

Practical Considerations for Zero Speed Splice Unwinds

Kimberly-Clark Corporation

Neal Michal Technical Leader

May 2008 | Minneapolis Minnesota

Types of Unwinds Start / Stop

Undriven Roll Stand

Floor Lift with Surface Drive Belt

Included with permission of Black Clawson Converting Machinery

Turret with Surface Drive Belts

Turret with Driven Spindles

Included with permission of Black Clawson Converting Machinery

Types of Unwinds Continuous

Zero Speed with Accumulator

Included with permission of Martin Automatic Inc

Benefits of a Zero Speed Splice Unwind

- No concerns about speed match
- Opportunity to make a better splice
- Splice design Butt or Lap
- Splice type Heat seal, Ultrasonic, Tape, and Hot Melt
- Some splices can be sold into final product
- Ability to splice into / out of eccentric rolls
- Ability to splice into / out of rolls with a wider range of diameters

Major Components

E Kimberly-Clark 5

Major Components

- Two spindles, Splicer, Idlers, and Festoon.
- Spindles are cantilevered for narrow webs; chucks are often used for wide unwinds
- The festoon provides web storage for zero speed splicing with uninterrupted machine operation.
- The festoon consists of a moving carriage and fixed set of rollers
- Feed Roll and Dancer are optional.
- The dancer is used to control tension into the process.
- Festoon and dancer can be controlled by a number of methods

How do they work? Tension

Cables

Fill the Festoon for the Splice

Decelerate expiring roll to stop Splice into the new roll Accelerate new roll up to speed

Timing and Storage

- Balance out the carriage mass
- Design of experiments
 - Festoon tension for reliable splice
 - Dancer tension for downstream process
 - Accel / decel rates
 - Festoon run & splice heights
- Calculate tension in units of force/width
- Analyze all splice failures
- Digital camcorder will catch most failures

Advanced Troubleshooting

- Load cells and trend charts are recommended
 - Festoon entrance widest tension variation
 - Festoon exit health of festoon idlers
 - Exiting unwind downstream process
- Web sensors document width & centerline
- Cameras & video recorders for random failures
- Material trials to find process capability

Zero Speed Unwind Splice Tension Profile

13

Festoon Fill

Advanced Troubleshooting Examples

Festoon Fill Rate

Tension \rightarrow

Slow

Fast

Moving Carriage Mis-alignment

Festoon Fill – Web Collapse

Web Weave

Magnitude

Period

E Kimberly-Clark ¹⁹

Material Trials

Time \rightarrow

Questions for Optimization

- What tension is needed to run well?
- How much tension spike can my splice take?
- What is the lower tension limit?
- How fast do I decelerate & accelerate?
- Wrinkles When? Where? What type?
- Does my web weave or shift?
- How should I control my unwind?
- Do I need a feed roll or a dancer?
- Define issue Material? Unwind? Settings?
- How can I improve process capability?

Current Research

- Several dozen papers on winding, wrinkling and air / web interaction (WHRC, Good, others)
- Focus is on a single roller in an open span
- Finite element codes are time intensive
- Unwinds are more important than winding for many high speed converting operations
- Four papers on accumulators (Pagilla, Shelton)
- "Dynamics of a Web Accumulator" (Shelton)
- Most unwind information is internal, confidential and empirical in nature
- Existing papers are not well understood
- Equipment designs do not reflect research

"Top Ten" Research Needs

- 1. Validated computer models are needed
- 2. Air / web interaction within a festoon
- 3. Multi-span interaction: tension, wrinkles, lateral
- 4. High speed –vs- traction for a porous web
- 5. Larger rollers –vs- wrinkles –vs- roller mass
- 6. Mis-alignment of a moving carriage
- 7. Should we drive rollers in the festoon?
- 8. Importance of carriage friction & mass
- 9. What is the best general arrangement?
- 10. Other web handling aids?

Industry Needs for Unwinds

- Open innovation: Fundamental & applied research to develop value priced robust solutions
- Delicate webs / higher speeds / lower tension
- Better mechanical designs & integrated controls
- Stronger splices that can be sold into the product
- Turnkey installations that are easy to commission
- Strategic partnerships: OEM's, research, & end use customers are desired

APPLIED WEB HANDLING CONFERENCE 2008

