

Introducing Ferraris Tolenoid C[®]

June 2019 (Updated January 3, 2020)

Ferraris Challenge

Ever since the commercialization of electricity, there have been an untapped byproduct in form of electromagnetic field generated by flowing currents in power lines. By harnessing the forgotten and unused electromagnetic energy through electromagnetic energy recycling, Ferraris has opened a new pathway for electric power generation and energy recycling technology for the mankind. Ferraris was founded in a strive to harness the power from a magnetic field produced by power lines and transform it into a reliable and countable power source.

Dr. KOO, who is the founder of Ferraris wishes the investors to set their focus and priority environmental social governance with key focus on providing clean energy produced by Ferraris' products through the magnetic energy over the corporate management of Ferraris. The prime directive of Ferraris is to provide clean energy with no environmental pollution around the world to improve and restore environment for the benefit of current and future generations to come.

We have named Ferraris Inc. in memory of Galileo Ferraris.

Table of Contents

I.	Introducing Ferraris Tolenoid C [®] Technology	1
II.	Introducing Ferraris Tolenoid C [®]	10
III.	Comparing Ferraris Tolenoid C [®] and its Technology $\$	14
IV.	Ferraris Patents and Research efforts	16
V .	Spec sheets of Ferraris Tolenoid C [®] products	21

I. Introducing Ferraris Tolenoid C[®] Technology

1

1. Ferraris Tolenoid C[®] Technology

 A Ferraris technology which harnesses induced electrical energy from the magnetic energy variation produced from the power line regardless of the power line voltage. Ferraris Tolenoid C[®] is designed, developed and manufactured mainly for the electrical power generation. The world's first technology that only Ferraris has – Linear power scalability (<u>https://youtu.be/Y3IR5djt5hg</u>), input/output power Variation controllability (<u>https://youtu.be/z3OLe21eFGU</u>), Single digit mass production loss ratio.

The uses of Magnetic Harvesting products

Incoming power lines from the sources, such as power generation, solar farm, wind farm, sub-station, distribution sub-station, transformer

Electric devices such as sensors, monitoring systems, aircraft warning light, CCTV, public light, public WIFI, drone charging station monitoring robots, lighting fixtures, EV chargin g station, energy storage system etc.

Key Obstacles of Producing ready-made Magnetic Harvesting products

Ferraris Manufactures ready-made Magnetic Harvesting products

2. Ferraris Tolenoid C[®] Technology - Linear power scalability

4. Ferraris Tolenoid C[®] Technology - Output Load variation / traceability

5. Ferraris Tolenoid C[®] Technology - Performance Evaluation

In the 15 ~ 60A primary current line, Ferraris Tolenoid C[®] produced higher output power (Watt) of 49.73% ~ 107.06% than other companies' core products.

II. Introducing Ferraris Tolenoid C[®]

1. Ferraris Tolenoid C[®] products

• For further information of the products, refer to chapter V. Spec sheets.

2. Four kind of Ferraris Tolenoid C[®]

• Ferraris Tolenoid C[®] can be installed wherever power lines are regardless of its voltage such as high-voltage distribution lines, underground lines.

		for Home IoT	for IoT / Sma	rt grid (underground/dis	stribution line)
Tolenoid C [®]					0
	line thickness (inches) ^(*1)	Under 0.90	Under 1.30	Under 2.48	Under 5.90
Power line	line current (A)	~ 15	10 ~ 650	10 ~ 650	10 ~ 650
specifications	line voltage	~380 V	~ 3	154 kV	
	line diameter (inches)	~ 0.90	~ 1.30	~ 2.48	~ 5.90
Environmental	operating temp.(°F)	-13 ~ 158	- 40 ~ 185	- 40 ~ 185	- 40 ~ 185
specifications	ingress protection (dust/water proof)	IP65	IP67/68	IP67/68	IP67/68
Dimensions	size (inches)	4.37×3.15×3.23	5.12×3.94×4.33	6.69×3.94×5.90	11.30×7.87×4.02
DIMENSIONS	weight (lb)	2.20	4.70	7.05	5.29

1 : The line diameter is determined by the line voltage.

3. Similar products

4. China MINRONG

7. China Xiamen

5. China HYLITON

8. Korea KEPCO KDN

3. Austria ZELISKO

6. China EChun

9. Korea Hyundai Heavy Industry

III. Comparing Ferraris Tolenoid C[®] and its Technology

- 1. Ferraris Tolenoid C[®] is designed, developed and manufactured mainly for the Electrical Power Generation.
- 2. Linear power scalability Ferraris Tolenoid C[®] can produce upto desired output level by simply adding Tolenoid C[®] module step by step if incoming power line has more than enough power from the desired one.
- 3. Input controllability Ferraris SMPS can control the maximum wattage Tolenoid C[®] power generation through its logics system so that the Tolenoid C[®] produce input power does not exceed maximum desired wattage. (Maximum wattage can be set by the user)
- 4. 2 and 3 Full-motion video demo https://youtu.be/Y3IR5djt5hg
- 5. Output load variation/traceability Under load variation situations, Ferraris SMPS will produce stable output power the user demands. Any further surplus output power caused by load variation control is managed by Ferraris SMPS's control logics system of the production system. Full-motion video demo <u>https://youtu.be/z3OLe21eFGU</u>
- 6. Even under the simultaneous variation in primary line and load, Ferraris SMPS supplies stable output power.
- 7. Ferraris Tolenoid C[®] is easy and simple to Install or uninstall without switching off a power line and thus minimizes any safety hazard issue.
- 8. Innovative method of magnetic energy harvesting and large-scale system over kilowatt to megawatt level is easily implementable. (Ferraris ERR System)
- 9. Ferraris is the first to have adopted an operational production system to mass produce its products. By utilizing innovative automated production process and quality control, Ferraris has reduced **loss ratio to a single digit**.

IV. Ferraris Patents and Research efforts

1. Ferraris Patents

		Korea	a		USA	CANADA	JAPAN	EUROPE	CHINA
Patentee	Patent	Application Number & Filing date	Registration Number & date	PCT Application & Filing date	Registration Number & date				
JA-IL Koo	Systems, Methods and Devices for Induction-Based Power Harvesting in Battery-Powered Vehicles			PCT/US2017/037668 12/21/2017	[UH20:I22SA] 16/220.692	1060P-AAA-CAP1	1060P-AAA-JPP1	EP17814088.5	1060P-AAA-CNP1
Ferrarispower	Wiring method and apparatus of magnetic field energy harvesting considering voltage drop of power cable	10-2018-0167391 12/21/2018							
Ferrarispower	Networked partial discharge detection system using power supply of magnetic induction type	10-2018-0087268 7/26/2018							
Ferrarispower	Separable current transformer	10-2015-0160586 11/16/2015	10-1586785 1/13/2016	PCT/KR2016/011392 10/12/2016					
Ferrarispower	Method for manufacturing split electromagnetic inductive apparatus for power supply	01-2014-0044862 4/15/2014	10-1505873 3/19/2015	PCT/KR2015/003279 4/2/2015	SN. 15/304.373	2945940 9/26/2017	SN 2016-563043	EP157793336.5	SN201580023179.5 2/22/2017
Ferrarispower	Unit current transformer device and magnetic induction power supplying device for linearly controlling output power by using the same	10-2014-0025317 3/4/2014	10-1459336 11/3/2014	PCT/KR2014/011120 11/19/2014	US 9,793,818 B2 10/17/2017	2941529 7/10/2018	6104457 3/10/2017	14882783.5 2/19/2018	ZL 2014 8 0007684.6 11/14/2017
Ferrarispower	Current transformer	10-2013-0053188 5/10/2013	10-1323607 10/24/2013						
Ferrarispower	Security camera system using of electromagnetic inductive power supply	10-2013-0036946 4/4/2013	10-1320339 10/15/2013	PCT/KR2014/002932 4/4/2014	US 9,824,282 B2 11/21/2017		6161785 6/23/2017		ZL 2014 8 0019561.4 3/18/2019
Ferrarispower	Current transformer system with sensor CT and generator CT separately arranged in paralled in electric power line, and integrated system for controlling same in wireless communications network	10-2013-0018739 2/21/2013	10-1317220 10/4/2013	PCT/KR2014/001374 2/20/2014	US 10,192,678 B2 1/29/2019		6204505 9/8/2017	In progress	
Ferrarispower	Electromagnetic Inductive Power Supply Apparatus	10-2013-0005968 1/18/2013	10-1444371 9/18/2014	PCT/KR2014/000517 1/17/2014	US 9,673,694 B2 6/6/2017	2934854 8/21/2018	6129347 4/21/2017	2947751 4/11/2018	ZL 2014 8 0005251.7 2/6/2018
Ferrarispower	Zig System for Polishing of Magnetic Core and the Method for the same	10-2012-0080730 7/24/2012	10-1252011 4/2/2013	PCT/KR2013/006632 7/24/2013					
Ferrarispower	Zig System for Cutting of Magnetic Core and the Method for the same	10-2012-0080724 7/24/2012	10-1255180 4/10/2013	PCT/KR2013/006631 7/24/2013					

• US Patent –US 9,673,694 B2

(12)	Unite Koo	d States Patent	(10) Patent No.: US ((45) Date of Patent:	9,673,694 B2 Jun. 6, 2017
(54)		OMAGNETIC INDUCTION TYPE SUPPLY DEVICE	(58) Field of Classification Search CPC D02M 1/32; D02M	4 5/40; H02M 7/06; H02M 7/08
(71)	Applicant:	TERA ENERGY SYSTEM SOLUTION CO. LTD., Hwascong- Gyeonggi-do (KR)	See application file for complete (56) References Cited	
(72)	Inventor:	Ja-Il Koo, Seongnam-si (KR)	U.S. PATENT DOCUM	
(73)	Assignee:	FERRARISPOWER CO., LTD, Gyeonggi-do (KR)	3,443,194 A * 5/1969 Cielo 3,519,848 A * 7/1970 Vercellotti	363/20
(*)	Notice:	Subject to any disclaimer, the term of patent is extended or adjusted under U.S.C. 154(b) by 90 days.		
(21)	Appl. No.:	500 KB 10	JP H06-70491 A 3/1994	
	PCT Filed		JP 2001-112104 A 4/2001 (Continued)	
	PCT No.:	PCT/KR2014/000517	Primary Examiner — Timothy J Dole Assistant Examiner — Yusef Ahmed	
	§ 371 (c)(. (2) Date:	l), Jul. 17, 2015	(74) Attorney, Agent, or Firm Mass	walley & Partners
(87)		No.: WO2014/112827 Date: Jul. 24, 2014	(57) ABSTRACT Disclosed is an electromagnetic inducti device, which generates electric power	through an electro-
(65)	US 2015/0	Prior Publication Data 357907 A1 Dec. 10, 2015	magnetic induction method using a tran flowing through a transmission line, a thereof by detecting and feeding back transformer and a power converting	an adjust an output the output, enables a
(30)	Fo	reign Application Priority Data	removed as necessary. The electromag power supply device includes a transfo	netic induction type
Ja	n. 18, 2013	(KR) 10-2013-0005	ing a glugality of transformers for oute	utting electric power
(51)	Int. Cl. 1102M 1/3 1101F 38/2		ondary current from primary current transmission line; a power source mor rality of power converting units for cc power output from the plurality of tr	flowing through a lule including a plu- nverting the electric ansformers to direct
(52)	U.S. Cl. CPC		9 summed nower to a load.	direct current power
		(2016. (Continued)	5 Claims, 2 Drawing S	heets
		21 - 00994 32 - 00 100094 32 - 00 100094 33 - 00 100094 33 - 00 21 - 00994 35 - 00 00994 35 - 00		

 (31) Int. CL. (31) Int. CL. (32) 1706 (2006.01) (32) 1706 (2016.01) (33) 1708 (2006.01) (34) 1708 (2006.01) (35) U.S. Cl. (35) U.S. Cl. (35) References Cited (36) 11021 1001 (2013.01); 10237 706 (2013.01) (36) 11021 1023 1023 1023 1023 1023 1023 102				3,694 B2 ge 2			
III 02M 706 (2006.01) 350.72 III 02M 706 (2006.01) 2002001257 A1* 12021 328 III 02M 706 (2016.01) 20020079872 A1* 62092 Kim 363.93 III 02M 7076 (2016.01) 20020079872 A1* 62092 Kim 363.93 III 02M 7076 (2016.01) 2007.0051712 A1* 32007 Kockea 122M 323 (2013.01) III 02M 7076 (2013.01) III 02M 7076 2109.100 2109.100 (2013.01) III 02M 7076 (2013.01) IIII 02M 7076 2109.100 2109.100 2109.100 331.12 (2013.01) IIII 02M 7076 (2013.01) IIIIIII 02M 706 2009.00177 A1* 5009 92M 1007.01 331.12 (2013.010) IIII 02M 7076 100.000056 A1* 42011 Low 331.12 301.101.27.32 (41.957 A* 511.314 A* 61992 Cathell 1100.01 37.337 301.117.15 301.101.07.334 302.11.0007679.1 A1* 320.15 307.104 302.11.101.17.334 302.11.101.17.334 302.11.101.17.334 302.11.1000.33376 302.11.000779.1 A1*	(51)	Int Cl			1/2002	Vakaunga H02M	1/4208
H021 Sub (201:0.01) 363939 H023 Sub (201:0.01) 200:003872 A1* 6.2002 Kim 303.328 H023 Sub (201:0.01) 200:003872 A1* 6.2002 Kim 1123.432 (52) US, CI. (201:0.01) 200:003872 A1* 6.2002 Kim 1123.4328 (201:0.01) CPC H02M Sub 200:0031712 A1* 3.2007 Kooken 1123.1328 (201:0.01) CPC H02M Sub 200:0031712 A1* 3.2007 Kooken 1123.1328 (201:0.01) (201:0.12, H02M 706 (201:0.01) (201:0.12, A1* 6.2009 Pak G696 3.20 361:6 (201:0.01, D12) KiPA (201:0.01, H02M 706 (201:0.01) (201:0.01, A1* 8.2009 Pak G696 3.20 361:12 (201:0.000056 A1* 4.2011 Low 1102/1.702 361:12 301:20140525 A1* 6.2012 Low 1102/1.702 4,452.661 A * 5.11979 Zeis H01K 708 301:013673 A1* 7.2013 Sady 301:12:14 301:21:14 4,419.084 A * 41988 Komaxa H02M 73:25 201:0030208 A1* 11/2013 Sady 301:12:14 301:0030208 A1* 11/2013 Sub 307:13 5,121.314 A * 61992 Cathell H02M 73:56 10:003 73:57 302:17:10 307:17:18 301/12 301:17:16 302:17:16 307:17:16 <	(51)	1102M 7/06				-	363/72
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1102M 5/40 H021 5/00					363/95
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1102M 7/08	(2006.01)	2002/0079872 A1*	6/2002	Kim 1102	M 3/28 23/267
CPC III 0231 544 (2013.01); III 02M 706 (2013.01); IIII 02M 706 (2013.01); IIIII 02M 706 (2013.01); IIIIII 02M 706 (2013.01); IIIIII 02M 706 (2013.01); IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	(52)		(2016.01)	2007/0051712 A1*	3/2007	Kooken B231	\$ 9/095
(56) References Cited 2009/0201070 A1* 82009 Pair G696/3120 363120 U.S. PATINT DOCUMENTS 2011/080056 A1* 4/2011 Low IB021 5001 4.152.661 A* 5/1979 Zeis H03K 7.08 301201/057.41* 4/2011 Low IB021 5001 4.152.661 A* 5/1979 Zeis H03K 7.08 301201/0955 A1* 6/2012 Cuedm IB021 5001 4.152.661 A* 7/1984 Futon 1001/07/255 2013/0300208 A1* 7/2013 Sadry 3031/12 4.152.661 A* 3/1980 Peersen H03M 7/255 2013/0300208 A1* 12/013 Yu 3031/12 5.121.314 A* 6/1992 Carbeil III2023 Yu 3032/12 3032/12 5.091.109 A* 11/1090 Kolzy11/12 30140078791 A1* 12/015 3032/12 305/17 5.091.109 A* 11/1090 Kolzy11/12 301/12	()	CPC H		2007/0133239 A1*	6/2007		4 3/337
U.S. PATENT DOCUMENTS 2011/080056 A1 4 2011 Low 1002/5005 307(104) 4,152,661 A * 51979 7eix H01K 708 30120149525 A1 * 62012 Cusdm 1010 127) 4,461,487 A * 71994 Futton H01W 7725 4,739,461 A * 41988 Komata H01W 7725 4,739,461 A * 41988 Komata H01W 7725 5,121,314 A * 61992 Cathell H02W 7357 5,121,314 A * 61992 Cathell H02W 7357 5,121,314 A * 61992 Cathell H02W 7357 6,756,776 B2 * 62000 Beckman H02W 7357 6,756,776 B2 * 62000 Beckman H02W 7357 7,388,761 B1 * 62008 Wang H02W 7357 7,388,761 B1 * 62008 Wang H02W 7357 7,388,761 B1 * 62008 Wang H02W 7357 9,30337 Rz * 52016 Cusdm H02W 7357 8 2014 Wang 74 1 2015 Wang 8 201				2009/0201707 \1*	8/2009	Park G05	G 3/20
U.S. PATINET DOCUMENTS 3070710 4.152.661 A * 5/1957 7eis	(56)	Refe	rences Cited	2011/0080056 A1*	4/2011		
4.452,661 A * 51979 Zets H3457,08 4.461,987 A * 51979 Zets H347,708 4.461,987 A * 51989 Zets H347,708 4.739,461 A * 41988 Komaas H2021,725 4.814,965 A * 31989 Petersen H520,7138 5.121,314 A * 61992 Cathell H102M 31376 5.121,314 A * 61992 Cathell H102M 31376 5.121,314 A * 61999 Kocken B 2347,8105 6.028,413 A * 21000 Brockmann H102M 31376 2015,012603 A1 * 11/2015 Yamagachi H02M 13707 2015,012603 A1 * 11/2015 Yamagachi H02M 13709 2017,0128 FORHON PATTENT DOCUMENTS 5.758,776 B2 * 62004 Pekinosa H01M 3376 7.388,761 B1 * 62008 Wang H02M 33576 JF 2016,07459 A 52009 2001001227 / 18 * 82001 Some H02M 33596 JF 2007045844 A 1 × 2007		U.S. PATE	NT DOCUMENTS			3	07/104
4.461.087 A* 771984 Fubbo m HOM 7/252 Birlo 01000 FM Hours 3000 M Birlo 01000 FM Birlo 01000 FM <td< td=""><td></td><td>4,152,661 A * 5/19</td><td></td><td></td><td></td><td>36</td><td>3/21.04</td></td<>		4,152,661 A * 5/19				36	3/21.04
4.739.461 A* 4/1958 Komaau H0234.328 3077104 4.814.065 A* 3/1989 Petersen H023/1189 2014/078791 A1* 3/2014 Gundasati 1023/1537 5.312.141 A* 6/1992 Cinhell 1000/33757 2015/06780.39 A1* 3/2014 Gundasati 1023/15387 5.991.169 A* 11/1959 Kosken H023/1376 2015/0326031 A1* 11/2015 Yanaguchi H021/1700 6.028.413 A* 2/2000 Biockmaan 1001/1702 2015/0326031 A1* 11/2015 Yanaguchi H021/1700 6.028.413 A* 2/2000 Biockmaan 1001/1702 2015/0326031 A1* 11/2015 Yanaguchi H021/1700 7.388.761 B1* 6/2004 Petkinsen 100 10/40 J7 2014/03266 A 4/2012 7.388.761 B1* 6/2004 Wing 1023/3376 U7 2012/07385 A 4/2061 2012/07485 9/01001227/148 S2001 Vinnem 1023/3376 U7 2012/074854 A 4/2012 9/01001227/148 S2001 Vinnem 10/33/3376 U7 2012/074854 A 4/2012 9/01001227/148 S2001 Vinnem 10/33/3376 U7 2012/07484 A 3/2007 <		4,461,987 A * 7/19	84 Fulton			3	24/127
4.314.965 A * 3/1980 Petersen H0037121 2014/0078791 A1* 3/2014 Gundasaai 1102M 15387 5.121.314 A * 6/1992 Cathell H02M 5121/12 3015078039 A1* 3/2015 302140 5.91.134 A * 6/1992 Cathell H02M 5127/12 3015078039 A1* 3/2015 Mpanchi H02M 1088 5.021.416 A * 111099 Kosken B23K 91056 2015078039 A1* 3/2015 Mpanchi H02M 1076 6.0924 A13 A * 2/2000 Brockmann 110137 1537 3015078039 A1* 11/2015 Yanagachi H021 17/10 5.755.776 B2* 6/2004 Peterson 10013 3576 107 201607758 A 7/2006 323112 7.388.761 B1* 6/2008 Wang 110203 33576 17 2007044434 A 3/2007 2007044434 A 3/2007		4,739,461 A * 4/19	88 Komatsu H02M 3/28	2013/0300208 A1* 1	11/2013	Yu 110-	IB 3/56 07/104
5.121.314 A * 6/1992 Carbell 11024.3127c 2015/057809 A1* 3.2015 Mpanchi 11022/1108 5.091.169 A * 111099 Koken B.23K 91056 2013/17 3632112 5.091.169 A * 111099 Koken B.23K 91056 2015/0326031 A1* 112015 Yanagatchi H02/17/106 6.028.413 A * 20000 Boeckmann 110217/025 S07104 307104 6.755.776 B2* 6/2004 Perkinson 100113350 FORTHGN PATTENT DOCUMENTS 7.388.761 B1* 6/2004 Perkinson 10133376 JP 2016/07785A 7/2006 9.303.871 R2* 5/2016 Chahn 1033376 JR 2012/07855 4/2012 9.001001227/1148 S2001 333576 JR 2002/044491 A 5/2009 9.001001227/1148 S2010 S3359 V 2007/044491 A1 3/207		4,814,965 A * 3/19	89 Petersen	2014/0078791 A1*	3/2014		7/5387
5.991,169 A * 11/1999 Kosken 363117 2015/0326031 A1* 11/2015 Yamagachi 360171/20 6.028,413 A * 2/2000 Brockmann 1001/17/205 307/194 307/194 6.028,413 A * 2/2000 Brockmann 1001/17/205 FORLIGN PATENT DOCUMENTS 307/194 6.756,776 B2* 6/2004 Parkinson 1001/17/205 FORLIGN PATENT DOCUMENTS 307/194 7.388,761 B1* 6/2008 Wang 1002/35/17 B7 2016/02/0044/99 4 2012 9.030373 B2* 5/2016 Cundm 1001/33/14 JP 2007/014/99 A 5/2009 200/0014/99 A 3/2007		5.121.314 A * 6/19		2015/0078039 A1*	3/2015		M 1/08
6.028.413 A * 2/2000 Boschmann H0217 025 307/104 6.028.413 A * 2/2000 Boschmann H0217 025 FOREIGN PATTENT DOCUMENTS 6.756.776 B2* 6/2004 Petkinson H0113820 FOREIGN PATTENT DOCUMENTS 7.388.761 B1* 6/2008 Wang ILDUM 33576 JP 2010-073356 A 4/2012 9.303873 B2* 5/2016 Cundra H113814 KR 10-2007-0404493 A 5/2009 9.0010012207 A * 8/2001 H013359 KR 10-2007-0404493 A 3/2007			363/17	2015/0326031 A1*	1/2015		
523/108 FOREIGN PATIENT DOCUMENTS 6,756,776 B.2* 6/2004 Petkinson			219/137 PS			3	07/104
3,358,761 B1* 6/2008 Wang 1102M 33576 17 2006/e197758 A 7/2006 9,330,873 B2* 5/3016 Cualut 1033 17 KR 16/2009/e44490 A 2009 90,010012207 M2* 5/3016 Cualut 1033 17 KR 16/2009/e044490 A 2009 90,010012207 M2* 5/2016 Cualut 13/3596 WO 2007/0148494 A 20097			320/108	FOREIGN	I PATE	NT DOCUMENTS	
265/17 KR 10-2009-0046439 A 5/2009 9.330.837 B2 * 5/2016 Cuadra			324/126		58 A		
9,330,837 B2* 572016 Cuada H021/3814 WO 2007/014894 A1 3/2007 2001/001/2207 A1* 8/2001 Nomana H02N/3807 * cited by examiner			363/17	KR 10-2009-00464	39 A	4/2012 5/2009	
363.17 * cited by examiner	200	9,330,837 B2* 5/20 1/0012207 A1* 8/20	116 Cuadra	WO 2007/0348	894 A1	3/2007	

Г

٦

2. Ferraris Research efforts

Paper title	Academic conference / Journal	Co-auther
Magnetic energy harvesting from traction return current in railway system	Korea Metropolitan Railway Association (2018 Autumn Conference)	Jay(JA-IL) Koo, Bumjin Park, Chan Joon Park, Ok-Hyoun Jung, Seungyoung Ahn
Analytic Computation of Power Line Voltage Drop Produced by Magnetic Energy Harvesting Device	INTERMAG 2018 (Academic conference)	Jay(JA-IL) Koo, Kibeom Kim, Bumjin Park, Jedok Kim, Seungyoung Ahn
A 1.14 kW Magnetic Energy Harvesting Near Power Line by Considering Saturation Effect	EVS31 & EVTeC 2018 (Academic conference)	Jay(JA-IL) Koo, Bumjin Park, Dongwook Kim, Jaehyoung Park, Yujun Shin, Seung young Ahn, Okhyun Jeong
Design of Toroidal Core for Magnetic Energy Harvester near Power Line Considering Saturation	Joint IEEE & APEMC 2018 (Academic conference)	Jay(JA-IL) Koo, Bumjin Park, Dongwook Kim, Jaehyoung Park, Yujun Shin, Seung young Ahn
Design of magnetic energy harvesting core using saturation effect	Electronic Society of Korea (2018 Summer Conference)	Jay(JA-IL) Koo, Bumjin Park, Dong Wook Kim, Jae Hyung Park, Yujun Shin, Chan J oon Park, Ok-Hyoun Jung, Seungyoung A hn
Application of magnetic field energy harvesting near power line for maintenance sensors in railway system	Korea Metropolitan Railway Association (2018 Spring Conference)	Jay(JA-IL) Koo, Bumjin Park, Yujun Shin, Jaehyoung Park, Jong-Kew Won, Ki Hyun g Kim, Seungyoung Ahn
Optimization Design of Toroidal Core for Magnetic Energy Harvesting Near Power Line by Considering Saturation Effect	AIP Advances 8 (2018 Journal)	Jay(JA-IL) Koo, Bumjin Park, Dongwook Kim, Jaehyoung Park, Kibeom Kim, Hyun Ho Park, Seungyoung Ahn
Design methodology of toroidal core for magnetic energy harvesting based on magnetic field dependence of permeability near power line	MMM 2017 (Academic conference)	Jay(JA-IL) Koo, Bunjin Park, Dongwook Kim, Jaehyoung Park, Hyunho Park, Seun gyoung Ahn
Study on the CT-based wide range current detection system combined with contactless power	Korea Institute of Lighting & Electrical Equipment(2016 Spring Conference)	Jay(JA-IL) Koo, Jong-Kew Won, Dong-Kw an Seo, Jin-Ouk Kim, Hwa-Young Kim, Ok-Hyoun Jung

Joint IEEE & APEMC 2018 Design of Toroidal Core for Magnetic Energy Harvester near Power Line Considering Saturation

V. Spec sheets of Ferraris Tolenoid C[®] products

Tolenoid C[®] (Contactless power supply)

Line thickness Under 1.30 inches

Line thickness Under 2.48 inches

Split form factor

Tolenoid C® (1.30 / 2.48 inches)

- Tolenoid C[®] convert magnetic energy around power line into electric power form for various electric devices.
- Tolenoid C[®] can be installed into power lines regardless of its voltage such as high voltage distribution lines, underground lines as a form factor of splitable one which make them possible easy install Tolenoid C[®].
- Tolenoid C[®] can save electric device installation cost and time compare to conventional way which requires transformer and complex wiring process for 110 or 220Vac power line.
- Maximize efficiency of induction electricity generation by effective Core design and manufacturing process from Ferraris technology.
- Secure electric power energy generation from 10 ~ 650 Ampere power line.
- Water proof case design. (IP65 ~ IP68)
- Electric power generation capacity depends on the current of the primary power line and this can be controlled Ferraris designed SMPS type.

Specifications	Under 1.30 "	Under 2.48 "			
Primary power line current (A)	mary power line current (A) 10 ~ 650 A				
Primary power line voltage (V)	~ 3	0 kV			
Primary power line wire thickness (inches)	~ 1.30	~ 2.48			
Output current type	AC output				
Working temperature (°F)	- 40 ~ 185				
Waterproof (IP)	IP 65 ~ 68 (KS C IEC 60529)				
Size (W*D*H inches)	5.12 * 3.94* 4.33	6.69 * 3.94 * 5.90			
Weight (Ib)	4.70 7.05				
Case material	PC C	GF 20			

SMPS (Switching mode power supply)

Input : connector to multi-adapter

Output : connector to system

SMPS (12V 20W / 60W)

- SMPS block is a semiconductor based circuit board which convert AC input from Tolenoid C[®] into to a DC output for the user requirement or multi-adapter for multiple Tolenoid C[®].
- Ferraris SMPS block is basically composed of two component. Incoming AC signal is converting into DC signal by regulator sub-block and this DC signal is smooth by advanced SMPS block for stable DC output.
- · Ferraris SMPS block has the following features.
 - 1) Preventing overvoltage, overcurrent, overload feature
 - 2) Line regulation less than 1%
 - 3) Control maximum output controllability
 - 4) Incoming input controllability
- Available IP65 to IP68 case design available.
- Scalable power output capacity is possible depending on customer need.

Specifications	12V/20W	24V/60W		
Input	Output of Tolenoid C [®]			
Output	DC 12V/20W	DC 24V/60W		
Working temperature (°F)	- 40 ~ 185			
Waterproof (IP)	IP 65 ~ 68 (KS C IEC 60529)			
Size (W*D*H inches)	3.54 * 5.51 * 2.36			
Weight (Ib)	1.87			
Case material	PC GF 20			

23

Multi-adapter

Multi-adapter

- Multi-adapter is a sub-block tool that allows multiple Tolenoid C[®] to be connected and operated.
- This one make system allow output power scalability, such as increasing power from 10 to 40Watt and also reducing the required minimum current of power line for Tolenoid C[®] power generation.
- The multi-adapter has four Tolenoid C[®] connectors and one for each SMPS and Separator.
- For the future usage, Tolenoid C[®] connectors can be added more, such as up to eight.
- Deliver generated power from these multiple Tolenoid C[®] to SMPS block.
- Separator is for safe installing and disassembling Tolenoid C[®] to SMPS block. This is mandatory one for safety.
- You can switch on and off each Tolenoid C[®] by pressing switch even if you connect them up to multiple Tolenoid C[®].

Tolenoid C [®]	Up to 4ea
Separator	For installation/de-installation
SMPS	SMPS connections based on desired voltage and output
Working temperature (°F)	- 40 ~ 185
Waterproof (IP)	IP 65 ~ 68 (KS C IEC 60529)
Size (W*D*H inches)	7.09 * 3.94 * 1.77
Weight (Ib)	2.09
Case material	PC GF 20

Separator

Separator

- The Separator is tool for safe installation or de-installation of Tolenoid C[®] at active power line without shutting down power line.
- The Separator make it possible of demagnetization of Tolenoid C[®] occurred when the Tolenoid C[®] is installed in the magnetic field around the active power line.
- Install or de-installation using physical force or other equipment without the Separator causes a safety problems such as finger jammed in between and there is a risk of injury by cutting surface of the core.
- With Separator on, you can install or de-install Tolenoid C[®] at active power line without physical force or other big tools.
- Be sure to sue the designated Separator for Tolenoid C[®] check product serial numbers.

Specifications					
Working temperature (°F)	- 40 ~ 185				
Waterproof (IP)	IP 40 (KS C IEC 60529)				
Size (W*D*H inches)	1.93 * 2.60 * 1.50				
Weight (Ib)	0.29				
Case material	Plastic				

 Multi-adapter connection terminal • Cable and Connector - Obtain UL & CUL Certification, Waterproof test pass - IP 68

#2

Panel Cut-Ou

Cable

Internal wiring of electrical electronic equipment

Cable Connector

- #1 Connector connected to cable
- male & female pin (screw type, solder)

Output Connector

 #3 SMPS output Connector, rear panel mount & male (screw type, solder)

Input Connector

 #4 Multi-Adapter, SMPS input connector, panel mount & male pin (screw type, solder)

Interface Cables					
Rated	(UL) 221°F 300V				
Insulation vessel	UL 1007, UL 1061 Type				
Flammability	VW-1, FT-1 Satisfied				
Application specification	UL Subject 758, 1581 CSA C22.2 No. 210				
Cable C	Connector				
Panel thickness (inches)	0.138 ~ 0.268 inches				
Environmental protection	IP 67 or 68 (IEC 60529)				
Mechanical life	500 Mating cycles				
Operating temperature (°F)	- 49 ~ 221				
Voltage rating	110 V				
Rated current (104 °F)	5 A				
Output Connector					
Panel thickness (inches)	Max 0.196 inches				
Environmental protection	IP 67 or 68 (IEC 60529)				
Mechanical life	500 Mating cycles				
Operating temperature (°F)	- 49 ~ 221				
Voltage rating	30 ~ 300 V				
Rated current (104 °F)	2 ~ 10 A				
Input Connector					
Panel thickness (inches)	Max 0.157 inches				
Environmental protection	IP 67 or 68 (IEC 60529)				
Mechanical life	500 Mating cycles				
Operating temperature (°F)	221				
Voltage rating	30 ~ 300 V				
Rated current (104 °F)	2 ~ 10 A				

48.5

#1

#4	Max4.0
\square	NIN ATT-
15	48

Mox5

Electric energy is Electromagnetic energy,

Our approach to a new paradigm of efficient electric power generation and recycling!

If there are any questions, please feel free to contact Ferraris Inc. as below,

tech-sales@ferrarispower.com

6671 S. Las Vegas Blvd., BLDG D, Ste 210, Las Vegas, NV 89119 USA office +1 (702) 483-0072 www.ferrarispower.com