
Practical Methods to Improve Wound Roll Quality

Neal Michal

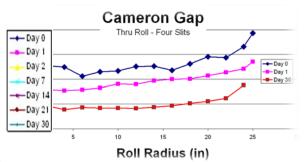
Kimberly-Clark Corporation

Background

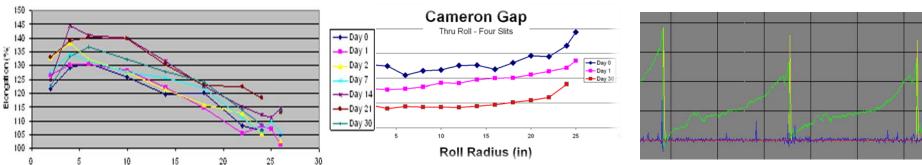
- Mechanical Engineer Go Boilers!
- 28 years with Kimberly-Clark Corporation
 - Infant Care Staff & Plant Engineering
 - Infant Care Operations Team Leader
 - Nonwovens Plant & Staff Engineering
 - Two year international assignment
- KC Subject Matter Expert: Web handling, Winding, Unwinds, Converting, Process design, Automation & Modeling
- Lead KC's 16 year partnership with the Web Handling Research Center at Oklahoma State
 - Chair, Winding Focus Team
- Partner with internal customers, external suppliers and OEM's to develop & optimize total supply chain solutions

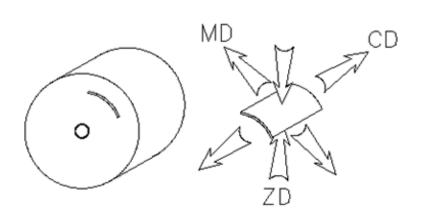
Wound Rolls - Overview

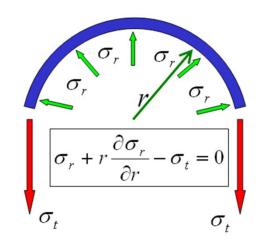
- Winding is an integral process for most webs
- Wound rolls are the low cost storage solution
- A wound roll is often the shipping container
- It is common to see webs compress > 25%
- Webs geometry and properties are important
- Material properties will vary thru roll & over time due to stored stress and strain
- Wound roll structure describes the shape of the stresses within the wound roll
- Your wound roll structure can be documented using simple tools



Distance From Core (In)

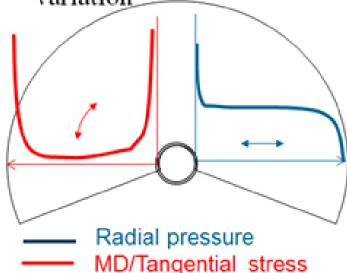






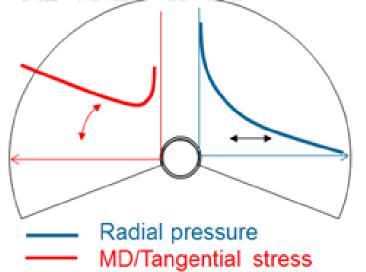
Wound Roll Stresses

MD – Machine direction stress in the plane of the web


CD – Cross machine direction stress in the plane of the web

ZD – Stress perpendicular to the plane of the web

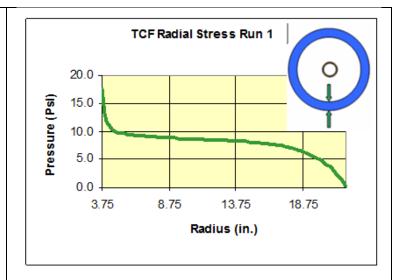
Wound Roll Structure – Two Types

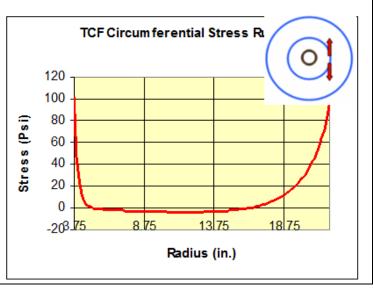

'Soft' Roll

- $E_t >> E_r$
- Newsprint, Creped Tissue,
 Spunbond, Film/SB laminate
- Plateau-type radial pressure
- Less thru-roll MD strain variation

'Hard' Roll

- $-E_t \cong E_r$
- Film, Cast Rubber, MD Elastics, Highly Textured Tissue
- Taper-type Radial Pressure
- 'Nike®-Swoosh' type thru-roll
 MD strain variation

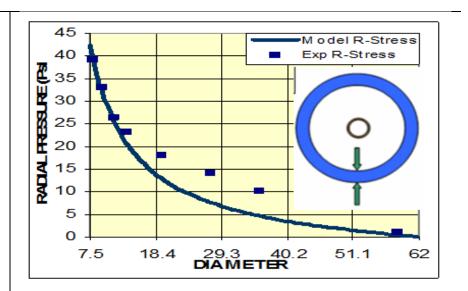

"Soft Roll" Structure

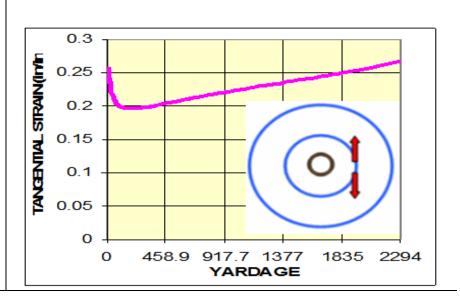

Interlayer Pressure

- S shaped
- Peak Pressure at the Core
- Wide Plateau Thru the Middle Plateau
- No Pressure at the Outside

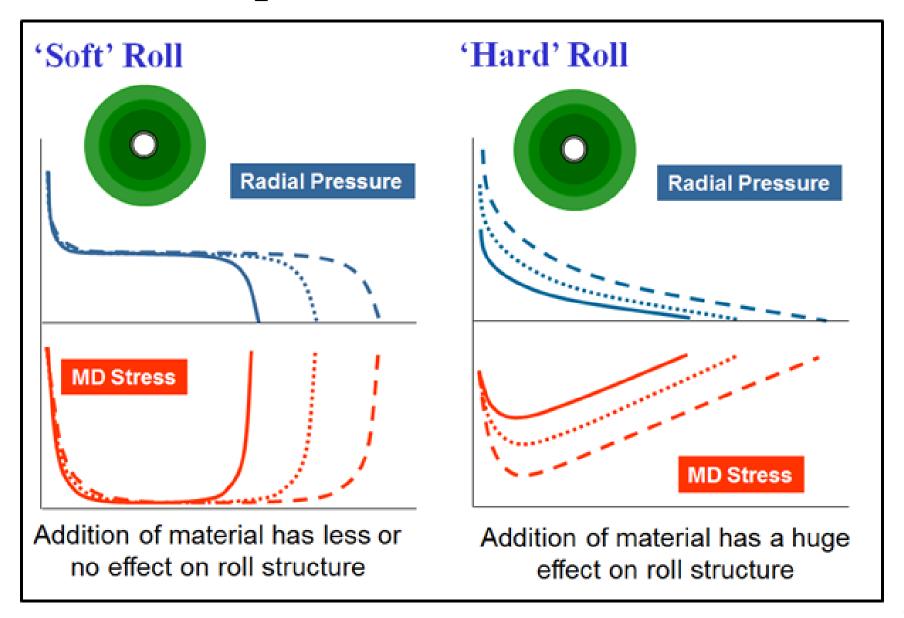
Stored MD Strain

- U Shaped
- Outside layer is at web tension leading into the roll for a center winder
- Outer portion of the roll is under tension
- This compresses the inner layers in the plateau
- The layers in the plateau are stored at nearly zero tension or slightly in compression
- Pressure or strain picks back up near the core but depends on the roll start


"Hard Roll" Structure

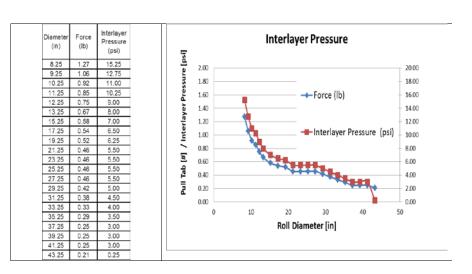

Interlayer Pressure

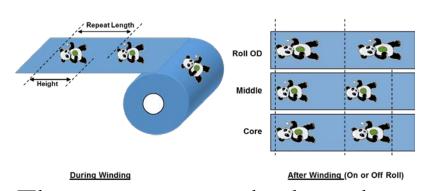
- Concave parabolic curve
- Computer model prediction versus actual pull tab data
- Peak at the Core
- Decays to zero at the outside
- No middle plateau


Stored MD Strain

- Nike SwooshTM shape
- All layers under tension
- The outside layers compress the inside layers but not enough to cause them to go into compression
- No middle plateau

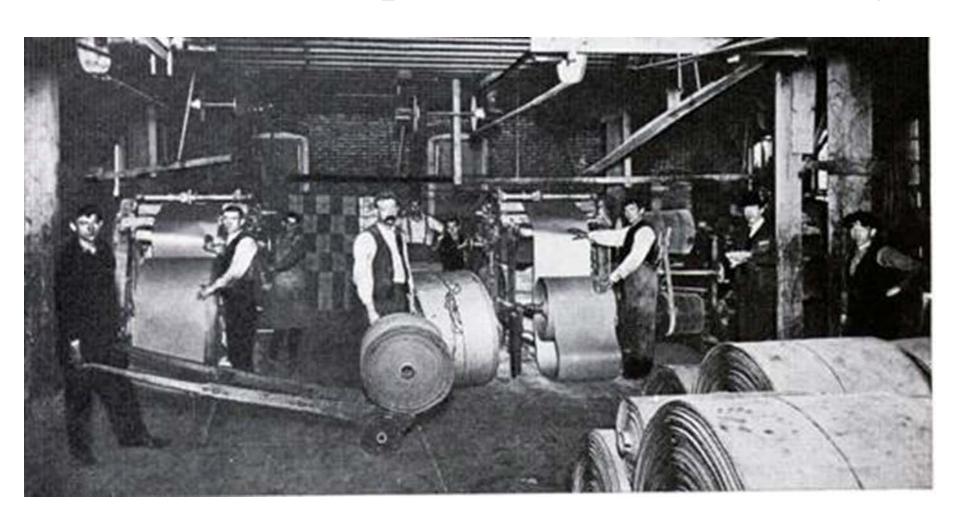
Impact of More Material


Document Interlayer Pressure

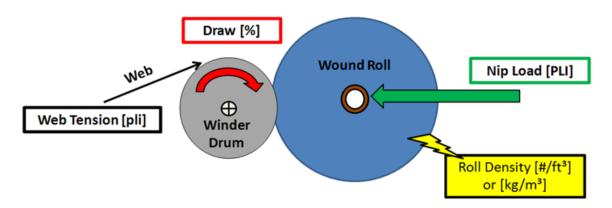


- A slow speed pilot line process may allow winding tabs into the building roll.
- Many rolls will allow a pull tab to be inserted after winding
- Simple tools are all that is required
- Pull tab force can be converted to interlayer pressure

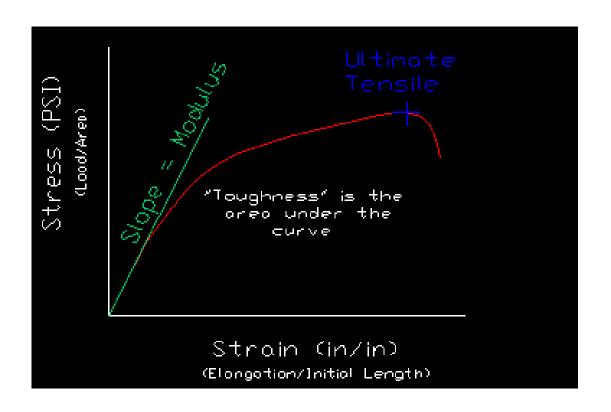
Document Machine Direction Strain



- There are two methods to document stored MD strain
 - Measure repeating patterns on your web
 - Print registration marks before the winder
- Calculate strain on roll & off roll

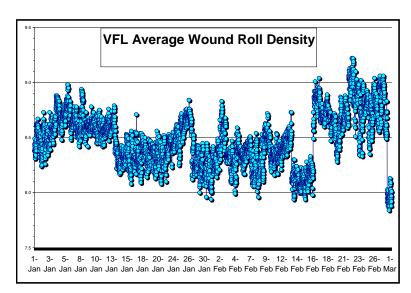

Circumference [in]	Dia [in]	Dia [mm]	On Roll Repeat [mm]	Off Roll Repeat [mm]	MD Strain On Roll [%]	MD Strain Off Roll [%]	6.0	0%	Stored Strain On Roll & Off Roll
188	59.8	1520.0	1055	1050	5.5%	5.0%	5.0	196	
150	47.7	1212.8	1025	1020	2.5%	2.0%	%		→MD Strain On Roll [%]
130	41.4	1051.1	1005	1003	0.5%	0.3%	- 4.0)%	MD Strain Off Roll [%]
110	35.0	889.4	1002	1002	0.2%	0.2%)%	- IVID Strain On Non [76]
90	28.6	727.7	1002	1002	0.2%	0.2%			
70	22.3	566.0	1002	1002	0.2%	0.2%	2.0)%	//
50	15.9	404.3	1003	1002	0.3%	0.2%	1.0)96	
45	14.3	363.8	1005	1003	0.5%	0.3%			
40	12.7	323.4	1007	1005	0.7%	0.5%	0.0	0	10 20 30 40 50 60
30	9.5	242.6	1010	1008	1.0%	0.8%		10.75	Roll Diameter [in]

Methods to Improve Delivered Quality

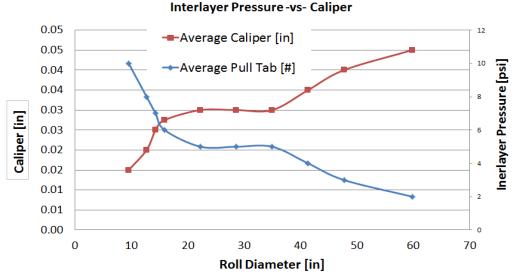

"Uhhh... Why are you looking at me?"

Monitor Your Winding Process

- Document how your winding process works: tension, nip, torque
- Develop scientific based measurements for your settings
- Develop targets and limits for your settings and validate
- Document process settings daily
- Set up trend charts to monitor settings & alarm if outside limits
- Document your wound roll structure at target and at limits
- Understand how your inputs change your roll structure
- Set up daily process health cleaning to reduce unplanned events

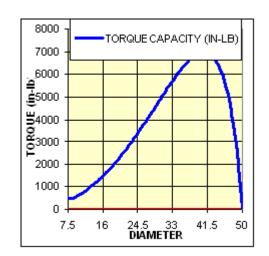

Draw versus Tension

- Invest in good material testing techniques
- Use Elastic Limit to determine which control method to use
- Tension control is best for stiff webs (EL < 3% Strain)
- Draw control is best for stretchy webs (EL > 3% Strain)


Average Wound Roll Density

$$\rho\left(\frac{lb}{ft^3}\right) = (3)*\frac{BW*L}{\left(\frac{OD^2}{4} - \frac{ID^2}{4}\right)*\pi}$$

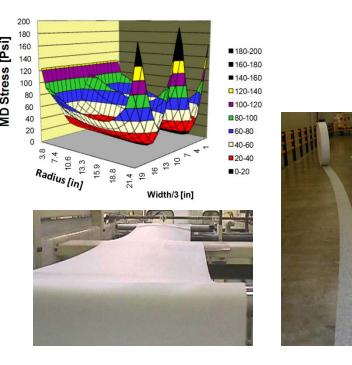
- For compressible webs roll density is a very sensitive measurement of your entire process
- Average roll density calculations only require three terms
 - Basis weight, Length, Diameter
- Set up trend charts; react when outside limits
- Wound roll structure is repeatable for a given density

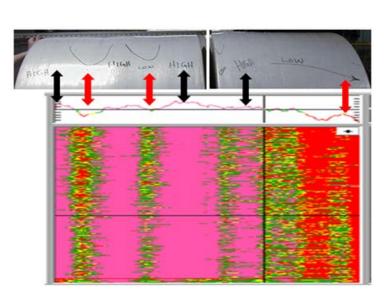

Caliper Loss

- Caliper loss is inversely proportional to interlayer pressure
- Document and control density
- Reduce winding tension and nip to reduce density
- Tare out the weight of the coreshaft using offsetting pressures
- Reduce web temperature below room temp before the winder
- Reduce storage temperature; consider refrigerated shipping
- Increase core diameter where possible
- Consider modifying the upstream process to loss near the core

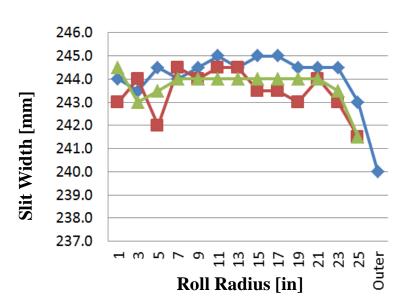
Internal Roll Slippage

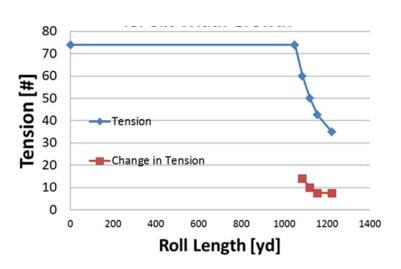
- Low torque capacity causes roll slippage
- Torque capacity is at min near the core
- Document your slip plane diameter
- Measure torque capacity using a fixture
- Document density & internal layer pressure
- Eliminate sudden changes in tension & nip
- Increase roll density
- Increase tension and/or nip beyond the slip plane
- Consider increasing core diameter
- Use less accel / decel in converting
- Improve your unwinding process





Floppy Edges


- Floppy edges, cambered webs, and baggy lanes are often the same defect
- #1 Cause: CD basis weight variation
- Others: Temp, Moisture, Forming, ect
- Improve your CD BW profile
- Reduce web temp below room temp
- Reduce roll density
- Reduce time & temp in storage
- Wind loose, allow aging, rewind to final roll density
- Wind a sacrificial layer when required



Slit Width Growth


- MD strain profile thru roll causes some materials to grow in width due to Poisson's ratio
- Reduce roll density
- Reduce web temperature
- Reduce time & temp in storage
- Consider refrigerated storage or shipping
- Use a large taper tension during the last ~10% of roll length

Tips on Process Optimization

- Until you use dollars you will not make sense
- Fallacy of "Don't fix it if it is not broken"
- Don't jump to conclusions; follow the facts
- Make direct observations
- Be humble & ask many questions
- Collaborate with many; trust but verify
- Gain trust with the machine operators & ask for their help
- Use the "Shape Tool" to filter the evidence you collect
- Use advanced tools: trend charts, cameras, FFT analysis, ect
- Educate yourself: Good, Pagilla, Roisum, Walker, Lucas....
- Attend "Applications Seminar on Web Handling" @ OK State
- Consider joining the Web Handling Research Center @ OK State

Neal Michal Global Nonwovens nmichal@kcc.com (770) 356-7996

