WEB TENSION IN AN ACCUMULATOR AND INDUSTRY NEEDS FOR THE FUTURE

June 9, 2009

Neal Michal Technical Leader

ES Kimberly-Clark Corporation

- Definition
- Design
- Challenges
- Experimental Setup
- Tension Plots

- Steady State
- Accumulator Fill
- Accumulator Feed
- Current Research
- Top Ten Research Needs
- Acknowledgments

WHAT IS AN ACCUMULATOR?

- Web storage device
- Allows different velocities
 - Winders / Unwinds
- Lower fixed rollers
- Moving carriage
- Loading by various means
 - Air / hydraulic / servos
- Span tensions
 - Steady state
 - Fill & Feed

ACCUMULATOR DESIGN

- Timing & Storage Calculations
- Most designs are incremental improvements
- Many designs are available: which is best?

PROCESS CHALLENGES

- Wrinkles are the #1 issue
 - Web camber, baggy lanes, floppy edges
 - Seasonal & storage time
- Poor tension control
 - Flutter, weave, fold-over and complete collapse
 - Neckdown, expansion wrinkles and web breaks
- Top waste and delay in converting processes

EXPERIMENTAL SETUP

ACCUMULATOR - COLLAPSED

Accumulator Info	
Total Rollers	17
Fixed Rollers	9
# Carriage Rollers	8
# Web Spans	16
Roller Diameter	165.1 mm
Roller Mass	7.28 kg
Roller Length	3.6 m
Roller Inertia	43603 kg*mm^2
Accumulator Stroke	5.1 m
Total Accumulation	81.6 m
Spindle Drive Info	
Motor Base Speed	1,765 rev/min
Gear Ratio	11.375:1

Operating Parameters	
Machine Speed	259 m/min
Deceleration Rate	91.4 m/min/sec
Acceleration Rate	91.4 m/min/sec
Stop Time	2.7 sec
Material Info	
Web Material	Polypropylene Spunbond
Young's Modulus	55 MPa @ 1% Strain
Basis Weight	13.6 g / m^2
Web Width	3162 mm
Material Caliper	0.1016 mm
Poisson's Ratio	3 @ 1% Strain
Load Cell Info	
Manufacturer	ABB
Model #	PFTL301E
Calibration	400 N

TENSION TREND PLOT

-O-Accumulator Entry Tension [%]

- Accumulator Exit Tension [%]
- Spindle B [RPM]

-_____ Spindle A [RPM]

TENSION TREND PLOT AVERAGED DATA

-O-Accumulator Entry Tension [%]

- Accumulator Exit Tension [%]
- Spindle B [RPM]
- → Spindle A [RPM]

THREE PHASES

STEADY STATE

- → Accumulator Entry Tension [%]
 → Accumulator Exit Tension [%]
 → Accumulator Height [%]
 → Spindle B [RPM]
- Carriage height 35%
- Enter Tension: 88N
- Exit Tension: 110N
 20% higher
 Bearing drag
- How many rollers should be used?
- Misalignment of the carriage?
- Critical length / width ratio to be avoided?

ACCUMULATOR FILL

- Accumulator Entry Tension [%]
 Accumulator Exit Tension [%]
 Accumulator Height [%]
- Height: 35→94% (+2.6X)
 - Accel: 91.4 m/min/sec
- Enter: 88→32N (- 65%)
- Exit: 110N→132N(+20%)
- Exit tension is 4X of entrance tension
- Why does entering tension not return after accel?
- What mechanical design would reduce the tension differential? What control method should be used?
- Should we drive the rollers? If so how?

ACCUMULATOR FEED - RAW DATA

ACCUMULATOR FEED AVERAGED DATA

—O— Accumulator Entry Tension [%]
—Accumulator Exit Tension [%]
—▲ S

<u>-</u>∆-Spindle A [RPM]

-X Accumulator Height [%]

Spindle B [RPM]

• Stop in 2.7 sec

• Enter:

- 40N → 272N
- + 680%
- Web neckdown
- Expansion wrinkles
- Splice failures
- How do we reduce tension extremes?
- Correlate: Decel rate / Roller mass / Neckdown / Wrinkles ?
- When should the rollers be driven? What controls?

Tension

Entrance

40 - 272 - 120 - 32 - 312 - 120 - 88

88N (+232N /- 48N)

Exit

140 - 48 - 140 - 8 - 196 - 112 **110N (+86N / -102N)**

SUM OF ENTRY & EXIT TENSION

- Start at 198N
- End of fill 168N
 16%
- Spikes to 396N during decel
 - + 235%
- Drops to 144N during accel
 - 64%
- What about air/web interaction? Span interaction?
- What is the best mechanical & electrical design? ¹⁸

CURRENT RESEARCH

- Several dozen papers on winding, wrinkling and air / web interaction (WHRC, Good, others)
- Focus is on a single roller in an open span
- Only four research papers on accumulators
- Apparently existing papers are not well understood
- Equipment designs do not reflect research
- Most accumulator information is internal, confidential and empirical in nature

"TOP 10" RESEARCH NEEDS

- 1. Validated computer models are needed
- 2. Air / web interaction within a accumulator
- 3. Non-ideal webs in accumulators
- 4. Multi-span interaction: tension, wrinkles, lateral
- 5. Misalignment of a moving carriage
- 6. High speed –vs- traction for a porous web
- 7. Larger rollers -vs- wrinkles -vs- roller mass
- 8. Should we drive rollers in the accumulator? How?
- 9. What is the best general arrangement?
- 10. How should the accumulator be controlled?

ACKNOWLEDGMENTS

- Bob Coxe for collecting the data
- Steve Pullen for his support to make this presentation
- Charles Morell and Bob Stargel for their financial support
- Dr. Keith Good for the challenge to make the presentation
- Dr. Karl Reid, Dr Prabhakar Pagilla, Dr. John Shelton, Ron Markum and Dr Balaji Kandadai for their help over the years
- Bruce Feiertag for setting me on this course 21 years ago

Questions?

Kimberly-Clark Corporation

C

0