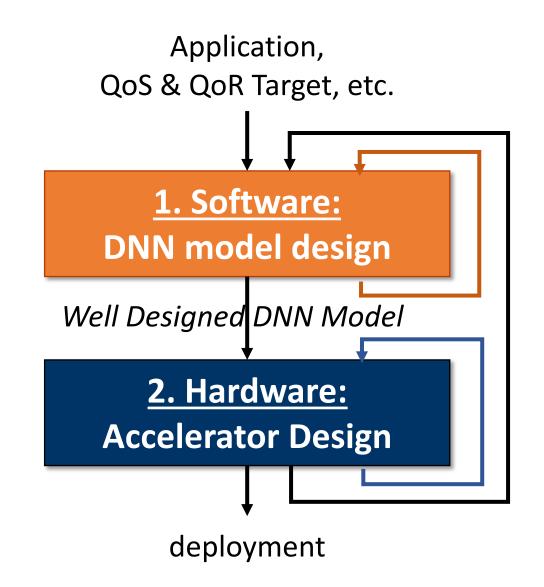
- 2) Difficult to select appropriate reference DNNs at the beginning
  - Choose by experience
  - Performance on published datasets

# **Drawbacks of Top-down DNN Design and Deployment**

- 3) Long iterative procedure, tedious engineering efforts, especially for:
  - Resource limited edge devices
  - Strict performance requirement
    - E.g., faster than 35 FPS for realtime video processing

Sub-optimal (hardware-unfriendly) DNN models and accelerators on edge devices

DNN models and accelerators co-design!



#### Simultaneous Algorithm / Accelerator Co-design Methodology

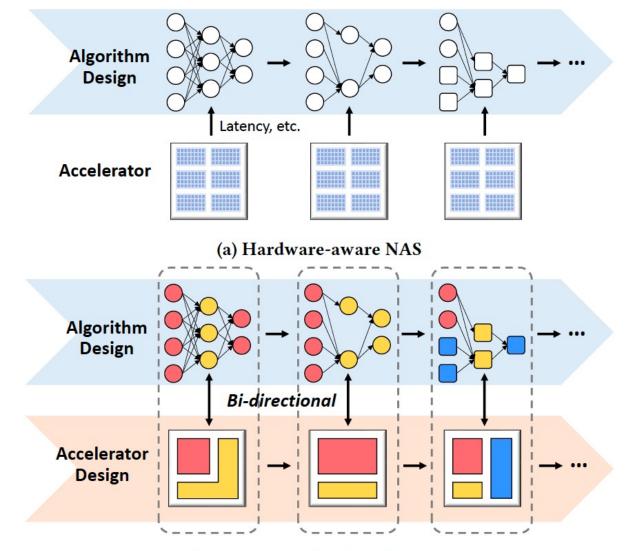
#### **Conventional** hardware-aware NAS

 The hardware accelerator design space is <u>fixed</u>

# Simultaneous

#### algorithm/accelerator co-design

 Both the algorithm and accelerator design spaces are <u>parameterized</u> and cosearched simultaneously.



# Highlight of Our DNN and Accelerator Co-design Work

- <u>FPGA/DNN Co-Design: An Efficient Design Methodology for IoT Intelligence on the Edge</u>, Cong Hao, et al., ACM/IEEE **DAC**, 2019
- <u>NAIS: Neural Architecture and Implementation Search and its Applications in Autonomous Driving</u>, Cong Hao, et al., ACM/IEEE **ICCAD**, 2019
- <u>SkyNet: a hardware-efficient method for object detection and tracking on embedded systems</u>, Xiaofan Zhang, et al., Machine Learning and Systems (**MLSys**), 2020
- EDD: Efficient Differentiable DNN Architecture and Implementation Co-search for Embedded AI
   Solutions

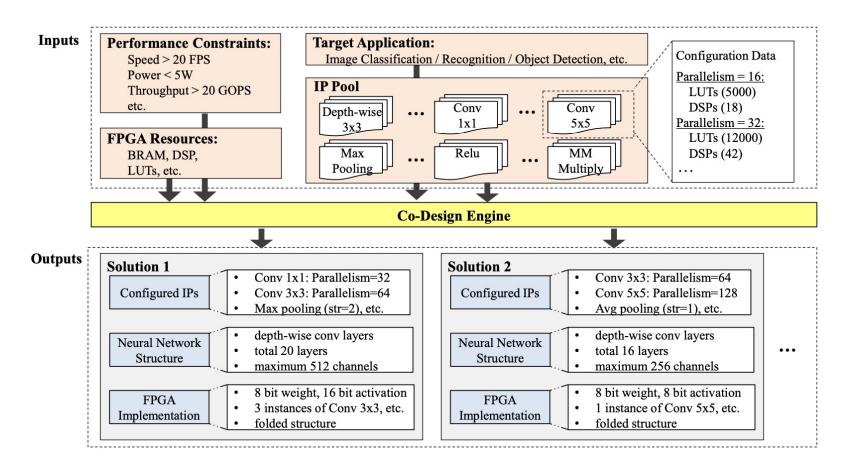
Yuhong Li, et al., ACM/IEEE **DAC**, 2020

# Highlight of Our DNN and Accelerator Co-design Work

- <u>FPGA/DNN Co-Design: An Efficient Design Methodology for IoT Intelligence on the Edge</u>, Cong Hao, et al., ACM/IEEE **DAC**, 2019
- <u>NAIS: Neural Architecture and Implementation Search and its Applications in Autonomous Driving</u>, Cong Hao, et al., ACM/IEEE **ICCAD**, 2019
- <u>SkyNet: a hardware-efficient method for object detection and tracking on embedded systems</u>, Xiaofan Zhang, et al., Machine Learning and Systems (**MLSys**), 2020
- EDD: Efficient Differentiable DNN Architecture and Implementation Co-search for Embedded AI
   Solutions

Yuhong Li, et al., ACM/IEEE **DAC**, 2020

### **Our Co-design Method Proposed in ICSICT 2018**

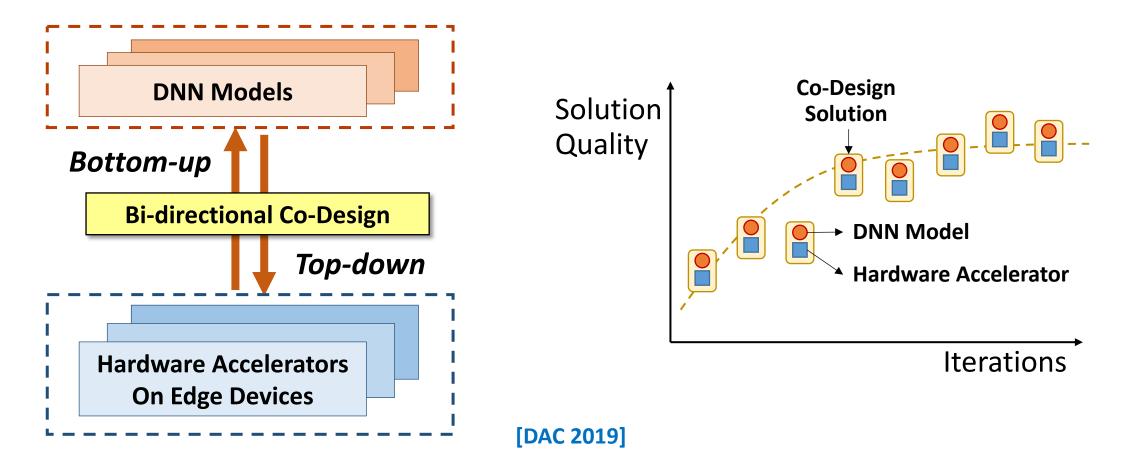


• The objective of the proposed co-design is: "to automatically generate both DNN models and their corresponding implementations as pairs" and "shorten the DNN development time by avoiding tedious iterations between DNN model and its accelerator designs"

#### **[ICSICT 2018]**

# **Co-design Idea Materialized in DAC 2019**

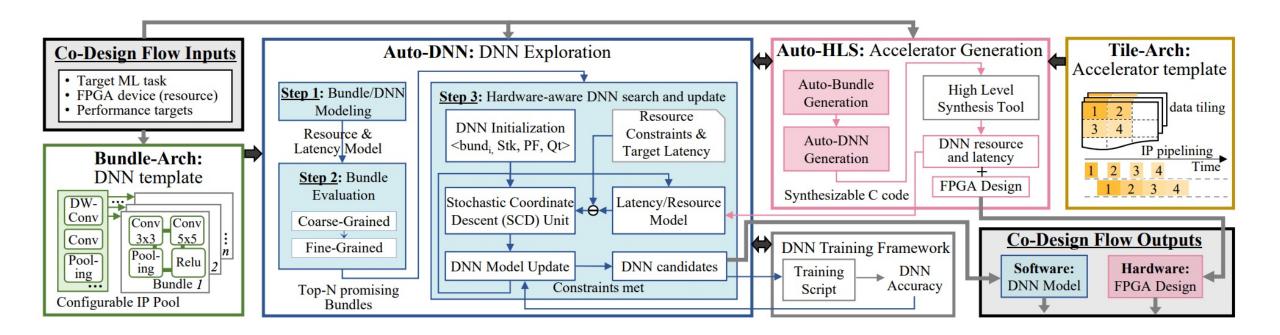
- **Bottom-up**: architecture template guided DNN model search
- <u>Top-down</u>: evaluate DNN through architecture template mapping
- Bi-directional co-search for both DNN and FPGA accelerator



# The Co-design Framework in DAC 2019

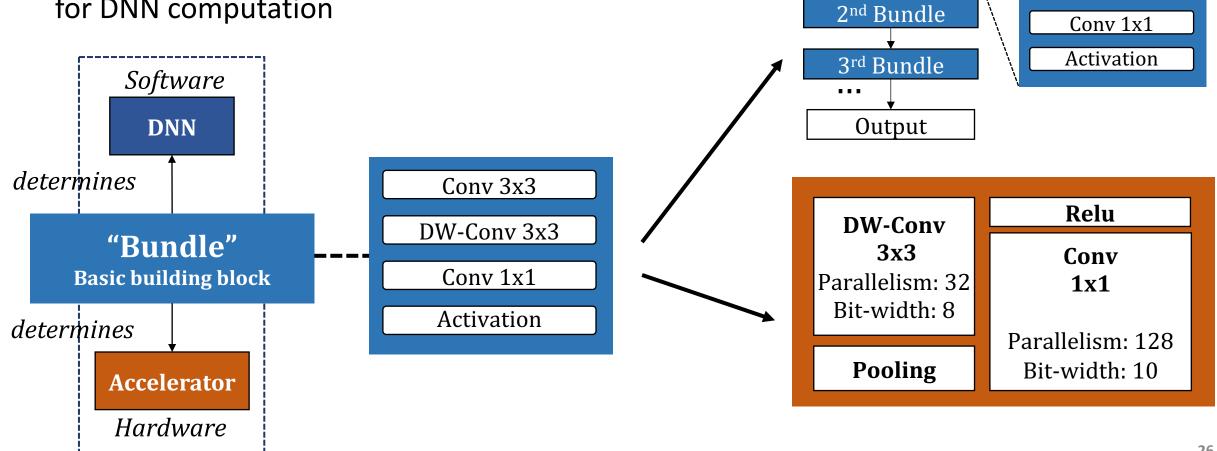
#### Challenges

- High quality DNN design and its accelerator design are both challenging
- Co-design significantly expands design space
  - Difficult to converge
  - Requires novel search methodology



# **Basic Building Blocks : Bundles**

- **Bundle:** a set of sequential DNN layers as basic DNN building block
- Also represents a combination of IP instances used for DNN computation



Input

1<sup>st</sup> Bundle

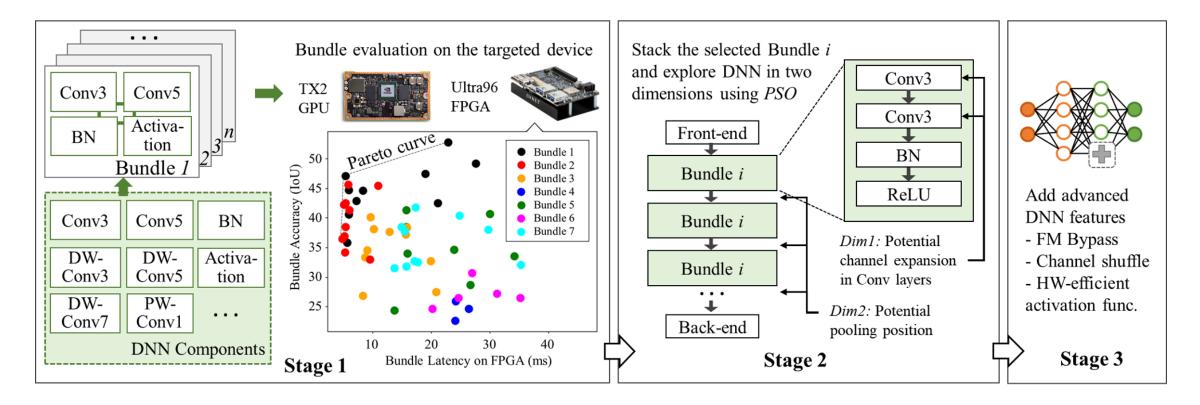
Conv 3x3

DW-Conv 3x3

### **Output of the Co-design: the SkyNet!**

#### > Three Stages:

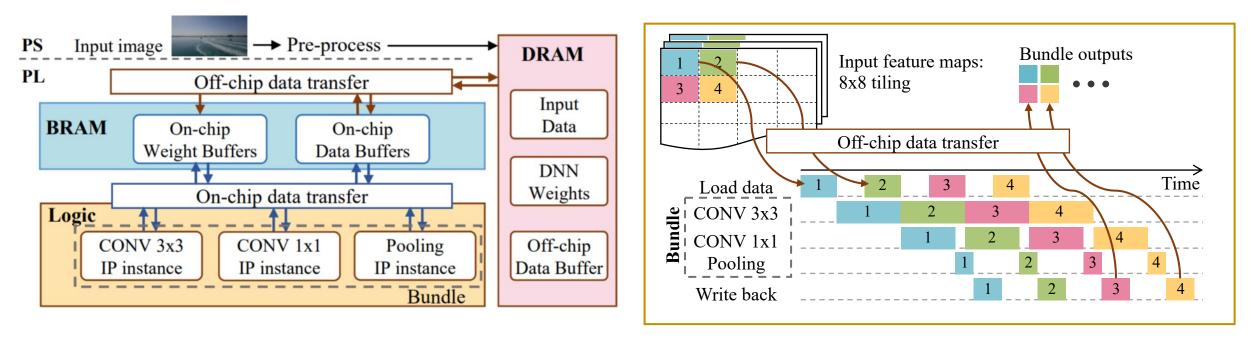
(1) Select Basic Building Blocks  $\rightarrow$  (2) Explore DNN and accelerator architectures based on templates  $\rightarrow$  (3) Add features, fine-tuning and hardware deployment



#### [DAC SDC 2019] & [MLSys 2020]

# **The HW Deployment**

> Hardware (FPGA) accelerator using our proposed template

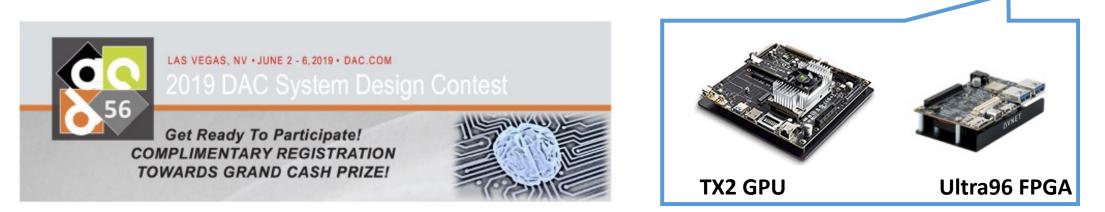


**Overall system** 

Accelerator

# **Demo #1: Object Detection for Drones**

System Design Contest for *low power object detection* in the IEEE/ACM Design Automation Conference (DAC-SDC)

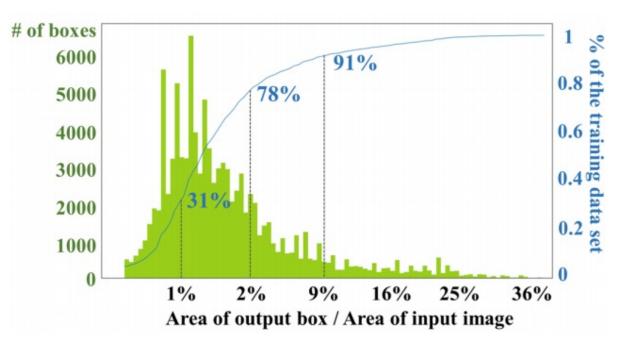


- DAC-SDC targets single object detection for real-life UAV applications Images contain 95 categories of targeted objects (most of them are small)
- > Comprehensive evaluation: *accuracy, throughput, and energy consumption*  $TS_i = R_{IoU_i} \times (1 + ES_i)$

#### Demo #1: DAC-SDC Dataset

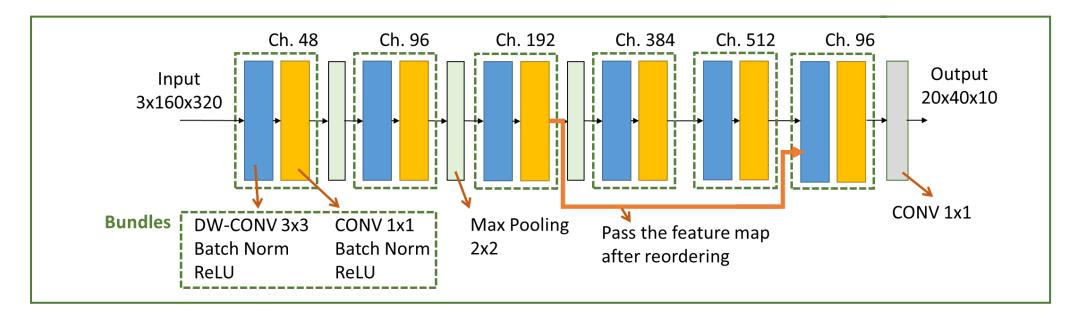
The distribution of target relative size compared to input image

31% targets < 1% of the input size 91% targets < 9% of the input size

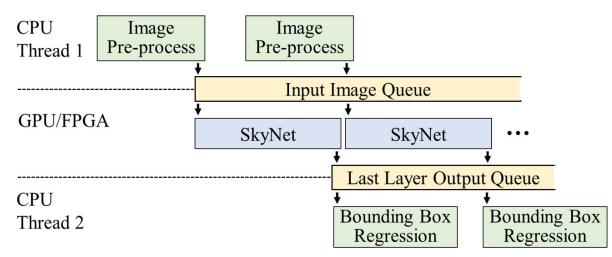




### **Demo #1: the SkyNet DNN Architecture**

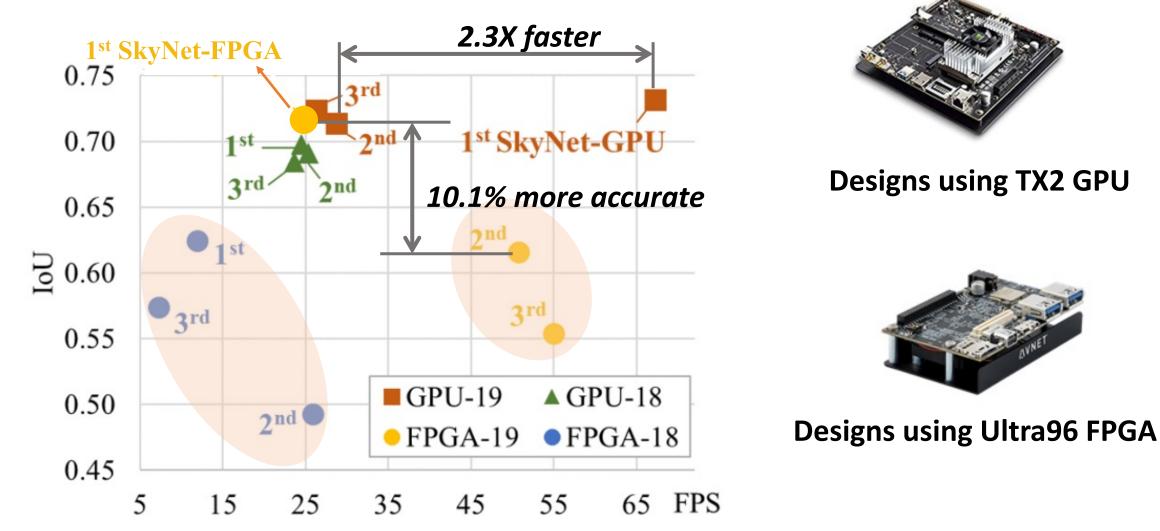


- 13 CONV with 0.4 million parameters
- For Embedded FPGA: Quantization, Batch, Tiling, Task partitioning
- For Embedded GPU: Task partitioning



### **Demo #1: SkyNet Results for DAC-SDC 2019**

Evaluated by 50k images in the official test set



### **Demo #2: Generic Object Tracking in the Wild**

- We extend SkyNet to real-time tracking problems
- > We use a large-scale high-diversity benchmark called *Got-10K* 
  - *Large-scale:* 10K video segments with 1.5 million labeled bounding boxes
  - **Generic:** 560+ classes and 80+ motion patterns (better coverage than others)



[From Got-10K]

#### **Demo #2: Results from Got-10K**

Evaluated using two state-of-the-art trackers with single 1080Ti

| Backbone  | AO    | $SR_{0.50}$ | $ SR_{0.75} $ | $\mid FPS$ |  |
|-----------|-------|-------------|---------------|------------|--|
| AlexNet   | 0.354 | 0.385       | 0.101         | 52.36      |  |
| ResNet-50 | 0.365 | 0.411       | 0.115         | 25.90      |  |
| SkyNet    | 0.364 | 0.391       | 0.116         | 41.22      |  |

#### SiamRPN++ with different backbones

Similar AO, 1.6X faster vs. ResNet-50

#### SiamMask with different backbones

| Backbone            | AO | $SR_{0.50}$ | $SR_{0.75}$    | FPS            |                                                  |
|---------------------|----|-------------|----------------|----------------|--------------------------------------------------|
| ResNet-50<br>SkyNet |    |             | 0.153<br>0.158 | 17.44<br>30.15 | Slightly better AO, 1.7X faster<br>vs. ResNet-50 |

# **Conclusions and Future Work**

#### We presented **DNNBuilder**

- > IP reuse and scheduling for design automation and on-chip memory usage reduction
- Customized pipeline solution to improve throughput
- We presented SkyNet & a hardware-efficient DNN design method
  - A bidirectional DNN/accelerator design flow for embedded systems
  - An effective way to capture realistic HW constraints

#### > Co-design is an exciting research direction

- Co-design for distributed AI
- Co-design for heterogeneous and large-scale AI
- Co-design for emerging AI technologies



# Thank you