Valuing Bicycling's Economic and Health Impacts in Wisconsin

Trail Map

- Part I: Health, Air Quality, and Greenhouse Gas Mitigation Impact
- Part II: Economic Impact

Ten Leading Causes of US Deaths per Year

50\% of Americans do not meet physical activity recommendations

2/3 of Americans are overweight or obese

CDC, BRFSS 2005

100+ cities in nonattainment-EPA 8-hour Ozone Standards

CARS: substantial emitters of

 particulate matter and precursors to ozone\square unclassifiable or nonattaimment for P unclassifiable or nonattainment for ozone
\square unclassifiable or
nonattaiment for ozone and PM

50+ cities in nonattainment-EPA PM 2.5 Standards

Asthma and Air Pollution

- Natural experiment during 1996 Summer Olympic games in Atlanta
- Peak morning traffic decreased 23% and peak ozone levels decreased 28\%

- Asthma-related emergency room visits by children decreased 42\%
- Children's emergency visits for non-asthma causes did not change during same period

Friedman et al. JAMA 2001;285:897

$1 / 3$ of Wisconsin CO_{2} emissions come from transportation sector

In the United States...

- 40% of all car trips in the US are two miles or less

- 50\% of the working population commutes five miles or less to work
- more than 82% of trips five miles or less are made by personal motor vehicle 9
NHTS 2001

THE FACTS

- OBESITY - a problem of EPIDEMIC proportions
- PHYSICAL INACTIVITY increasing
- Cities failing to meet AIR QUALITY standards
- GREENHOUSE GAS EMISSIONS rising

What does this mean for our health and the economy?

Greenhouse Gas Mitigation

Personal Fitness and Human Health

if sedentary people meet recommended physical activity standards...

$$
\$ 318,589,555
$$

(in Milwaukee and Madison)

- Breast cancer (34\%)
-Colorectal cancer (43\%)
-Diabetes Type II (31\%)
-Heart Disease (47\%)
-Stroke (39\%)

Air Quality and Human Health

Reducing 20\% of urban short car trips (5 mi or less) with bicycle trips in Milwaukee and Madison

Total Economic Benefit from reduced $\mathrm{PM}_{2.5}$: \$85,807,200

Total Economic Benefit from reduced O_{3} : \$3,407,000

$$
=\$ 89,214,200
$$

Greenhouse Gas Mitigation

Reducing CO_{2} emissions by commuting by bike instead of by car

20\% Madison bikers $\approx \$ 336,577$ value** 20% Milwaukee bikers $\approx \$ 821,282$ value**

```
Total value: $1,157,859**
```

**Based on European Climate Exchange, November14009

Equivalent Wind Turbines for Avoided Emissions

- average WI wind turbine offsets 4,141 tons CO_{2} annually
-biking in Madison and Milwaukee could offset 57,405 tons of CO_{2} annually
-equal to nearly 14 wind turbines -just from increased biking in Milwaukee and Madison

Summary and Implications

- Value of Additional Physical Activity: \$318,589,585
-Value of Air Quality Improvement: \$89,214,200
- Value of Greenhouse Gas Reductions: \$1,157,859
- Significant Implications for the State and Region
-Co-Benefits of Replacing Short Car Trips with Bicycling

Determining how much cyclists contribute to the economy:

Key Questions:

1. What kind of cycling do people do for recreation?
2. How many cyclists in each category?
3. How much do they spend?

What kind of cycling?

How many road cyclists?

How many trail cyclists?

Single-day Events and Tours

Multi-day Tours

BFW WDOT, 2®06

How much do they spend?

Expenditures		
Bicycling Activity	Resident Daily Expenditure	Non-Resident Daily Expenditure
Roadways	$\$ 39.57$	$\$ 53.55$
Trails	$\$ 17.99$	$\$ 33.95$
Single-Day Bike Events/ Tours	$\$ 76.17$	$\$ 76.17$
Multi-Day Tours	$\$ 80.84$	$\$ 80.84$

Schwecke Sprehn \& Hamilton 1988, Stynes \& White 2006,
Velo Quebec 2006, BFW \& WL24T 2006

How do they spend it?

Wisconsin Resident Trail Cyclists

Direct Economic Impact

Direct Economic Impact

	Person Days	Direct Economic Impact	
Bicycling Activity	Total Number of Bicycle Person Days	Direct Impact Residents	Direct Impact Non-Residents
Roadways	$\mathbf{8 , 3 2 4 , 9 1 6}$	$\$ 168,990,884$	$\$ 217,104,236$
Trails	$\mathbf{3 , 6 9 1 , 0 3 4}$	$\$ 32,045,462$	$\$ 64,835,708$
Single-Day Bike Events/Tours	$\mathbf{6 1 , 2 8 9}$	$\$ 2,420,987$	$\$ 2,596,764$
Multi-Day Tours	38,834	$\$ 1,281,572$	$\$ 1,477,229$
Total	$12,116,073$	$\$ 204,738,904$	$\$ 286,013,937$
GRAND TOTAL		$\$ 532,883,557$	

What sectors are affected?

Agricultural Products

- Purchased Inputs (seeds, fertilizer, equipment)
- Employees
- Taxes

Wholesale Food Processors/

Distributors

- Purchased Inputs (ag produce)
- Employees
- Real Estate
- Taxes

Restaurants

- Purchased Inputs (Ingredients, appliances, etc.)
- Employees
- Real Estate (Rent, buildings)
- Taxes

Input-Output Model

- Indirect Impacts: For every \$ spent in one sector, it accounts for the impacts of this on supplying sectors, and on the labor force.
- Induced Impacts: For every \$ of output in an industry, a worker is paid. Workers then respend some of their earnings in the economy.

Total Economic Impact

Total

Total Economic Impact: \$924 million

Output Impact

	Direct	Indirect	Induced	Total
Wisconsin Resident	$\$ 204,738,560$	$\$ 69,782,528$	$\$ 80,255,232$	$\$ 354,776,064$
Non-Resident	$\$ 286,013,440$	$\$ 98,398,976$	$\$ 112,129,536$	$\$ 496,541,696$
TOTAL	$\$ 490,752,000$	$\$ 168,181,504$	$\$ 192,384,768$	$924,211,000$

Employment Impact

	Direct	Indirect	Induced	Total
Wisconsin Resident	3,797	543	717	5,058
Non-Resident	5,319	763	1,002	7,083
TOTAL	9,116	1,306	1,719	13,193

Implications

- How do our results compare?

- Non-resident bicycle tourism economic impact: $\$ 496$ million
- Total tourism in Wisconsin: $\$ 12.8$ billion
- Small fraction, but still important
- Accuracy? Need for a more comprehensive survey.
- So...Build a paved multi-use bike path at \$115,000 per mile?

Payback < 2.5 Years 32

Recreation + Manufacturing, Sales, \& Service

Economic Impact of Manufacturing,	$\$ 593,787,990$
Sales, \& Services*	
 Recreation	$\$ 924,211,000$
TOTAL Economic Impact	$\mathbf{\$ 1 , 5 1 7 , 9 9 8 , 9 9 0}$

Summary of Findings

Economic Impact of Manufacturing, Sales, \& Services*	$\$ 593,787,990$
Economic Impact of Tourism \& Recreation	$\$ 924,211,000$
Value of Additional Physical Activity	$\$ 318,589,585$
Value of Air Quality Improvement	$\$ 89,214,200$
Value of Greenhouse Gas Reductions	$\mathbf{\$ 1 , 1 5 7 , 8 5 9}$

- Significant Implications for the State and Region
- Co-Benefits of Replacing Short Car Trips with Bicycling
- Invest in infrastructure to encourage more bicycling in future

Thank You

grabow@wisc.edu

http://sage.wisc.edu/IGERT/download/bicycling_Final_Report.pdf

