
The Official 
Journal of
The Official 
Journal of

Volume 9 Number 4 August 2003Volume 9 Number 4 August 2003



Journal of Validation Technology2

Currently, the large manufac-
turers in the pharmaceutical
and biotech industry are

managing Distributed Control Sys-
tem (DCS) projects with different
types of document deliverables and
approaches to compliance. In some
instances, these approaches even
vary within the same organization.
The objective of this paper is to
provide a framework to help guide
the reader to implement a compli-
ant DCS. A general approach is
provided with points to consider
throughout the course of such a
project. An emphasis has been placed on software
testing and associated documentation tools. Check-
lists of typical projects have also been included to
give the reader some tangible examples that are
applicable to similar automation projects.

To implement a compliant, robust, and effective
DCS for a production facility is no simple task.
From a business perspective, there are a variety of
critical forces that may have different intensity and
direction than those desired by the future owner of a
DCS project. One driver could be that the organiza-
tion needs the facility to be operational – yesterday.
But the force may be further enhanced or weakened
with the level of management commitment to sup-

port this project. Matters could be
compounded with volatile environ-
mental factors, such as the Food
and Drug Administration (FDA) in-
creasing system compliance aware-
ness to ensure public safety and
protection in the computer system
arena. Competitors keep the pres-
sure with their own success stories,
and perhaps even by highlighting
your own shortcomings. Your sup-
pliers or vendors are all promoting
their superiority in the business,
and may leave you questioning
their true objectives and goals.

Finally, the most critical driver is the customer, and
this is exhibited by a want of a product that is pure,
safe, effective and, of course, cheaper than ever. These
external forces, and how they could impact the pro-
ject, need to be continually monitored, so that the pro-
per actions can be applied to keep the project on
track. 

Once the external influences are identified and
monitored, the focus can be narrowed to the project.
Basically, the DCS is a large control system that en-
ables decentralized control of plant process activity,
whether in the laboratory, manufacturing, or packag-
ing. Indeed, a powerful computer system, that in
real-time, will continuously update and maintain

❝If a VMP is 
prepared just
for the FDA’s

sake, it will fail.
A plan must 

provide both the
compliance and
project planning

benefit.❞

A Compliant Distributed Control
System – A Framework to Manage

Documentation Expectations
Doina Morusca

and 
Mark Cupryk

Invensys Validation Technologies

❖



August 2003 • Volume 9, Number 4 3

Doina Morusca and Mark Cupryk

your plant data several times a second, this system
has the capability to:

• Control and monitor numerous data points from
200 to 100,000+

• Execute special programmed logic
• Provide startup, shutdown, interlock, and main-

tenance control
• Alarm and manage events during the plant oper-

ations
• Trend, log, and report data
• Communicate with other controllers at the process

level (e.g., Programmable Logic Controllers [PLC],
Personal Computers [PCs] etc.) and at the busi-
ness level (Enterprise Resource Planning [ERP],
Manufacturing Execution System [MES], etc.).

At the macro level, the DCS can be broken down
into the following three principal deliverables: hard-
ware, software, and documentation. 
Hardware can include:

• Workstations that perform computations, act as
hosts for other stations, and perform the inter-
face between human and machine

• Cabling, network, wiring, etc.
• Input/Output modules, which scan the instrument

data
• Peripheral devices, such as media storage, key-

boards, mouse, etc.
• Communication devices, such as printers, modems.
• Storage cabinets and junction boxes
• Process instruments, such as flowmeters, pH sen-

sors, analyzers, valves, etc.

Software can include:
• Network and gateway management
• Configuration tools
• Operating system
• Human interface management
• Integrated control tools
• Customized packages, such as batch management,

data historian

Documentation:
As mentioned, documentation in automation pro-

jects has yet to be optimized, both in terms of content
and context of presentation. Figure 1 depicts the major

documents in a typical DCS project. One category is
the foundation document, which represent the pro-
gress of the systems development, both in virtual and
physical terms. Another category is all the planning
deliverables associated with both short and long-term
goals. These can range from tools to track how the risk
will be mitigated on a long-term or strategic level, to
how a particular test will be performed with the num-
ber of steps or actions. Finally, the last category is the
proof of how well the plans were adhered to, and iden-
tification of where and why deviations took place. 

Validation Master Plan

As in any project, too often the urge is to induce
the design phase or even construction at breakneck
speed. Typically, management confuses movement
for actual progress, and, as a result, this mispercep-
tion motivates a type of action-oriented behavior dis-
regarding the value of a plan. Taking the time to bet-
ter assess the future will ensure a clear goal and the
required actions to make it happen.

The Validation Master Plan (VMP) is the most
important project management tool for successful
completion of the DCS project or any other type of
pharmaceutical implementation, for that matter.
Herein lies the project’s genetic code that defines the
project’s activities, which will lead to the creation of
all necessary deliverables for a compliant control
system. When unraveled, the result should be a sys-
tem with all the associated documents designed to
produce a pure, safe, and effective product.

Success will be accomplished by having each detail
clearly defined in the VMP. Leaving sections purpose-
ly general or ambiguous is certain to have tremendous
negative impact down the line, because it will result in
more confusion within the project team. Other exam-
ples of poor planning include no details as to what
each tangible deliverable will be, and no timing when
these will be produced. To make matters worse, some-
times even no resource is identified to do the work,
review it, or approve it. The result is that personnel are
not aware of their role, or their responsibility and what
they need to be delivering; therefore, a plan with no
substance is in place. If a VMP is prepared just for the
FDA’s sake, it will fail. A plan must provide both the
compliance and project planning benefit.

The time invested upfront to have a few people



Journal of Validation Technology4

Doina Morusca and Mark Cupryk

spend thinking about how to implement each detail of
the DCS will provide high returns. The potential loss, if
planning is not done, is to have a team of a hundred peo-
ple not knowing how they fit into the big picture.
Moreover, the expectations should also be defined at the
technical level and documentation level. A master list of
checklists to be prepared for each deliverable is recom-
mended to serve as the baseline of what is important for
each document at the technical and format level. Based
on experience, Figure 2 provides an illustration of some
checklists required at different phases for the DCS pro-
ject. The checklist will be influenced by the organiza-
tion’s policies and procedures, which will also be influ-
enced by industry and the FDA. These lists will help to
ensure that the whole team is aware of changes in ex-
pectations. Furthermore, if issues both technical and/or

related to the documentation are found, they can be
added to the checklist. If these issues are already present
on the checklist, they may be indicative that additional
training or detail for clarity is required. 

It is important to plan to clearly define metrics to be
collected, presented, and used for making changes
throughout the project. Combining both estimated and
historical data provides the team with the ability to
track progress toward the goal, and make the required
adjustments. The challenge is selecting the right data.
Because of the uniqueness of each organization, the
definition of a successful project is always different.

The documentation scope can be much better iden-
tified by preparing a table of the breakdown of the
expected content for each deliverable. To draw an anal-
ogy, this is similar to an architecture block diagram

Figure 1

Distributed Control System Documentation

• Process and Business
Flowcharts

• Organization Charts
• Audit (Vendor & Project)
• Validation Master Plan
• Traceability Matrix
• Test Plan
• Code Review Protocol
• Design Qualification Protocol
• Factory Acceptance Test

Protocol
• Installation Qualification

Protocol
• Operational Qualification

Protocol
• Performance Qualification

Protocol
• Change Control Plan

Compliance Planning Tools

• Basis of Design or Business Case: The why for the business
• User/Functional Requirements Specification: The desired whats for the system
• Design Specifications and Supporting Documentation/Drawings: How the whats were achieved
• Programming and other Standards: The standards that will be adhered to in developing the

code/hardware to meet design and requirements
• Training and User Manual: The content and methods that will be used to keep personnel up-to-

date on the system
• Standard Operating Procedures: The steps and activities ensuring a validated system is main-

tained in a state of control

Foundation Documentation of the Distributed Control System

• Design Qualification Results
• Factory Acceptance Test

Results
• Installation Qualification

Results
• Operational Qualification

Results
• Performance Qualification

Results
• Audit Results
• Code Review Results
• Validation Conclusion Reports
• Summary Reports
• Problem Reports
• Change Requests
• Handover Certificates

Proof of Success



August 2003 • Volume 9, Number 4 5

Doina Morusca and Mark Cupryk

Figure 2

Project Expectation Management Checklist

Validation
Master Plan

Risk

Influenced By:

External Forces

• FDA and Other Government Agencies
• Customers
• Competitors
• Suppliers

Internal Forces

• Policies
• Procedures
• Standards
• Personal/Business Agendas

Checklist
Scope/Quality

Resources
Schedule

Traceability

Checklist
Technical

Format
Traceability

User/Functional
Requirements
Specifications

Checklist
Technical

Format
Traceability

Checklist Pre-Testing
Test Case Technical and
Format Check (Figure 8)

Checklist Pre-Testing
Test Case Execution

Check (Figure 9)

Checklist Package
Test Protocols 

Summary Reports
Problems/Deviations

(Figure 10)

Checklists Similar 
to Previous

Checklists Similar 
to Previous

Checklists Based 
on Operations

Design
Specifications

and Supporting
Documentation

Factory
Acceptance

Testing (FAT)

Operation
Qualification

(OQ)

Performance
Qualification

(PQ)

OPERATIONS

Change Control,
Standard Operating
Procedures (SOPs),

Training-Not Part 
of Project Scope

Project Metrics

Operations Metrics

Installation
Qualification

(IQ)

Checklists Similar 
to Previous



Journal of Validation Technology6

Doina Morusca and Mark Cupryk

identifying the number of instruments, junction boxes,
marshalling panels, and interconnectivity of each. In the
case of the documentation, a traceability matrix be-
tween the various sections of the key project document
deliverables is a necessity. As for the hardware, we need
a rough sketch of the architecture for assessing the
major attributes of the project. Similarly, a breakdown
of each typical document, such as requirement specifi-
cations, design specifications, Factory Acceptance Test
(FAT) protocol, etc. with table of contents should be
prepared, linked, and kept as a work in progress. Using
the traceability matrix to frame the project deliverables
and their major content areas will help to identify where
items will be documented, and how these trace through
the development cycle. The added benefit is that such a
matrix can also be easily customized to track the pro-
ject’s progress, schedule, cost, and any other desired
parameters. An example is shown in Figure 3, where
the deliverables are sectioned out, the traceability be-
tween documents is established, and project attributes,
such as completion and schedule, are tracked. More-
over, the completed documented deliverables provide a
clear representation of the actual progress.

Typically, key project stakeholders in DCS projects
involve the DCS developers, automation leader, process
control leader, validation engineers, quality leaders, and
operators. Requirements development should include
all of these major players. Thinking out of the project
constraint triangle of time, cost, and scope – needs to
lead to thinking of the team. The selected individuals
with the proper motivation and skill sets are going to
make or break the DCS experience. They must be moti-
vated to succeed, and well aware of how they can con-
tribute to make the journey positive and memorable.
Communication must be pre-defined and effective so
that all are effectively engaged. Weekly meetings with
key stakeholders must be organized for the duration of
the project. A project management execution office is
worth considering. This entity continuously energizes
critical path activities. This will avoid getting entangled
in non-critical activities. Planning to deal with different
locations is crucial. In today’s virtual project forum,
there are still many barriers to high performing teams
that arise due to geographic location, including cultural
differences which can be present even in the same coun-
try. Face-to-face meetings continue to ensure better rela-
tionships, and a common objective is focused upon.
With the high number of deliverables to prepare and cir-

culate, workflows of the process and metrics need to be
established to ensure that teamwork predominates and
processes improve. These should be centralized and
communicated regularly, so that everyone understands
their role and actually sees their improvement and con-
tribution to the overall project.

Risk planning must be done to determine the strate-
gy and approach to be used for compliance. Compli-
ance should not equate to identical effort across all
areas. On the contrary, it is a well-thought out approach
to ensure that the higher or lower-risk areas to product
quality are mitigated with proportional efforts. High-
risk areas should be identified in the requirements, and
more extensive testing will be necessary. 

A sound change control process is a must for suc-
cess. This needs to be clear across all disciplines. Each
change request should be assessed for impact across the
entire project team’s deliverables, and a methodology
for communication of the change should be identified
throughout the project. This will ensure that updates are
made to all impacted deliverables. Needless to say,
change control must get more rigorous as the project
gets closer to completion, up until the DCS is formally
delivered to production when the site change control
SOP becomes enforced.

All training deliverables and Standard Operating
Procedures (SOPs) must be identified. Furthermore,
archiving and storage requirements for electronic re-
cords, paper, and software should be established.

One important step in the plan is to ensure that a de-
tailed audit is performed with the DCS manufacturer
and implementer prior to starting. The audit should ver-
ify both the manufacturing of the system and project
procedures. Practices for both hardware and software
to review should include the development process,
maintenance, testing, manufacturing, documentation;
training, subcontracting, and project management.

Requirements

A general requirement specification (the “what” the
system is desired to do) document should be prepared
for the software, as well as the hardware. Taking the
time at this phase is always a challenge. Here, the push
is “to convert the concept of what is needed to the tan-
gible hardware and software,” but the documentation
needs to be treated with equal importance, since it
retains history of the evolution of the physical reali-



August 2003 • Volume 9, Number 4 7

Doina Morusca and Mark Cupryk

F
igure 3

P
ro

g
ress Traceab

ility M
atrix

P
rocess 

R
equirem

ent
D

esign
Factory

Factory
Installation

IQ
 Test

IQ
 Test

C
om

m
issioning

O
Q

 Test
O

Q
 Test

P
Q

 Test
P

Q
 Test

S
um

m
ary

U
nit or

S
pec.

S
pec.

A
cceptance

A
cceptance

Verification
C

ases
C

ases
Tests

C
ases

C
ases

C
ases

C
ases

C
om

p.
Test C

ases
Test C

ases
Tests

K
ey

A
ttributes

Preparation
P

rep.
P

rep.
Execution

Execution
P

rep.
Execution

Execution
P

rep.
Execution

P
rep.

Execution

U
nit 1

1.1 
1.1.1 

1.1.1 
1.1.1 

1.1.1 
1.1.1.

1.1.1.
1.1.1.

1.1.1.
1.1.1.

1.1.1 
1.1.1

W
eight of

D
eliverable

25 
20 

10 
5 

5 
10 

5 
5 

10 
5 

N
A

 
N

A
 

N
A

 
P

rogress 100 
50 

20 
20 

0 
0 

0 
0 

0 
0 

0 
0 

38
C

urrent 
V

ariance 
on E

T
C

 
(days) 

0 
5 

5 
5 

5 
5 

5 
5     

N
A

 
C

urrent 
V

ariance 
on E

ffort 
(resource
days) 

120 
-20 

-40 
-40 

-40 
-40 

-40 
-40 

-40 
-40 

-40 
-40 

N
A

 
U

nit 1 
1.2 

1.2.1 
1.2.1 

1.2.1 
1.2.1 

1.2.1 
1.2.1 

1.2.1 
1.2.1 

1.2.1 
1.2.1 

1.2.1  

U
nit 2 

1.1              

U
nit 3              

U
nit 4              

U
nit 5              

Integrate 
1,4, 5
Integrate 
2,7, 9 

Integrate 
A

ll
G

eneral 
H

ardw
are

G
eneral 

S
oftw

are

Identifies each of
the m

ajor sections
of the docum

ents,
and how

 they w
ill

trace to each other

W
eighing factor of

each deliverable to
better assess progress

B
old borderlines identify

the separate individual
docum

ents, along w
ith

each section that w
ill be

generated for review
and approved

V
ariance on estim

ated and
actual tim

e for com
pletion

enables alarm
ing for late-

ness or identifies slack

E
ffort variance betw

een planned
and actual w

ill identify effort
under and overestim

ates.A
lso

w
ill provide gauge to m

easure
continuous im

provem
ent

P
ercent progress of

docum
ent section



Journal of Validation Technology8

Doina Morusca and Mark Cupryk

ty. The sub processes for determining the requirements
include identifying, building, organizing, and commu-
nicating with all key project stakeholders. Thinking of
each of these steps will help finalize an agreed upon
specification that will provide a baseline for future
deliverables.

The general hardware requirements should consid-
er all major components for operation, maintenance,

and future expansion. Figure 4 provides a list for typ-
ical content sections to be considered when identify-
ing these requirements. 

Similarly, the general software requirements should
identify all items that are specific to the system, each
process, and plant unit. For example, details, such as all
critical alarms, are to be flashing red and valves green
when opened for all process units depicted in the plant. 

Figure 4

General Hardware Requirements Technical Checklist for Content

Processing Power

What you need:
• Central Processing Unit

(CPU) (controlling center of
entire data processing) attri-
butes, such as the average
time for reading data from
computer storage; scanning
of inputs per second

• Data transfer rate – amount
of data that is moved from
one place to another in a
given time e.g., 10 megabits
per second.

• Traffic load, idle time
• Memory (optimization of

working versus storage)
• Number of Inputs/Outputs (I/O)
• Functions to be performed
• Battery
• Uninterruptible power sup-

ply (30, 60 minutes) etc.

Communication Interface

What you need:
• Type (serial/parallel, Local

Area Network [LAN], Wide
Area Network [WAN], fiber
optic ethernet, etc.)

• Connections (RS 232, RS
443, coaxial)

Environment

What you need:
• Temperature range
• Pressure range
• Humidity range
• Power and grounding

Data Storage

What you need:
• Primary storage is data in

Random Access Memory
(RAM) and other “built-in”
devices

• Secondary storage, such as
data on hard disk, tape, and
other external devices

• Capacity
• Access speed

Human Machine Interface

What you need:
• Type and number of work-

stations
• Physical security (keys, card,

codes)
• General operation attribut-

es (size, color, interconnec-
tions, etc.)

• Safety ratings
• Input devices, such as

mouse, keyboard, micro-
phone, scanners

• Output devices; such as
printers, lights, etc.

• Time synchronization

Future

What you need:
• Standard plant policy

(expansion 20%)
• Short-term potential expan-

sion

General Hardware Requirements to Consider



August 2003 • Volume 9, Number 4 9

Doina Morusca and Mark Cupryk

Subsets of the software requirements or the “unit”
requirements are those specifically defined for each indi-
vidual process unit – for example, a unit requirement
specification for a bioreactor or pure steam generator to
detail the specific functionality desired for that unit.
Figure 5 provides categories for both general and unit
specific software requirements that should be detailed

when preparing these documents. Again for traceabil-
ity, the unit specific requirement will be linked to the unit
design specification(s), into the unit specific test case(s).
Typically, a well-formed requirement should consist of
a capability, condition(s), and constraint(s). For exam-
ple, provide continuous stirring in fermentation vessel
(capability) at an operating condition of 100 rpm (con-

Figure 5

General Software Requirements Technical Checklist for Content

Other Systems Interfaces

What you need:
• Data transfer rate and

direction
• Handshaking
• Data points

What you need:
• Number of points

(Input/Output [I/O] list)
• Field devices description
• Instrument ranges and

alarms limits
• Scan and log frequency
• Data source

Database

General Software Requirements to Consider

What you need:
• Trend groups
• Data points
• Retention
• Manual intervention

Data Capture

What you need:
• Graphics for plant, inter-

lock, and alarms
• Function keys
• Refresh and response rates

Human Machine Interface

What you need:
• Graphics for boundaries of

the unit
• Number and type of dis-

crete and analog modules
• Calculation and timer modules
• Event and alarms modules
• Sequence and recipe details
• Process control strategy
• Integration with other units

Unit Specific Requirements

Alarm Strategy

What you need:
• Priorities
• Limits
• Event planning
• Recording and printing

requirements
• Disable and enable
• Error handling

Security

What you need:
• Password management
• Audit trails
• Backup and recovery
• Disaster plan

Future Capacity

What you need:
• Standard policy e.g., allow-

ing extra 20% spare
• Known short-term expansions



Journal of Validation Technology10

Doina Morusca and Mark Cupryk

dition) with a maximum of 120 rpm (constraint).
Typically, a set of requirements can be prepared, rep-

resented, documented, and communicated in the form
of a drawing, database, spreadsheet, and/or document.
In the current DCS market, each of these variations is
present with its associated advantages and disadvan-
tages. A key consideration is always identifying the
linkage with the design and testing. This will ensure
effective verification, minimize redundancy, and pro-
vide clarity to the overall team. Again, setting this up
as priority one in the VMP is priceless. If this is not
done, then when moving to the design phase, the de-
sign documentation should be prepared and integrated
with direct links to each requirement. 

Typical errors to be avoided include:

• Over specifying, for example, matching the re-
quirements to a commercial system’s design

• Over constraining, for example, adding constraints
that are overly restrictive, but not required

• Qualitative, for example, stating open ended gen-
eralities without quantitative means to measure

• Including design and implementation information,
for example, including design decisions, along with
requirement statements.

Finally, metrics to consider at this stage can include:

• End user and project team report card
• Number of reviews and approvals
• Number of revisions and magnitude in pages and

root cause for change
• Effort and calendar time to prepare 

Design Specifications

Related Documentation and Drawings
Because there are endless ways of defining the re-

quirements of an automated system, there are also a
multitude of potential deliverables and approaches of
documenting data to serve as the design information
(the “how” the system will meet the “what”). In Figure
6, a list of typical design deliverables to be considered
for the DCS project is presented in the frame of typical
components (hardware, software, devices, equipment,
personnel, and operating procedures) of a computer-
ized system. How an organization integrates all of the
highlighted items with check marks together is crucial

for success of the DCS design, and must be determined
upfront. Moreover, looking at the entire computerized
system as one system will allow for better integration
of all the associated documentation.

One of the primary reasons for better integration is
the redundancy or lack of information that can result in
an area, which can easily lead to inconsistencies during
updates or corrections. For example, some firms include
their control strategy on the Piping and Instrumentation
Diagrams (P&IDs), as well as loop drawings and the
design document. This means that the same information
lies in three sources of documentation. There is clear
opportunity for error, furthermore, if the primary source
of data is not identified, the question then becomes,
which document is to be considered “correct?” The
optimization of this data is a great goal for streamlining
this phase of the automation project, resulting in clear
testing goals and limiting confusion.

Again, similar metrics to those mentioned in the
requirements can be used to evaluate progress and
success.

Standards
Details of the programming and other standards,

such as the Institute of Electrical and Electronics En-
gineers (IEEE), Instrument Society of America (ISA),
etc. to be respected must be clear to the entire team.
Regular weekly reminder sessions and training on
specifics of these should be demonstrated and docu-
mented in order to ensure that the team has developed
code and hardware that is consistent across all units.
Procedures should be provided for copying code, mod-
ules, scripts, files, etc. Centralizing code and ensuring
repeatability allows for a more strategic approach to be
utilized for testing. Otherwise, by “reinventing” parts
of code each time, more rigorous testing must be exe-
cuted to ensure that each new wheel is verified.

The methodology for identification of process devices
should be clearly established, since these will be the link
to many of the design deliverables, and changes to this
can be very costly. The degree of detail on P&IDs should
be established at the beginning, and these key documents
can serve as the center of the change control process. 

Design Qualification
Design Qualification (DQ) of the DCS is still in

the infancy stage in industry, but it is a recommend-
ed step to ensure that the requirements have been



August 2003 • Volume 9, Number 4 11

Doina Morusca and Mark Cupryk

Figure 6

Typical Design Specification and Supporting Deliverables Checklist
Computerized System (In Its Operating Environment)

Design Deliverables That are Related to Hardware, Software and Equipment

Computer System
Hardware (Including Instruments) and Software 

✓ Design Specification (DS):
The detailed design description of the hardware and soft-
ware (general and unit specific) provides the “as-built” rep-
resentation, and is usually done in text format, but could
be optimized in the database. In the past, this was communicat-
ed in a diagram format, including the device, loop, phase
and interlock descriptions, sequences of operations, etc.
✓ Loop Diagrams:
The representation of the control aspects of each instru-
ment, valve, motor, along with auxiliary utilities, such as air
and/or power.This was communicated in diagram format, but
recently list and template representations are acceptable.
✓ Network and Communications Interfaces:
The representation of the hardware components and
their interfaces. Typically, communicated in diagram for-
mat.
✓ Instrument List:
List identifying the detailed attributes of the item, such as
manufacturer, model type, process fluid, material, etc.
Communicated in text, spreadsheet, and/or database format.
✓ Software and Hardware List:
List identifying executive, application, operating, system
support, communication software, as well as tools includ-
ing name, manufacturer, and version number. As for hard-
ware, it will include items, such as terminals, keyboards,
I/O modules, etc. with manufacturer and model number.
✓ Instrument Location:
Represents the physical location of each component with-
in the organization’s plant. Usually communicated in draw-
ing format, but not so popular in the pharmaceutical
industry, due to smaller size of process devices and
equipment – they are easier to locate.
✓ Panel and Junction Box Interconnections:
The representation of the signal wiring from the field
devices to the actual I/O modules. Often communicated
in diagram format, but also popular in a spreadsheet.

✓ Piping and Instrumentation:
The most important representation of the project.
Identifies process flow, piping size/material, insulation,
heat tracing, process devices, controls, and how they
interrelate with the equipment. Communicated in dia-
gram form.

✓ Process Flow Information:
Represents the major process, mass, and energy flows
of the plant. Communicated in diagram format.

Personnel

Training Manual 

Training Certificates

Equipment
Equipment List:
List that identifies the detailed attributes of the item,
such as manufacturer, model type, process fluid, materi-
al, etc. Communicated in text, spreadsheet and/or data-
base format for vessels, tanks, pumps, agitators, etc.

Equipment Layout:
Represents the physical location of each component
within the organization’s plant. Usually communicated in
drawing format.

Equipment Wiring Diagram (Single Line Diagram/
Motor Wiring Diagram):
Represents the source(s) and distribution of power to each
major electrical component – motors on pumps and agitators.
Mechanical Drawing:
Identify vessels cuts, ports, ratings, and structural sup-
ports. Includes isometric and/or piping arrangement
drawings. Communicated in drawing format.

✓ Electrical Distribution System:
Represents the source(s) and distribution of power to each
major component, such as motor control center/breakers, trans-
formers, local standard distribution panels and emergency
power panels. It includes the battery backup, uninterrupt-
ible power supply, and power regulation information. Also
covered in this category is grounding, shielding and fil-
tration. Usually communicated in a diagram format.

✓ Spare Parts List:
This list identifies all additional components, which should
be kept on-site as a back up in case of a failure. This infor-
mation is usually communicated in spreadsheet format.
Procedures
All procedures associated with the operations and main-
tenance of the DCS.

Computerized System (In Its Operating Environment)



Journal of Validation Technology12

Doina Morusca and Mark Cupryk

clearly documented, and that all links to the afore-
mentioned design deliverables (Figure 6) are under-
stood and verified. This provides a solid foundation
for development, and for the next qualification phas-
es. Again, a strategy of building the format into the
overall documentation facilitates clear and traceable
deliverables, and will make the DQ much more effi-
cient and effective. This will reduce the time and
money that would have been required to be invested
in the testing phase.

Factory Acceptance Testing

Software
Some companies decide to have the entire DCS

hardware and software developed and tested com-
pletely at the vendor’s site. Typically, the set-up could
involve testing and development at the vendor’s site
with regular visits, or a permanent presence from the
future owners. The other extreme is to test and even
develop all of the system at the future facility. 

Both options have their advantages. Testing at a
future facility gives you more control and influence
over the software development. It reduces the geo-
graphic spread of the entire DCS team. Therefore, any
problems found during testing can be resolved
much faster, since the development/test team is always
close-by, hence, facilitating clearer communication.
This would not be defined as a FAT, but more of Site
Acceptance Testing (SAT). The financial cost of this
alternative is usually higher. Qualifying the software at
the vendor’s site has the advantage of being based on
approved documents, and less on customer interpre-
tations. It is also usually less costly, and the vendor has
all the necessary resources in-house, which facilitates
quick progress. This is the way most companies are
driving their projects, since contractually, there is usu-
ally a major milestone (i.e., associated with major pay-
ment) when the system meets expectations, and is
shipped partially or completely to the site. Hence, we
have gone with the approach of an FAT being a phase
of the DCS project. The test cases for integration of the
process, and the sequence of when they will be tested,
need to be identified.

The VMP should have already outlined the testing
at the strategic level. The test plan should be prepared
to discuss all the detailed logistics, with respect to
testing. It should identify the testing scope, test case

general structure, location, resources, relationship
with other testing efforts (interfaces), schedule, pro-
tocol details, workflow of documents and software,
problem reporting, simulation tools, and hardware to
be used.

In the test plan, the software verification activities,
such as code, design specification, and requirements
specification reviews should be identified and out-
lined, with respect to scope and timing. Since most
software problems are traceable to errors made during
design and development, the verification steps are
crucial. The foundation document for this activity is
the traceability matrix, which establishes the linkage
in all the deliverables, and identifies any gaps. 

The code review is a documented activity that demon-
strates the adherence to the requirements, design, and
selected programming standards. At a high-level, the
objectives are:

• Ensuring that there is no redundant code
• Detecting coding errors
• Verifying header information, file naming, pro-

gram description
• Verifying that clear traceability is built into the

code to the design and requirement specifications

The code review can be done by the customer or
vendor. It is required practice that another person,
rather that the one developing the software, executes
the verification. If the vendor executes the code review,
it is recommended that an inspection of their written
procedures and approval of their results be obtained.
After completion of code review, the software is ready
for formal testing. The software can be identified using
application, version number and date, developer, sup-
plier, and DCS.

In the test plan, the software testing steps are out-
lined. The unit specific test cases are linked to each in-
dividual unit requirement specification. Ideally, bound-
aries should be the same, so that all requirements and
design specifications are tested in one protocol, and all
the standalone functionality is verified. In the case of
the DCS project, the unit testing is often linked to the
process unit, for example, a fermentation vessel, with
sub units being the various device types and control
modules. 

The integrated test cases, and the sequence of when
these are to be executed, needs to be identified. These



August 2003 • Volume 9, Number 4 13

Doina Morusca and Mark Cupryk

could all be tested at the end of unit testing, or better yet,
should be planned for in parallel of the unit testing.
Executing these integration test cases as soon as possi-
ble will identify problems earlier, and will assist in min-
imizing the propagation of these potential problems into
other areas of the integration code. With respect to the
DCS project, these tests typically include testing the
transferring operations between process units and
shared utility units that interact with all the process
units, such as clean steam and Clean-In-Place (CIP).
The goal is to ensure that the connectivity within units
is sound, hence, verifying the architecture.

Finally, the last area is the system testing, which
verifies the general software requirements. As men-
tioned, these should be defined in a separate docu-
ment, and can be verified independently. 

If at the factory, it is decided that some of the test-
ing is to be completed later on site, the criteria and
rationale of moving testing to the site should also be
clearly defined. Moreover, this decision should not be
made with intangible criteria, but should be planned
with quantitative, such as a number of major and/or
minor corrective actions that can be addressed later at
the site as a function of time or cost. 

Regardless of the decision made with respect to test-
ing location, a procedure and workflow are essential in
order to have a controlled transfer of the software
from one location to another. This will assist in defin-
ing the team’s role, and help project stakeholders know
exactly what needs to happen.

The procedure and workflow for software trans-
fer should detail:

• Type of recording media
• Personnel responsible to perform the uploading

and downloading of the software
• Documentation that needs to be completed before

the system can be tested and installed on site
• Steps that need to be followed in order to install the

system
• How and what graphics, scripts, etc. should be

stored on the recording media 
• Where the media should be stored
• Backup procedure
• Change control of the software (version, date,

change history)

With no definition on how to transfer software, the

following are some of the risks:

• Not all the files are transferred from development,
to testing, and finally to site

• There are changes to the software during the trans-
fer that have not been documented and controlled

• The uploading and downloading of the software
is different from person-to-person

When testing the software at the vendor’s site,
allow for a qualified test environment that will simu-
late conditions to those of the future production envi-
ronment. What should be considered for the test envi-
ronment include:

• How well the test environment aligns itself with
actual production environment requirements

• Capacity and schedule – how many Inputs/Out-
puts (I/Os) the team expects to test each day for
the project duration

• Future needs – this will minimize the need to re-
qualify the testing environment

• Method of testing – are the I/O modules, actual
field devices, simulation tools required?

• Testing interfaces to other systems – PLC, DCS, etc.

The qualification of the test environment will fol-
low similar principles to that of the production hard-
ware and software. If simulation tools are needed, the
selected tools should also be qualified. Later, the sim-
ulation tools can be beneficial in production for train-
ing, and verifying the impact of requested changes to
the system. Again, the requirement of using such
tools is that a solid procedure with the respective doc-
umented training is complete, and a record to demon-
strate that the tools perform as intended. 

It is recommended that a different person than the
one that developed the DCS software perform the
testing. This idea is to keep more objectivity during
testing. Two popular options for independent testing
include contracting another company for the effort,
or using a totally different team within the same
development organization. Both are acceptable.

The FAT protocol should be created for use and
reference during the Installation Qualifications (IQs)
and Operation Qualifications (OQs). This document is
a detailed description on how, who, and what will be
tested. Although the form and content of the test pro-



August 2003 • Volume 9, Number 4

Doina Morusca and Mark Cupryk

tocol will vary from company-to-company, it should
contain, at a minimum, the following elements, includ-
ing:

• Scope and boundaries 
• References
• Prerequisites
• Acceptance criteria
• Description of test cases, including expected out-

comes
• Problem reporting
• Result review
• Closed-out report

Each test case should be written with clear objec-
tives, in which predefined inputs, along with expected
results, are documented. The FDA recommends quan-
tified results, rather than qualified. These tangible re-
sults are more precise and can be easily reviewed. The
test cases should ensure testing of normal and ab-
normal operations, invalid and valid type data, special
values, initialization parameters, and logic paths.

The methodology of capturing actual data must
also be considered. How the data will be presented as
information within the test protocol needs to be well-
defined, so that there is consistency throughout the
testing, even with the numerous test personnel veri-
fying and testing in parallel. Everyone needs to know
details, such as – Where on the document will print
screens be signed and dated?, or another case with
respect to the print screen, how will the specific actu-
al result be identified, – encircled, initialed, and dated
with or without an explanation? The difference in
focusing on these elements results in a much a high-
er level of presentation and professionalism.

Finally, understanding the specific expectations of
the quality group is critical for success. This greatly
relates to the type of format desired, as well as tech-
nical approach to be used in test case steps. An exam-
ple checklist for test cases prepared in text format as
seen in Figure 8 – Test Case Preparation Checklist,
can be of great value to ensure consistency and under-
standing by all authors, approvers, and reviewers. 

Creating masters for each type of test case can
greatly reduce the amount of time necessary to repli-
cate test cases, and reduce the potential for errors.
Especially when qualifying a large system with over
10,000 I/Os, the benefits down the line are tremen-

dous, both in terms of time and ensuring consistency.
One could argue the use of a procedure or forms of doc-
ument automation as being almost necessary, espe-
cially for later use in the production environment.
Another option is to have master test cases stored in a
library, which could be prepared and used for typical
functionality, such as analog and digital inputs, valve,
and motor verification. During testing, the actual re-
sults are documented and compared with pre-defined
expectations. Problems are recorded, and corrective
actions are proposed and executed.

For a DCS, problems can be categorized as the
following:

• Inconsistencies with requirements, design speci-
fications, programming standards, and test cases

• Database
• Interlocks
• Graphics

A post-execution test case checklist, like the sample
provided in Figure 9, for verifying or reviewing an exe-
cuted test case should be put in place to provide the
reviewer with key items that must be checked and re-
corded. Once the entire package with its respective
summary report are completed, another tool can be
used, as in Figure 10, to provide the test team with a
clear “things to do” list, hence, diminishing the chance
of forgetting something. Because testing is moving at
such a rapid rate to get it all completed, such a check-
list will ensure that a thorough final quality check is
performed before the product is circulated for approval.
Another benefit of checklists is that these serve as tools
to communicate expectations to the entire team. If new
problems or issues arise, these can be easily incorpora-
ted into existing checklists. As the team grows, these
lists facilitate understanding of what exactly is required
for the organization. Having weekly “lessons learned”
sessions can be a helpful and “friendly” way in sharing
problems that occurred along the way.

Finally, no process can be defined and monitored
for improvement without metrics. Selecting simple,
but significant metrics, that will help the team focus
on critical project parameters, is paramount. Typically,
key parameters include number of issues and problem
reports, which directly impact the project. The num-
ber of problems will add effort to the timeline and risk
to the quality of the test protocols to be approved. The

14



August 2003 • Volume 9, Number 4 15

Doina Morusca and Mark Cupryk

risk lies in that the corrective actions may not be
exactly what both the approvers and the FDA expect.

Figure 7 provides a potential graph of problem/de-
viations on a unit testing effort, and a tentative categori-
zation scheme for these. The complexity of the unit test
is correlated to some extent to its size. However, the
key metric to be used is the number of problems, be-
cause a root cause analysis can reveal significant areas
of improvement. These problems should be communi-
cated upstream to ensure that improvements are made
to software that is currently in the pipeline. Typically,
the second most important parameters are calendar
and effort time, since most organizations want their
systems in place as soon as possible. Regularly list-
ing or illustrating the data at each step of the process
flow provides a basis for areas of improvement.

In summary, metrics to consider at this stage and
later qualification (IQ, OQ, Performance Qualifica-
tion [PQ]) can include:

• Number of problem reports in each mentioned cat-
egory

• Effort and calendar time to prepare, execute, and
reexecute test protocols and test cases

• Number of reviews and approvals
• Number of revisions and magnitude in pages and

root cause for change
• Number of code reviews and code changes
• Number of project changes

Hardware
Prior to shipment to the site, it is advantageous to

verify that all the hardware functions are as specified.
The DCS hardware should be physically connected,
and using the approved hardware requirements and
design specifications, the project team can systemat-
ically verify each documented requirement and de-
sign component as was presented in Figures 4 and 6.
It is preferable that all problems and inconsistencies
that arise be corrected at the factory. Like all heavier
automation projects, it really is a case of “pay me
now or pay me much more later.” For both hardware
and software testing, the goal should be to get as
much as possible “correct” at the factory before ship-
ping. Too many disasters occur due to a strong desire
to get the merchandise at site in order to give the feel
of progress to management. Resisting and communi-
cating this will ensure that a robust system is deliv-
ered to the site.

A consideration for a successful FAT is to have a
continuous customer presence. This should include
both the technical and quality leads responsible to
make it happen. With this in place, the project team
will understand the quality expected, and the desired
technical functionality in areas that may, for whatev-
er reasons, have not been clear in the documentation.
Moreover, clear rules of engagement should be
defined, since there is also a risk of conflict between
developer, tester, and customer. This will help pro-
vide agreement on how inconsistencies should be
documented and resolved contractually.

Installation Qualification for 
Hardware and Software

At this phase, in the case of hardware IQ, almost a
reexecution of the FAT occurs. This phase is really
recording and ensuring that all the data to be consid-
ered “as-built” information is accurately representing
the actual site installation. The same level of detail for
the test protocol can be used as was done in the FAT.
However, additional site pertinent tests will need to be

Figure 7

Problem Reporting Categorization
and Tracking

120

100

80

60

40

20

0

N
um

be
r 

of
 P

ro
bl

em
s

Unit 1 Unit 2 Unit 3 Unit 4
Units

Key

Software
Design Specifications
Requirements Specifications
Test Protocol
Number of Test Cases

▼

▼

▼

▼

▼



Journal of Validation Technology16

Doina Morusca and Mark Cupryk

Figure 8

Test Case Preparation Checklist

Testcase #: Reviewer:

Revision No.:

1. Check the following information of the testcase  
Check purpose
Check terminology – does the wording match with the standard list and all words capitalized?
2. Testcase Technical Specific: complete the section that applies for the type of testcase  
3. General 
Check that there are no general statements used in expected results.
Check that action statements are in the action cell only.
Fonts are correct 
4. Steps Containing Printouts 
Check that there is no substep for the printout
Check that all information verified on the printout is referenced in the same step.
5. Check Page Setup Area
Section 1 margins and layout are correct  
6. Check Header/Footer Formatting 
Check that the first page of Section 1 has no header or footer.
Check that the rest of section has a header and footer  
7. Title Page
Vertical positions are correct   
8. Revision History Page
Format of page
Title “Revision History” present on top  
Table column titles are correct 
Table column widths are correct  
Table borders are correct  
Latest revision date in table is the same as the last saved date in header  
Revision incremented and revision history entered
Copyrights and trademarks block is present  
9. Testcase Description Page
Format of title 
Standard text in acceptance criteria  
10. Test Table Formatting 
Table title is the same as the title from testcase description page
Table column titles are correct
Table column widths are correct
Table column borders are correct
Fonts are correct, step numbering is correct
Substep lettering is correct
Substeps lined up  
11. Comment and Signature Page 
Format of page (spacing and indention of tables)
Table title is the same as title from testcase description page 
12. Language/Change Tracking
Set the language
Spellcheck after setting the language  
Check that diagrams are attached properly

(file type, size, highlight, etc.)
Ensure change tracking has been turned off, and all changes accepted 



August 2003 • Volume 9, Number 4 17

Doina Morusca and Mark Cupryk

Figure 9

Post-Execution Test Case Checklist

Test Case Number
General  
• Last updated date is same as date of last revision
• Print date is same or after last save date
• The file name is the same on all pages
• The author is the same in revision history, and header
• Run # is filled in correctly  
• All executed steps are completely filled in. If a field cannot be filled in, then one horizontal line is 

placed through the blank and a comment is added to explain why.
• All error entries are corrected, initialed, and dated 
Pass/Fail 

• Pass or fail is circled clearly
• If pass, the actual results satisfy the acceptance criteria when compared with the expected results.
• If fail, a Problem Report is listed

Problem Reports:
• All Problem Reports listed in test case are listed on the signature page 
• All Problem Reports listed in test case are listed on the corresponding Problem Report with 

the correct step numbers.
• Problem description match between Problem Report and Test Case

Reexecuted Test cases
• All the steps that are listed for reexecution in the Problem Report are executed
• All reexecuted test cases contain a comment explaining why they were reexecuted

Unexecuted Steps
• Unexecuted steps are crossed out 
• The executed steps reference a comment explaining why the other steps were not executed
• If the rest of the test case cannot be executed, “End Step” is written on the last executed step 

and a comment is referenced to explain why
Added or Deleted Steps

• The steps that changed numbers are referenced correctly in the Problem Report and Revision History 
Comments Block

• Each comment that is referenced in test case is numbered, initialed and dated
• If no comments, “None” is written and initialed and dated

Acceptance Block
• If Passed with no typo Problem Report, yes is checked, no cell and Problem Report Number(s) 

cell are crossed out. The block is initialed and dated
• If Failed, Yes is crossed out, no cell is checked, and all Problem Report(s) are listed in Problem Report

Number(s) cell
The testcase is signed and dated by the tester.

• The date on the test case and Problem Report has to be the same
• The date next to the error entry has to be the same as the executed step
• Any notes cannot be dated later than the reviewer date without an initial and date from the reviewer 

Attachments 
Printouts

• All items are circled, as directed by the step and lettered to reference the substep  
The following information is written on all attachments:

• Test case name
• Revision number
• Run number
• Step number
• Page x of y 
• Date
• Initial of tester

The testcase is signed and dated by the reviewer.



Journal of Validation Technology18

Doina Morusca and Mark Cupryk

performed, for example, the actual environment where
the components are utilized will need to be document-
ed to ensure compliance to requirements.

As for the software IQ, the installation items from
the FAT, which are critical or new, are formally qual-
ified at the site. In some other cases, the team will
point to the test results of the FAT, which can be eas-
ily done if the rigorous rules of change control that
were established earlier on were respected, and if the
strategy of retesting was identified in the VMP. 

Checklists for both technical and format require-
ments, similar to those in Figures 8, 9, and 10, should
be prepared to ensure that expectations of the IQ are
clearly communicated.

The end result of the IQ phase is the formally
installed software and hardware of the DCS.

Operational Qualification of the 
Software and Hardware

In the OQ, the focus shifts to a physical integration
of mechanical (equipment, instrumentation, and valves),
electrical, and the computer system to ensure that the
software is operating as intended in its production
environment. The final integration of the DCS is chal-
lenged with all other components, which should have
completed their own FAT and IQ to ensure that this
phase runs as smoothly as possible.

At this point, the testing of the DCS is driven by the

operation of equipment. Production limits, equipment
stress testing, critical path testing, and safety inter-
locks are some examples of user functionality. A mile-
stone involving a handover of the qualified “computer-
ized system” to the production team usually demarks
the closing of this gate. Again, similar checklists to
those in the FAT can be developed to ensure that the
OQ requirements are understood and met.

Process Qualification

During process qualification, the “computerized
system,” that is hardware, software, and equipment, is
ready to produce the desired product to get to market.
Three validation batches are prepared, and the system
has demonstrated its repeatability and robustness. The
DCS should no longer be an issue, although a certain
degree of adjustment may be required. This may lead
to changes with potential impact on the mentioned de-
liverables that will need to be updated. With all doc-
umentation completed, the FDA is welcomed to per-
form the current Good Manufacturing Practice
(cGMP) facility inspection of the facility, if required,
as well as the Pre-Approval Inspection (PAI) in the
case of a new product. 

At the end, all deliverables should be filed in the
documented location with the confidence that the
correct things were done all along the way. The pro-
ject team will feel the satisfaction of delivering a

Figure 10

Execution Package Checklist

Package/Protocol name
1. Package Original (on the cover there is a list with what is in the package) 
Test protocol  
Traceability matrix   
Testcase approval forms  
Test cases from 1 to X  
2. Package Execution (on the cover there is a list with what is in the package) 
Summary report filled in order: Summary report, final release, summary report  for OQ, 

summary report for installation  
Test protocol filled in 
• Signature log  
Problem reports
Check numbers – cross-reference with summary report   
Change request   
Test Cases  
Fax cover sheet   



August 2003 • Volume 9, Number 4 19

compliant computerized system, and the production
team will feel confident to provide and represent any
relevant deliverable through any inspection or audit.

Conclusion

In any project, expectations are always a challenge
to manage, especially in a large DCS project that in-
volves numerous stakeholders. By implementing tools
to assist the project team in the areas where there could
be ambiguity in understanding what needs to be done,
the risk of incomplete and inaccurate documentation
will diminish. Checklists provide a baseline for expec-
tations, facilitate communication, as well as training,
and finally should target both technical and format of
the documents, drawings, and other forms of content
representation.

Traceability should be planned in the VMP to iden-
tify each major area of the project’s deliverables. The
upfront breakdown of all the major documentation
will permit better alignment, enable better progress
tracking, all the while ensuring that each area is thor-
oughly verified.

Planning for success upfront will eliminate ex-
panding confusion down the development phase. The
requirement specification is important, since it sets
the foundation of the project, however, the planning
of how and what should be provided in all deliver-
ables ensures understanding and acceptance by all
those involved in the project. A well-designed frame-
work will ensure a structured and measurable
approach to the DCS implementation. ❏

Doina Morusca and Mark Cupryk

CIP: Clean-In-Place
cGMP: Current Good Manufacturing Practice
CPU: Central Processing Unit
DCS: Distributed Control System
DQ: Design Qualification
ERP: Enterprise Resource Planning
FAT: Factory Acceptance Testing
FDA: Food and Drug Administration 
IEEE: Institute of Electrical and Electronics

Engineers
I/O: Input/Output
IQ: Installation Qualification 
ISA: Instrument Society of America
LAN: Local Area Network
MES: Manufacturing Execution System 
OQ: Operation Qualification 
PAI: Pre-Approval Inspection
PC: Personal Computer
PLC: Programmable Logic Controllers
PQ: Performance Qualification 
P&IDs: Piping and Instrumentation Diagrams
RAM: Random Access Memory
RS: Requirement Specification
SAT: Site Acceptance Testing
SOP: Standard Operating Procedure
VMP: Validation Master Plan 
WAN: Wide Area Network

Article Acronym Listing



Doina Morusca and Mark Cupryk

About the Authors
Doina Morusca is a Project Manager for Invensys
Validation Technologies. Doina has specialized in
business and manufacturing systems, holding a
Master’s degree in Business Administration from
Concordia University, as well as a Masters Degree in
Education. She can be reached by phone at 508-
549-6906, by fax at 508-549-4377, or by e-mail at
doina.morusca@invensys.com.

Mark Cupryk is the Director of U.S. Operations for
Invensys Validation Technologies. Mark holds a Chemi-
cal Engineering Degree from McGill University, and
a Master’s degree in Business Administration from
Concordia University.He is also a certified Project Man-
agement Professional from the Pennsylvania Project
Management Institute. He has worked in automation
and validation for over 15 years. He can be reached by
phone at 508-549-3761, by fax at 508-549-4377, or by
e-mail at mark.cupryk@invensys.com.

Suggested Reading
• Angelucci A.A., Tomori J. “Automation Qualification – A Man-

aged and Documented Approach.” Journal of Validation Tech-
nology. Vol. 5, No. 4. (August). 1999. P. 342.

• Forstedt L. “Computer Validation as a Team Sport: Project Man-
agement Issues.” Journal of Validation Technology. Vol. 8, No. 3.
(May). 2002. P. 280.

• Amer G. “Checklist for Process Validation – Computer Doc-
ument Collection Checklist.” Journal of Validation Technology.
Vol. 9, No. 1. November. (2002). P. 78-79.

• Chevlin D. “Verification and Validation for Embedded Software
Systems for Medical Devices: An Introduction.” Journal of
Validation Technology. Vol. 8, No. 2. February. (2002).

• Wingate G. “Validating Automated Manufacturing and Labora-
tory Applications: Putting Principles in Practice.” Interpharm.
1997. P. 365-383.

• Porter M.E. “Competitive Strategy – Techniques for Analyzing
Industries and Competitors.”  The Free Press. 1980.

• GAMP 4. Guide for Validation of Automated Systems.
December 2001. ISPE.

• FDA. Final Guidance For Industry – General Principles of Soft-
ware Validation; Final Guidance for Industry and FDA Staff.
Document Issued on January 11, 2002. U.S. Department of
Health and Human Services, Food and Drug Administration,
Center for Devices and Radiological Health, Center for Bio-
logics Evaluation and Research.

• Thayer R.H., Dorfman M. Software Requirements Engineer-
ing. The Institute of Electrical and Electronics Engineers, Inc.
(1997). P. 208-236.

• Craig R.D., Jaskiel S.P. Systematic Software Testing. (2002).
Arttech House Publishers. 

• Albert C.L., Coggan D.A. Fundamentals of Industrial Control
– Practical Guides for Measurement and Control. Instrument
Society of America. (1992). P. 477-535

• Grady R.B., Caswell D.L. Software Metrics: Establishing A
Company Wide Program. (1987). Prentice-Hall Inc.

Copyright Notice Copyright by  Advanstar Communications Inc. Advanstar Communications Inc. retains all rights to this article. This article may only be viewed or printed (1) for personal use. User may not
actively save any text or graphics/photos to local hard drives or duplicate this article in whole or in part, in any medium. Advanstar Communications Inc. home page is located at http://www.advanstar.com.

© Reprinted from JOURNAL OF VALIDATION TECHNOLOGIES, August 2003 Printed in U.S.A.

Invensys Process Systems
1-508-549-2424
1-866-746-6477
Fax: 1-508-549-4999
e-mail: getmore@ips.invensys.com
visit www.invensys.com/pharma


