

HVAC "Basic Science"- System Capacity

• Btu/hour, btu/h, b/h, btuh.... btu ??

• 1 MBH = 1000 btu/hour

• 1 KBH = 1000 btu/hour

• 1 ton of cooling= 12,000 btu/hour

• 1 watt = 3.414 btu/hour

• 1 kilowatt = 1000 watts = 3,414 btu/hour

• 1 HP = 746 watt = 2,545 btu/hour

HVAC Airflow- Duct and Component Sizing

- **CFM** volume of airflow; cubic feet/minute
- FPM- velocity/speed of airflow; feet/minute
- AREA- duct size in square feet

CFM = FPM X AREA
FPM = CFM/AREA
AREA= CFM/FPM

Indoor Environmental Quality (IEQ)

Title 24- Minimum Ventilation Requirements

- Applies to "normally occupied" spaces
- Natural ventilation-
 - 20' maximum distance from occupied space to window/wall opening
 - 1 sq ft of opening for 20 sq ft of floor area (NOTE: "free area" of opening)
- Mechanical ventilation
 - EF's and makeup air
 - Required for areas with moisture (showers)

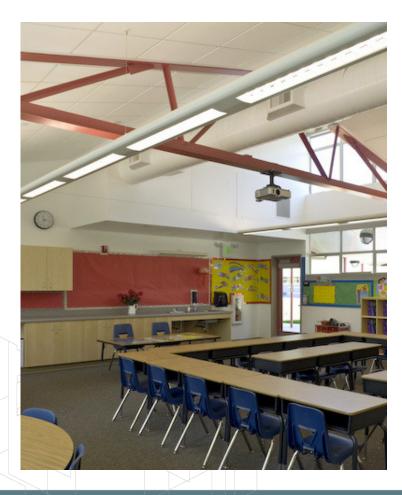
IEQ- Ventilation Systems

Natural "Passive" Ventilation

- motorized clerestory windows
- filtered low-wall intake louvers

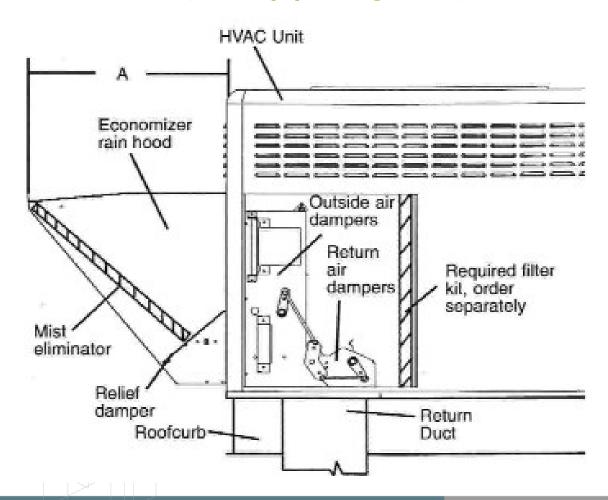
Mechanical Ventilation

- 15 CFM per person OR 0.15 CFM/sq ft
- Air change calculation- # AC/hour

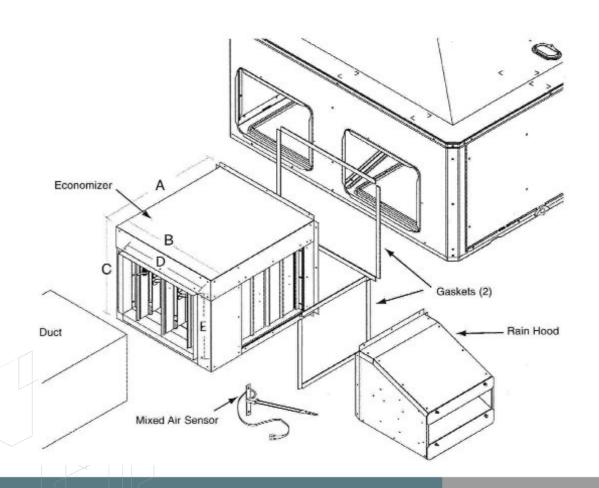

CFM req'd = (Room volume- FT3)(# AC/hour)
60

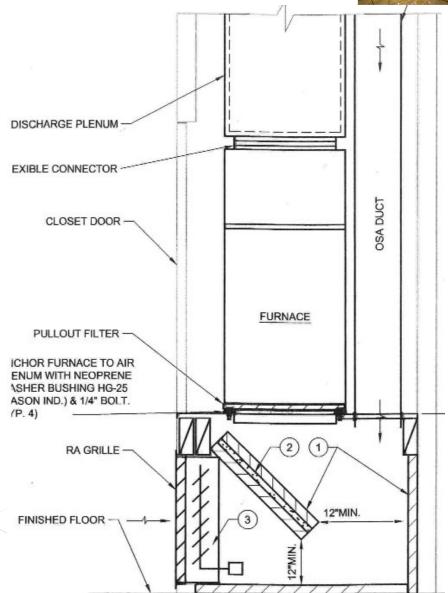
Together. Building Greatness.™

Passive Ventilation- CHPS project


IEQ- Economizers

- Provide "free" cooling for space if OSA temp is below space temperature (i.e. 72F)
- T24 requirement for systems > 2,500 CFM and 75 MBH (appx 6.25 tons)
- BEWARE!! Motorized dampers need maintenance
- Where does all this OSA go?...building pressure problem!
 - Power exhaust
 - Barometric relief


Economizer (rooftop package unit)



Economizer (rooftop package unit)

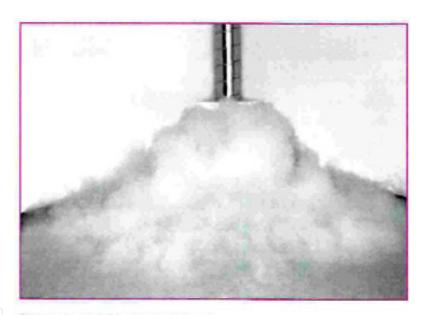
Economizer (split system)

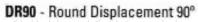
IEQ- Ventilation Methods

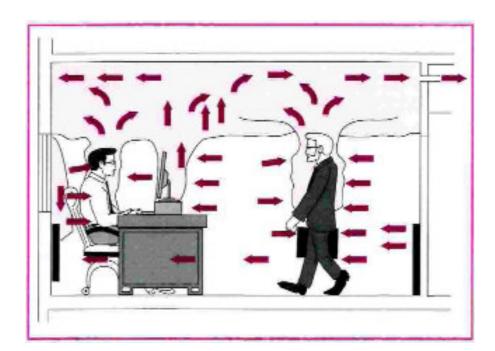
Demand Controlled Ventilation (DCV)

- Mandatory for high occupancy zones (less than 40 ft2 per person density)
- CO2 sensor controls economizer dampers
- Classrooms are exempted (but still worth considering!)

Displacement Ventilation


Underfloor vs. low-wall ducts



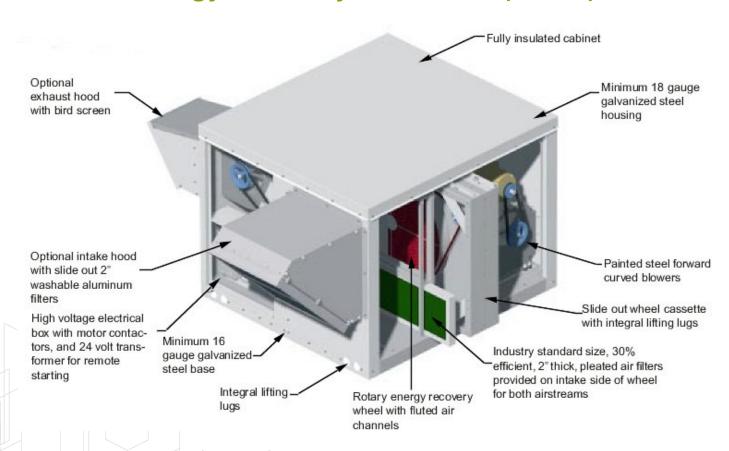


Together. Building Greatness.™

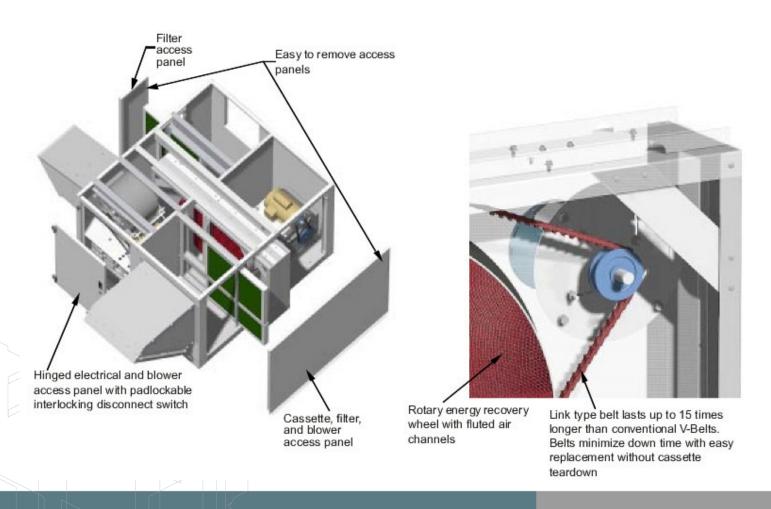
Displacement Ventilation

IEQ/Acoustics

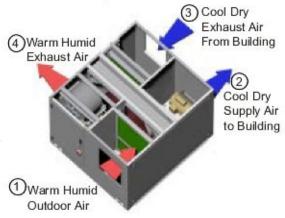
- Velocity (FPM)
- Damper locations: duct MVD's vs. register OBD's
- Sound traps vs. lined rectangular duct
- CHPS requirements
- RC/NC levels

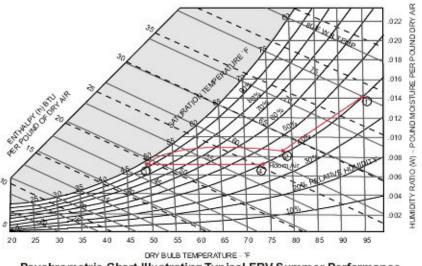

HVAC System Types

- Energy Recovery Ventilators (ERV's)
- Evaporative Cooling (Direct vs. Indirect)
- Heating systems
- Refrigeration Cycle overview
- Refrigerant types (CFC vs non-CFC)
- Split systems (furnaces/fan-coils with CU's)
- Package units (gas/electrics and heat pumps
- Geothermal heat pumps


Energy Recovery Ventilators (ERV's)

Energy Recovery Ventilators (ERV's)





ERVs (how they work)

Summer

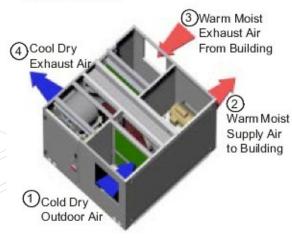
- Cools incoming outdoor air through sensible heat transfer and lowers humidity through latent heat transfer. Effectiveness rates are up to 85 percent.
- Allows engineers to reduce HVAC equipment peak load requirements by up to 4 tons per 1,000 CFM of exhaust air.
- The ERV is an ideal solution for reducing HVAC equipment size and maintaining relative humidity levels below 50 percent.

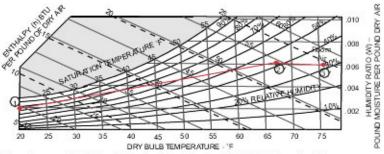
Psychrometric Chart Illustrating Typical ERV Summer Performance

- A = Energy required to condition outdoor air to indoor air conditions.
- B = Energy reclaimed by an ERV.

 $\% Effectiveness = \frac{B}{A} = \frac{h_2 - h_1}{h_3 - h_1} \quad \text{Note: For unequal airflow the effectiveness will increase in the airstream with the lower airflow and will decrease in the airstream with the higher airflow.}$

- ①95°F dry bulb, 75°F wet bulb, 40% RH, .014 (lb./lb.), 99 (grains/lb.), 38 (BTU/lb.)
- 278°F dry bulb, 62°F wet bulb, 41% RH, .008 (lb./lb.), 59 (grains/lb.), 28 (BTU/lb.)
- 375°F dry bulb, 60°F wet bulb, 40% RH, .007 (lb./lb.), 52 (grains/lb.), 26 (BTU/lb.)




Together. Building Greatness.™

ERVs (how they work)

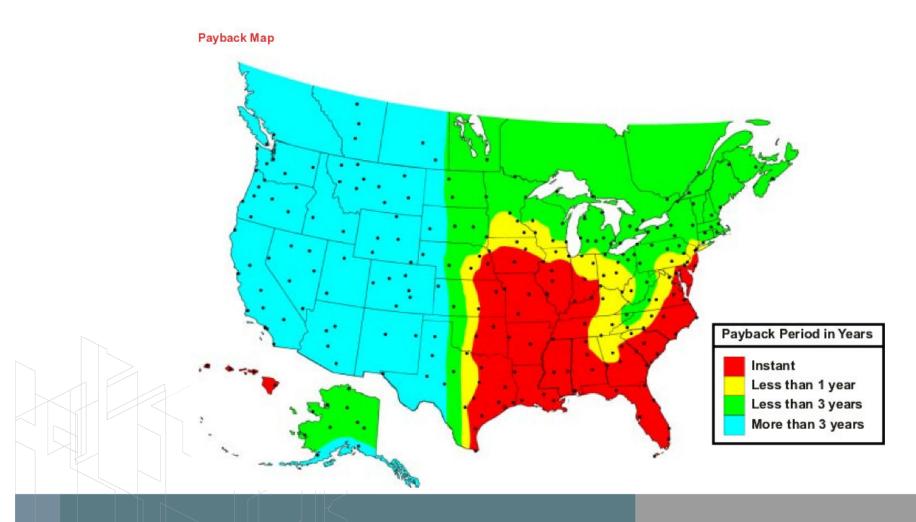
Winter

- Warms incoming outdoor air through sensible heat transfer and raises humidity through latent heat transfer. Effectiveness rates are up to 85 percent.
- Allows building owners to conserve up to 60,000 BTU per 1,000 CFM.
- The ERV is an ideal solution for reducing energy use and maintaining relative humidity levels above 25 percent.

Psychrometric Chart Illustrating Typical ERV Winter Performance

- A = Energy required to condition outdoor air to indoor air conditions.
- **B** = Energy reclaimed by an ERV.

%Effectiveness =
$$\frac{B}{A} = \frac{h_2 - h_1}{h_3 - h_1}$$


 $\frac{B}{A} = \frac{h_2 - h_1}{h_3 - h_1}$ Note: For unequal airflow the effectiveness will increase in the airstream with the lower airflow and will decrease in the airstream with the higher airflow.

- 20°F dry bulb, 18°F wet bulb, 75% RH, .002 (lb./lb.), 11 (grains/lb.), 7 (BTU/lb.)
- 267°F dry bulb, 54°F wet bulb, 43% RH, .006 (lb./lb.), 42 (grains/lb.), 23 (BTU/lb.)
- 374°F dry bulb, 59°F wet bulb, 38% RH, .007 (lb./lb.), 48 (grains/lb.), 25 (BTU/lb.)

ERV's- Economics/Simple Payback

Heating Equipment and Systems

Residential Furnaces-

Standard efficiency furnaces 80% AFUE

AFUE: (Annual Fuel Utilization Efficiency) = <u>output capacity(btu/hr)</u>

input capacity (btu/hr)

High efficiency "condensing furnaces" 92-95% AFUE

PVC flue material

Condensate neutralizers on condensate drains?

Configuration: Downflow/Upflow/Horizontal flow

R.O.T. sizing = 50 btu/hr per square foot of floor area

Evaporative Cooling

(no refrigeration/mechanical cooling)

"Direct" (swamp coolers)

- Evaporated water in contact with air
- Useful in dry climates

"Indirect"

- Evaporated water NOT in contact with air
- Large/heavy units

Combo "Direct/Indirect" (IDEC units)

Basic Refrigeration Cycle Components

- Refrigerant- "magic fluid"
- Compressor- increases refrigerant pressure and temperature; performs work
- Condenser coil- Heat rejection
- Refrigerant metering device (TXV or capillary tube)
- Evaporator coil- delivers cooling to space
- Refrigerant piping- suction/liquid/hot gas lines

Refrigerant types

CFC's (chlorinated fluorocarbons)---BAD!

- R-11 or R-12
- Effect on earth's ozone layer/global warming

HCFC's (hydrogenated CFC)---BETTER!!

- R-22
- Phased out by 2020

New Refrigerants - R-134a; R-410a; "Puron" --- BEST!!!

Split System Cooling/Heat Pumps

- Furnace compatibility with "cased cooling coil"
- Outdoor condensing units
 SEER- "seasonal" Energy Efficiency Ratio
 Power requirement
- Refrigeration linesets
- Multi-zone "ductless" systems
- Evaporator coil condensate piping and IAQ

Together. Building Greatness.™

Rooftop Package Units

• Typical System Types:

Package "cooling/only" units Package "gas/electric" units

Package heat pumps

All above are "air-cooled"

Typically rated @ 95 F condensing temp Watch out for elevated roof temperature Good air circulation is a must!

Rooftop Package Units

Cooling capacities

1 ton = 12,000 btu/hour

1 ton = 400 CFM (+/- 20% flexibility)

unit capacity = total capacity NOT sensible capacity

(rated @ 95F ambient, 80F edb, 67F ewb)

sensible cooling capacity 70-80% of total

latent capacity provided >what is needed on West coast

gross capacity does NOT include deduction for fan heat

EER (Energy Efficiency Ratio) = <u>btu/hr output</u>

KW input

Together. Building Greatness.™

Rooftop Package Units

- Heating Capacities:
 - 1) Gas/electric units-

Input capacity (1 MBH = 1000 btu/hr)

Output capacity (1 MBH = 1000 btu/hr)

Efficiency = output MBH/input MBH

Title 24 minimum efficiency= 80%

Typically "low heat" models used in California

"Aluminized steel" heat exchangers (SS as option)

Rooftop Package Units

- Heating capacity (cont.):
 - 2) Package Heat Pumps-

heat is generated by refrigeration compressors reversing valve changes function of evaporator and condenser

heat output is a function of OSA temperature

COP (Coefficient Of Performance)

auxiliary electric heaters needed for cold winter A.M.and defrost cycle

Rooftop Package Units

Advantages:

- inexpensive
- fast delivery/installation
- simple to design and operate
- "air-side"economizers
- ratings from manufacturers are certified
- if system fails, only 1 zone affected
- easy to meter for utility billing purposes
- installed on roof for easy maintenance

Disadvantages:

- limited flexibility to select/change components
- higher operating & maintenance cost than "central systems"
- not good for tight temperature/RH control
- not good for high % of OSA
- looks not appealing
- filtration options limited
- fan performance limited (particularly static pressure)
- shorter equipment life