

NAD⁺ Metabolism in Cardiac Health, Aging, and Disease (Abdellatif et al., *Circulation*, 2021)

What is NAD⁺?

- Nicotinamide adenine dinucleotide (NAD⁺) is a critical coenzyme in cellular metabolism.
- It regulates **redox reactions, mitochondrial function, energy metabolism, DNA repair, and cell signaling**.
- NAD⁺ serves as a substrate for enzymes like **sirtuins, PARPs, and CD38**, all of which influence cardiac health.

Why it Matters in the Heart

- **Aging and Disease:** NAD⁺ levels decline with normal aging, and more steeply in conditions like **obesity, diabetes, and hypertension**—all major cardiovascular risk factors.
- **Pathophysiology:** Reduced NAD⁺ impairs mitochondrial function, weakens stress responses, and promotes inflammation and fibrosis, accelerating cardiac aging and dysfunction.
- **Heart Failure:** In particular, low NAD⁺ is implicated in **heart failure with preserved ejection fraction (HFpEF)**, a condition strongly associated with aging and comorbidities.

Mechanisms of NAD⁺ Depletion

1. **Reduced biosynthesis** – impaired salvage and de novo pathways.
2. **Increased consumption** – overactivation of PARPs (from DNA damage) and CD38 (inflammation, immune signaling).
3. **Mitochondrial dysfunction** – both a cause and consequence of NAD⁺ loss.

Therapeutic Implications

- **NAD⁺ Repletion Strategies:**

- Dietary precursors (nicotinamide riboside [NR], nicotinamide mononucleotide [NMN], nicotinic acid).
- CD38 inhibitors.
- Exercise and caloric restriction (physiological NAD⁺ boosters).
- **Preclinical Evidence:** Supplementation restores cardiac NAD⁺ pools, improves diastolic function, reduces fibrosis, and enhances mitochondrial efficiency.
- **Clinical Trials:** Early human studies show NAD⁺ precursor supplementation is well tolerated and improves markers of metabolic and cardiovascular health, though larger trials are needed.

Key Takeaway for Clinicians

Declining NAD⁺ metabolism is a hallmark of cardiac aging and disease. Interventions that restore NAD⁺ show promise in improving mitochondrial function, reducing inflammation, and treating conditions like HFpEF. While not yet standard therapy, NAD⁺ repletion is an emerging, biologically rational strategy that may soon complement conventional cardiovascular care.

Study Link: <https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.121.056589>