
$ 19.99 US
£ 12.99 UK
€ 16.99 EU

Prices do not include
local sales tax or VAT
where applicable

Packt Publishing

Birmingham - Mumbai

www.packtpub.com

Creating your MySQL Database:
Practical Design Tips and
Techniques

The popularity of MySQL and phpMyAdmin has brought many non-IT specialists to the
field of database design, usually with a view to building a dynamic website with a MySQL
back end. Most users would be interested mainly in developing a functional website, but
would have little interest in learning about good practices in designing their MySQL
databases. One reason is that MySQL design is seen as an advanced and complex topic
that requires a lot of time, which most people would not be able to afford or just would not
care to invest. This book attempts to overcome this barrier, which is both perceptional and
real, by positioning itself as a fast and easy way to learn the most important aspects of
MySQL database design.

What you will learn from this book
• Asking users the right questions when collecting relevant data for the system you

are building
• Detecting bad structures
• Sound data naming techniques, both for table and column names
• Modeling data with future growth in mind
• Implementing security policies with data privileges and views
 • Tuning the structure for performance
• Producing system documentation (data dictionary, relational schema)
• Testing the model with appropriate SQL queries

Who this book is written for
This book is for new web developers and MySQL database administrators who want to learn
how to build better data structures. A basic understanding of MySQL and SQL is assumed.

C
reating your M

ySQ
L D

atabase
: P

ractical D
esign Tips and Techniques

M
arc D

elisle

F r o m T e c h n o l o g i e s t o S o l u t i o n s

Creating your

MySQL Database
Practical Design Tips and Techniques

A short guide for everyone on how to structure their data and
set up their MySQL database tables efficiently and easily

Marc Delisle

Creating your MySQL Database:
Practical Design Tips and
Techniques

A short guide for everyone on how to structure their
data and set up their MySQL database tables efficiently
and easily

Marc Delisle

 BIRMINGHAM - MUMBAI

Creating your MySQL Database: Practical Design Tips
and Techniques

Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2006

Production Reference: 1141106

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-30-2

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Author

Marc Delisle

Reviewer

Rudy Limeback

Development Editor

Louay Fatoohi

Assistant Development Editor

Nikhil Bangera

Technical Editor

Mithil Kulkarni

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Indexer

Bhushan Pangaonkar

Proofreader

Martin Brooks

Layouts and Illustrations

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Marc Delisle is a member of the MySQL Developers Guild, which regroups
community developers — because of his involvement with phpMyAdmin. He
started to contribute to this popular MySQL web interface in December 1998, when
he made the first multi-language version. He has been actively involved with the
phpMyAdmin project since May 2001 as a developer and project administrator.

He has worked since 1980 at Collège de Sherbrooke, Québec, Canada, as an
application programmer and network manager. He has also been teaching
networking, security, Linux servers, and PHP/MySQL application development.

I would like to thank the whole Packt team for their support,
especially Louay Fatoohi and Nikhil Bangera; their advice helped
shaping this book. My thanks also go to Rudy Limeback for his
insight.
The developers of the MySQL software have earned my respect; may
they find here my warm gratitude for their excellent product.
I hope that this book will assist readers into building effective data
structures.

To Carole, André, Corinne, Annie, and Guillaume, with all my love.

About the Reviewer

Rudy Limeback is an SQL Consultant with close to 20 years of experience using
SQL in one database system or another. He is located in Toronto, Canada but,
thanks to the miracle that is the Internet, consults for clients all over the wide world.
More information on SQL and Web development can be found on Rudy's website,
http://www.r937.com/.

Table of Contents
Preface	 1
Chapter 1: Introducing MySQL Design	 5

MySQL's Popularity and Impact	 5
The Need for MySQL Design	 6
"What do I do Next?"	 6
Data Design Steps	 6

Data as a Resource	 7
But this is my Data!	 7

Data Modeling	 8
Overview of the Relational Model	 9

Rule #1	 10
Rule #2	 10

Simplified Design Technique	 10
Case Study	 11

Our Car Dealer	 11
The System's Goals	 12

The Tale of the Too Wide Table	 12
Summary	 16

Chapter 2: Data Collecting	 17
System Boundaries Identification	 17

Modular Development	 18
Model Flexibility	 19

Document Gathering	 19
General Reading	 19
Forms	 20
Existing Computerized Systems	 20

Interviews	 20
Finding the Right Users	 21

Table of Contents

[ii]

Perceptions	 21
Asking the Right Questions 	 21

Existing Information Systems	 21
Chronological Events	 22
Sources and Destinations	 22
Urgency	 22

Avoid Focusing on Reports and Screens	 22
Data Collected for our Case Study	 22

From the General Manager	 23
From the Salesperson	 23
From the Store Assistant	 24
Other Notes	 25

Summary	 25
Chapter 3: Data Naming	 27

Data Cleaning	 27
Subdividing Data Elements	 28

Data Elements Containing Formatting Characters	 29
Data that are Results	 29
Data as a Column's or Table's Name	 30
Planning for Changes	 32

Pitfalls of the Free Fields Technique	 33
Naming Recommendations	 34

Designer's Creativity	 34
Abbreviations	 34

Clarity versus Length: an Art	 35
Suffixing	 35

The Plural Form	 35
Naming Consistency	 36
MySQL's Possibilities versus Portability	 36
Table Name into a Column Name	 36

Summary	 37
Chapter 4: Data Grouping	 39

Initial List of Tables	 39
Rules for Table Layout	 40

Primary Keys and Table Names	 40
Data Redundancy and Dependency	 41

Composite Keys	 42
Improving the Structure	 44

Scalability over Time	 44
Empty Columns	 45
Avoiding ENUM and SET	 46

Table of Contents

[iii]

Multilingual Planning	 48
Validating the Structure	 48
Summary	 49

Chapter 5: Data Structure Tuning	 51
Data Access Policies	 51

Responsibility	 51
Security and Privileges	 53
Views	 53

Storage Engines	 54
Foreign Key Constraints	 55

Performance	 58
Indexes	 58

Helping the Query Optimizer: Analyze Table	 60
Accessing Replication Slave Servers	 60
Speed and Data Types	 61
Table Size Reduction	 62

In-Column Data Encoding	 62
Case Study's Final Structure	 63

Vehicle	 65
Person 	 68
Sale	 69
Other tables	 72

Summary	 74
Chapter 6: Supplemental Case Study	 75

Results from the Document Gathering Phase	 75
Preliminary List of Data Elements	 80
Tables and Sample Values	 80

Code Tables	 81
Themed Tables	 82
Composite-Key Tables	 85

Airline System Data Schema	 87
Sample Queries	 87

Inserting Sample Values	 88
Boarding Pass	 88
Passenger List	 88
All Persons on a Flight	 89

Summary	 90
Index	 91

Preface
MySQL, launched in 1995, has become the most popular open source database
system. The popularity of MySQL and phpMyAdmin has allowed many non-IT
specialists to build dynamic websites with a MySQL backend. This book is a short
but complete guide showing beginners how to design good data structures for
MySQL. It teaches how to plan the data structure and how to implement it physically
using MySQL's model.

What This Book Covers
Chapter 1 introduces the concept of MySQL, and discusses MySQL's growing
popularity and its impact as a powerful tool. This chapter gives us a brief overview of
the relational models and Codd's rules, which are required for designing purposes. A
brief introduction to our case study — "car dealer" is provided at the end.

Chapter 2 shows how to deal with the raw data information that comes from the users
or other sources, and the techniques that can help us build a comprehensive data
collection. Also, this chapter covers the exact limits of the analyzed system, how one
should gather documents, and interview activities for our case study.

Chapter 3 emphasises on transforming the data elements gathered in the collection
process into a cohesive set of column names. The concept of data naming is also
discussed in this chapter.

Chapter 4 provides the technique of grouping column names into tables. Rules for
table layout, the concepts such as primary key, unique key, data redundancy, and
data dependency are covered in this chapter.

Chapter 5 presents various techniques for improving our data structure in terms
of security, performance, and documentation. The final data structure for the car
dealer's case study is provided at the end.

Preface

[�]

Chapter 6 covers a supplemental case study about an airline system. This case study
involves various steps such as gathering documents, preparing preliminary list
of data elements, preparing a list of tables, sample values, and queries for the
airline system.

What You Need for This Book
Basic knowledge of SQL is required. Emphasis is made on the phpMyAdmin
web-based interface for reproducing the examples, although the "mysql" command-
line tool can be used. No knowledge of MySQL server administration or any specific
operating system is required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "�������� In this
case, we can add employee information, the employee code to the car_event table��".

A block of code will be set as follows:

CREATE TABLE `event` (
 `code` int(11) NOT NULL,
 `description` char(40) NOT NULL,
 PRIMARY KEY (`code`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO `event` VALUES (1, 'washed');

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

CREATE TABLE `event` (
 `code` int(11) NOT NULL,
 `description` char(40) NOT NULL,
 PRIMARY KEY (`code`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO `event` VALUES (1, 'washed');

Preface

[�]

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus, or dialog boxes for example, appear in our text like this:
"It becomes impossible to link this "column" (for example the special paint color) to a
lookup table".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of this
book. If you find any errata, report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the Submit Errata link, and entering the
details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introducing MySQL Design
Data design is an essential part of the application development cycle. By analogy,
building an application is like building a house. Having the right tools is important,
but we need a solid foundation: the data structure. However, producing a good data
structure can be a daunting challenge; the quest for a perfect data structure can lead
us to new territories where many methods are available. Which one is the best? How
can we keep our focus on the goal to achieve, without losing our time?

Data design for MySQL databases is both a science and an art, and there must be
a good balance between the scientific and the empiric aspects of the method. The
scientific aspect refers to information technology (IT) principles, whereas the empiric
facet is mostly based on intuitions and experience.

This book is primarily oriented towards MySQL databases. It teaches how to plan
the data structure and how to implement it physically using MySQL's model. The
planning part is sometimes referred to as logical design, but it is preferable to view the
logical/physical process as a whole.

MySQL's Popularity and Impact
MySQL (www.mysql.com), launched in 1995, has become the most popular open
source database system. Virtually all web providers include MySQL as part of
their hosting plan, often on the ubiquitous LAMP (Linux, Apache, MySQL, PHP)
platform. Another root cause of MySQL's popularity has been the ongoing success
of phpMyAdmin (www.phpmyadmin.net), a well-established MySQL web-based
interface. Therefore many websites use MySQL as their back-end data repository.

Introducing MySQL Design

[�]

The Need for MySQL Design
Overall, MySQL's popularity has attracted many web developers, some of them
having no prior IT experience. When faced with the task of transforming a static
website into a dynamic/transactional one, or integrating corporate data into the site,
developers are sometimes inclined to improvise a data structure. This structure (or
lack of structure) may work for a certain time but later fails because of lack of depth.
Maybe the system initially works because it started small, with only a few functions
planned and implemented, but falls apart when users ask more of it. A poorly
designed data structure can only be patched to a certain extent. It can also have
scaling issues, when the initial testing has been done with only a few rows of data.

The apparent facility of using the tools may hide the fact that database design
depends upon essential principles. Eluding them can render an application costly
to maintain, because correcting data structural errors after application coding has
begun is time consuming.

"What do I do Next?"
Here is an example of the impact of MySQL in the ranks of non-IT people. I once
saw this question in a phpMyAdmin discussion forum – I am citing it from memory:
"I've installed MySQL and phpMyAdmin, now I need directions: what do I do next?"
I answered "Maybe you could create a table, and then insert some data into it. Next
you could browse for your data."

Clearly, those tools were perceived as interesting by this person, but I can only wonder
what kind of table structure came into existence after this forum conversation.

Data Design Steps
We can think of data design as a sequence of steps whose goal is to produce the
physical MySQL databases, tables, and columns necessary to support an application.

Chapter 1

[�]

Starting with the outer shell, we first need to learn about our data by collecting it.
We then start to organize these data elements by naming them appropriately. This is
followed by regrouping the data elements into tables, taking into account the needed
keys. Whereas the previous steps could have been done only on paper, the final step
is to implement the model within MySQL's structure.

All these steps are covered in distinct chapters of this book.

Data as a Resource
Before examining the various techniques available for design, let's think about the
concept of data itself.

Organizations and enterprises use many assets, for example buildings, furniture,
brains, but perhaps the most valuable asset is information or data. We remark that
data documents the enterprise's procedures, and binds people into an ongoing
exchange of information, called information flow. Computers help to formalize this
data but we have to remember that it exists by itself.

But this is my Data!
When building data designs, we have to meet users and understand the enterprise's
data flow. In an ideal world, every department, including the IT department, and
every user would collaborate in order to help data flow easily between departments.
However, from time to time, one can witness two attitudes that impede the
normal data flow in enterprises. The first one is that some IT departments, having

Introducing MySQL Design

[�]

the responsibility for the computers where data resides, come to think that the data is
theirs. This has the effect of keeping a certain level of secrecy that hides data and
can block the data design process. The second one is a variation of the first one, this
time caused by a user – data originates from this user and he has a tendency not to
share it.

As an example of this latter attitude, let's consider accounting data. Before the PC
era, accounting systems existed inside mainframes or minicomputers, and the
IT department managed all data including accounting data. Since the advent of
microcomputers and spreadsheet applications, an accounting clerk can manage
a great deal of data, producing high-quality reports about it. However, this data
often resides on his computer; he enters it, he produces the report, and he gets the
accolades for it from his boss. So the data belongs to the accounting clerk, right? This
way of thinking impedes data flow between individuals and departments and has a
tendency of leading to redundant, disjoint data throughout the organization.

After the data design process, bridges are built between these isolated data islands
created by users or departments so that the data can benefit the whole enterprise. It
may also happen that fewer islands exist and redundant data is eliminated.

Data Modeling
Data is normally organized into an information system. This system can be
compared to something as simple as a loose-sheet binder, however this book
describes the data design process in the context of computer-based information
systems, or databases. Moreover, databases follow a design model, and we will use
the most popular one – the relational model.

Chapter 1

[�]

The complete data collection of an enterprise is larger than what our model
will encompass.

We will build a model that represents only a subset of the data spectrum. The
question is which subset? We'll see in Chapter 2 that we must set boundaries to the
analyzed system's data scope.

To build information systems that last, data must be tamed and molded to correctly
represent reality. Correctly here means:

Follow the needs of the organization, including the system's boundaries
Conform to the chosen data design model (here, the relational one)
Possess a high degree of adaptability to adjust itself to the changing
environment

Overview of the Relational Model
We owe to Dr. Edgar F. Codd the concept of the relational model, from his 1970
paper A Relational Model of Data for Large Shared Data Banks (http://www.acm.
org/classics/nov95/toc.html). Dr. Codd later explained his model by defining
a set of rules – the so-called Codd's Twelve rules (http://en.wikipedia.org/
wiki/Codd%27s_12_rules). An ideal database management system (DBMS) would
implement all those rules, but few if any do. But this is not a problem in practice
since the benefits of the relational model are achieved even in products that do not
apply all the rules. We are perfectly capable of building an efficient relational data
design with currently available database products like MySQL.

•

•

•

Introducing MySQL Design

[10]

When dealing with data design, I believe that the most important rules are number 1
and number 2. Here is a summary of these two Codd's rules.

Rule #1
This rule states that data is contained in tables. A table logically regroups
information about a certain subject, for example, cars. The tabular format – rows
and columns is the important idea here. A row describes information about a single
item, for example, a specific car, whereas a column describes a single characteristic
(or attribute) of each item, for example, its color. We will see in Chapter 3 that the
decomposition of data into well-adjusted columns is important to have a flexible and
useful structure.

The intersection of a row and a column contains the value of a specific attribute for
a single item. We sometimes refer to this intersection as a cell containing our data
– this is the same idea as in a spreadsheet.

Rule #2
Data is not retrieved or referenced by physical location – find the third record in this
file. Instead, data must be fetched by referencing a table, a unique key – the primary
key – and one or many column names. For example, with the cars table, we use the
car serial number to retrieve this car's color.

This rule will be studied in Chapter 4, where we describe data grouping and the
concept of choosing keys. Proper key choosing is of utmost importance.

Simplified Design Technique
Many years ago, I started to elaborate data structures using the relational model. I
was using a method that could be summarized by this sentence: "determine where
the data fits the best in the structure". Then I learned about the design techniques
that were taught to IT specialists and evolved from the relational model.

The technique, which is frequently taught consists of building an entity-relationship
diagram. In this kind of diagram, we represent nouns, for example, a car, a customer,
using entities, and the relationships between them are expressed using verbs. An
example of relationship binding two entities is "a customer buys a car". When the
diagram is done, it must be somewhat transformed into a model consisting of tables
and columns, using a technique called normalization that uses many steps to refine
the model into an effective data structure.

These techniques produce reports, diagrams, and eventually a theoretical data
design that can be implemented physically in a DBMS.

Chapter 1

[11]

When I became familiar with those traditional techniques, I thought that for me
at least they were a loss of time. Those methods teach a way but the ultimate
goal – a working relational database and associated documentation can be achieved
more directly. Moreover, those techniques suffer a problem: they cannot be applied
blindfolded and mechanically. The developer always has to think about data
naming, data grouping, and choosing keys while trying to balance users' needs and
constraints imposed by:

the hardware
the chosen database management system
planned growth
time
budget

I realized that the traditional techniques are taught everywhere, and I respect the
teachers who teach them. But believe me, when it's time to deliver an application
notwithstanding the interface itself, it's important to avoid losing time to
intermediate by-products and go straightforward to a working prototype. Using
a more direct method during the data design phase frees more time to refine the
interface, to catch unforeseen needs and address them.

This book's goal is to teach the minimum principles one has to apply in order to
build an effective data structure.

Case Study
The various steps of data design can be explained in a very practical way by using
two case studies. A case study is the best way of explaining ideas that can somewhat
become too abstract without real examples. Chapters 1 through 5 are based on a
single case study: "Car dealership". Chapter 6 consists of another case study that
recapitulates all the notions seen in the previous chapters.

Our Car Dealer
Suppose we've been contacted by a car dealer who wants to computerize parts of his
business. Let's describe a little bit about this business. In Chapter 2, we will examine
the data collecting phase for our system more formally.

This car dealer operates at a single address. They employ nine salespersons who
dutifully welcome potential customers and show them the car models that are
available on the floor. In addition, two store assistants handle car movements, and an
office clerk takes notes about customers' appointments. Fontax and Licorne are the

•

•

•

•

•

Introducing MySQL Design

[12]

two fictitious brands offered by this dealer. Each brand has a number of models, for
example Mitsou, Wanderer, and Gazelle.

The System's Goals
We want to keep information about the cars' inventory and sales. The following are
some sample questions that demonstrate the kind of information our system will
have to deal with:

How many cars of Fontax Mitsou 2007 do we have in stock?
How many visitors test-drove the Wanderer last year?
How many Wanderer cars did we sell during a certain period?
Who is our best salesperson for Mitsou, Wanderer, or overall in 2007?
Are buyers mostly men or women (per car model)?

Here are the titles of some reports that are needed by this car dealer:

Detailed sales per month: salesperson, number of cars, revenue
Yearly sales per salesperson
Inventory efficiency: average delay for car delivery to the dealer, or to
the customer
Visitors report: percentage of visitors trying a car; percentage of road tests
that lead to a sale
Customer satisfaction about the salesperson
The sales contract

In addition to this, screen applications must be built to support the inventory and
sales activities. For example, being able to consult and update the appointment
schedule; consult the car delivery schedule for the next week.

After this data model is built, the remaining phases of the application development
cycle, such as screen and report design, will provide this car dealer with reports, and
on-line applications to manage the car inventory and the sales in a better way.

The Tale of the Too Wide Table
This book focuses on representing data in MySQL. The containers of tables in MySQL,
and other products are the databases. It is quite possible to have just one table in a
database and thus avoid fully applying the relational model concept in which tables
are related to each other through common values; however we will use the model in
its normal way: having many tables and creating relations between them.

•

•

•

•

•

•

•

•

•

•

•

Chapter 1

[13]

This section describes an example of data crammed into one
huge table, also called a too wide table because it is formed
with too many columns. This too wide table is fundamentally
non-relational.

Sometimes the data structure needs to be reviewed or evaluated, as it might be
based on poor decisions in terms of data naming conventions, key choosing, and the
number of tables. Probably the most common problem is that the whole data is put
into one big, wide table.

The reason for this common structure (or lack of structure) is that many developers
think in terms of the results or even of the printed results. Maybe they know how
to build a spreadsheet and try to apply spreadsheet principles to databases. Let's
assume that the main goal of building a database is to produce this sales report,
which shows how many cars were sold in each month, by each salesperson,
describing the brand name, the car model number, and the name.

Salesperson Period Brand Name Car model
number

Car model name
and year

Quantity
sold

Murray, Dan 2006-01 Fontax 1A8 Mitsou 2007 3
Murray, Dan 2006-01 Fontax 2X12 Wanderer 2006 7
Murray, Dan 2006-02 Fontax 1A8 Mitsou 2007 4
Smith, Peter 2006-01 Fontax 1A8 Mitsou 2007 1
Smith, Peter 2006-01 Licorne LKC Gazelle 2007 1
Smith, Peter 2006-02 Licorne LKC Gazelle 2007 6

Without thinking much about the implications of this structure, we could build just one
table, sales:

salesperson brand model_number model_name_year qty_2006_01 qty_2006_02
Murray, Dan Fontax 1A8 Mitsou 2007 3 4
Murray, Dan Fontax 2X12 Wanderer 2006 7
Smith, Peter Fontax 1A8 Mitsou 2007 1
Smith, Peter Licorne LKC Gazelle 2007 1 6

At first sight, we have tabularized all the information that is needed for the report.

Introducing MySQL Design

[14]

The book's examples can be reproduced using the mysql
command-line utility, or phpMyAdmin, a more intuitive
web interface. You can refer to Mastering phpMyAdmin 2.8
for Effective MySQL Management book from Packt Publishing
(ISBN 1-904811-60-6). In phpMyAdmin, the exact
commands may be typed in using the SQL Query Window,
or we can benefit from the menus and graphical dialogs.
Both ways will be shown throughout the book.

Here is the statement we would use to create the sales table with the mysql
command-line utility:

CREATE TABLE sales (
 salesperson char(40) NOT NULL,
 brand char(40) NOT NULL,
 model_number char(40) NOT NULL,
 model_name_year char(40) NOT NULL,
 qty_2006_01 int(11) NOT NULL,
 qty_2006_02 int(11) NOT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

In the previous statement, while char(40) means a column with 40 characters,
int(11) means an integer with a display width of 11 in MySQL.

Using the phpMyAdmin web interface instead, we would obtain:

Chapter 1

[15]

Here we have entered sample data into our sales table:

INSERT INTO sales VALUES ('Murray, Dan', 'Fontax', '1A8',
'Mitsou 2007', 3, 4);
INSERT INTO sales VALUES ('Murray, Dan', 'Fontax', '2X12',
'Wanderer 2006', 7, 0);
INSERT INTO sales VALUES ('Smith, Peter', 'Licorne', 'LKC',
'Gazelle 2007', 1, 6);
INSERT INTO sales VALUES ('Smith, Peter', 'Fontax', '1A8',
'Mitsou 2007', 1, 0);

However this structure has many maintenance problems. For instance, where do
we store the figures for March 2006? To discover some of the other problems, let's
examine sample SQL statements we could use on this table to query about specific
questions, followed by the results of those statements:

/* displays the maximum number of cars of a single model sold by each
vendor in January 2006 */
SELECT salesperson, max(qty_2006_01)
FROM sales
GROUP BY salesperson

/* finds the average number of cars sold by our sales force taken as a
whole, in February 2006 */
SELECT avg(qty_2006_02)
FROM sales
WHERE qty_2006_02 > 0

Introducing MySQL Design

[16]

/* finds for which model more than three cars were sold in January */
SELECT model_name_year, SUM(qty_2006_01)
FROM sales
GROUP BY model_name_year
HAVING SUM(qty_2006_01) > 3

We notice that, although we got the answers we were looking for, with the above
SQL queries, we would have to modify column names in the queries to obtain results
for other months. Also, it becomes tricky if we want to know the month for which
the sales have surpassed the yearly average, because we have to potentially deal with
twelve column names. Another problem would arise when attempting to report for
different years, or to compare a year with another one.

Moreover, a situation that could demonstrate the poor state of this structure is the
need for a new report. A structure that is based too closely on a single report instead
of being based on the intrinsic relations between data elements does not scale well
and fails to accommodate future needs.

Chapter 4 will unfold those problems.

Summary
We saw that MySQL's popularity has put a powerful tool on the desktop of many
users; some of them are not on par about design techniques. Data is an important
resource and we have to think about the organization's data as a whole. The
powerful relational model can help us for structuring activities. This book avoids
specialized, academic vocabulary about the relational model, focusing instead on the
important principles and the minimum tasks needed to produce a good structure.
We then saw our main case study, and we noticed how it's unfortunately easy to
build wide, inefficient tables.

Data Collecting
In order to structure data, one must first gather data elements and establish the
domain to which this data applies. This chapter deals with raw data information that
comes from the users or other sources, and the techniques that can help us to build a
comprehensive data collection. This collection will become our input for all further
activities like data naming and grouping.

To be able to build a data collection, we will first identify the limits of the system.
This will be followed by gathering documents in order to find significant data
elements. The next step will be to conduct interviews with key users in order to
refine the list of data elements. All these steps are described in this chapter.

System Boundaries Identification
Let's establish the scenario. We have been called by a local car dealer to submit a
proposal about a new information system. The stated goal is to produce reports
about car sales and to help track the car inventory. Reports are, of course, an output
of the future system. The idea hidden behind reports could be to improve sales,
to understand delivery delays, or to find out why some cars disappear. The data
structure itself is probably not really important in the users' opinion, but we know
that this structure matters to the developers who produce the required output.

It's important to first look at the project scope, before starting to work on the details
of the system. Does the project cover:

The complete enterprise
Just one administrative area
Multiple administrative areas
One function of the enterprise

•

•

•

•

Data Collecting

[18]

An organization always has a main purpose; it can be selling cars, teaching, or
providing web solutions. In addition to this, every organization has sub-activities
like human resource management, payroll, and marketing. The approach to data
collecting will vary, depending upon the exact area we are dealing with. Let's say we
learn that our car dealer also operates a repair shop, which has its own inventory,
along with a car rental service. Do we include these inventories in our analyzing
tasks? We have to correctly understand the place of this new information system in
its context.

When preparing a data model, the biggest challenge is probably to draw a line, to
clearly state where to stop. This is challenging for various reasons:

Our user might have only a vague idea of what they want, of the benefits
they expect from the new system
Conflicting interests might exist between our future users; some of them might
want to prioritize issues in a different way from others, maybe because they
are involved with the tedious tasks that the new system promises to eliminate
We might be tempted to improve enterprise-wide information flow beyond
the scope of this particular project

It's not an easy task to balance user-perceived goals with the needs of the
organization as a whole.

Modular Development
It is generally admitted that breaking a problem or task into smaller parts helps us to
focus on more manageable units and, in the long run, permits us to achieve a better
solution, and a complete solution. Having smaller segments means that defining
each part's purpose is simpler and that the testing process is easier – as a smaller
segment contains less details. This is why, when establishing the system boundaries,
we should think in terms of developing by modules. In our case study, a simple way
of dividing into modules would be the following:

Module 1: car sales
Module 2: car inventory

Delivering an information system in incremental steps can help reassure the
customer about the final product. Defining the modules and a schedule about them
can motivate users and also the developers. With a publicized schedule, everyone
knows what to expect.

With the idea of modules comes the idea of budget and the notion of priorities for
development. Do we have to deliver the car sales module before or after the inventory
module? Can those modules be done separately? Are there some constraints that must

•

•

•

•

•

Chapter 2

[19]

be addressed, like a new report about the car sales that the Chief Executive Officer
(CEO) needs by June 20? Another point to take into account is how the modules
are related. Chances are good that some data will be shared between modules, so
the data model prepared for module 1 will probably be reused and refined during
module 2 developments.

Model Flexibility
Another point not directly related to our user but to us as developers is: can the
data model be built to be flexible and more general? This way, it could be applied
to other car dealers, always keeping in mind contract issues between the developer
and the user. (Who will own the work?) Should the data structure be developed with
other sales domains in mind? For instance, this could lead to a table named goods
instead of cars. Maybe this kind of generalization can help, maybe not, because data
elements description must always remain clear.

Document Gathering
This step can be done before the interviews. The goal is to gather documents about this
organization and start designing our questions for the interviews. Of course, a data
model for car sales has some things in common with other sales systems, but there
is a special culture about cars. Another set of documents will be collected during the
interviews while we learn about the forms used by the interviewees.

General Reading
Here are some reading suggestions:

Enterprise annual report
Corporate goals statement
President's speech
Publicity material
Bulletin board

I once learned a lot about information flow from a grocery store's bulletin board for
the employees. There were small notes from management to employees explaining
how to handle clients who pay by cheque (which personal information must be
obtained from the client before the store can accept their cheque), and detailing the
schedule for sick employees' replacement. Also explained on the board, was the
procedure to use on the cash register to give reward points to clients who pay with
the store's credit card. This information is sometimes more useful than an annual

•

•

•

•

•

Data Collecting

[20]

report because we are seeking details from the persons who are involved with the
daily tasks.

Forms
The forms, which represent paperwork between the enterprise and external partners,
or between internal departments, should be scrutinized. They can reveal a massive
amount of data, even if further analysis shows unused, imprecise, or redundant data.
Many organizations suffer from the form disease – ��������������������������������� a tendency to use too many paper
or screen forms and to produce too complex forms. Nonetheless, if we are able to
look at the forms currently used to convey information about the car inventory or
car sales, for example, a purchase order from the car dealer to the manufacturer, we
might find on these forms essential data about the purchase that will be useful to
complete our data collection.

Existing Computerized Systems
The car dealer has already started sales operations a number of years ago. To support
these sales, they were probably using some kind of computerized system, even if
this could have been only a spreadsheet. This pre-existing system surely contains
interesting data elements. We should try to have a look at this existing information
system, if one exists, and if we are allowed to. Regarding the data structuring process
itself, we can learn about some data elements that are not seen on the paper forms.
Also, this can help when the time comes to implement a new system by easing
transition and training.

Interviews
The goal for conducting interviews is to learn about the vocabulary pertaining to
the studied system. This book is about data structures, but the information gathered
during the interviews can surely help in subsequent activities of the system's
development like coding, testing, and refinements.

Interviews are a critical part of the whole process. In our example, a customer
asked for a system about car sales and inventory tracking. At this point, many users
cannot explain further what they want. The problem is exactly this: how can I, as
a developer, find out what they want? After the interview phase, things become
clearer since we will have gathered data elements. Moreover, often the customer
who ordered a new system does not grasp the data flow's full picture; it might also
happen that this customer won't be the one who will work with all aspects of the
system, those which are more targeted towards clerical persons.

Chapter 2

[21]

Finding the Right Users
The suggested approach would be to contact the best person for the questions about
the new system. Sometimes, the person in charge insists that he/she is the best person,
it might be true, or not. This can become delicate, especially if we finally meet
someone who knows better, even if this is during an informal meeting.

Thinking about the following issues can help to find the best candidates:

Who wants this system built?
Who will profit from it?
Which users would be most cooperative?

Evidently, this can lead to meeting with several people to explore the various
sub-domains. Some of these domains might intersect, with a potential negative
impact – diverging opinions, or with a potential positive impact – validating facts
with more than one interviewee.

Perceptions
During the interviews, we will meet different kinds of users. Some of these will be
very knowledgeable about the processes involved with the car dealer's activities,
for example, meeting with a potential customer, inviting them for a test drive,
and ordering a car. Some other users will only know a part of the whole process,
their knowledge scope is limited. Due to the varying scope, we will hear different
perceptions about the same subject.

For example, talking about how to identify a car, we will hear diverging opinions.
Some will want to identify a car with its serial number; others will want to use their
own in-house car number. They all refer to the same car with a different angle. These
various opinions will have to be reconciled later when proceeding with the data
naming phase.

Asking the Right Questions
There are various ways to consider which questions are relevant and which will
enable us to gather significant data elements.

Existing Information Systems
Is there an existing information system: manual or computerized? What will happen
with this existing system? Either we export relevant data from this existing system
to feed the new one, to completely do away with the old system, or we keep the
existing system – temporarily or permanently.

•

•

•

Data Collecting

[22]

If we must keep the existing system, we'll probably build a bridge between the
two systems for exchanging data. In this case, do we need a one-way bridge or a
two-way bridge?

Chronological Events
Who orders a car for the show room and why; how is the order made – phone, fax,
email, website; can a car in the showroom be sold to a customer?

Sources and Destinations
Here we question about information, money, bills, goods, and services. For example,
what is the source of a car? What's its destination? Is the buyer of a car always an
individual, or can it be another company?

Urgency
Thinking about the current way in which you deal with information, which problems
do you consider the most urgent to solve?

Avoid Focusing on Reports and Screens
An approach too centered on the (perceived) needs of the users may lead to gaps in
the data structure, because each user does not necessarily have an accurate vision of
all their needs or all the needs of other users. It's quite rare in an enterprise to find
someone who grasps the whole data picture, with the complex inter-departmental
interactions that frequently occur.

This bias will show up during the interviews. Users are usually more familiar with
items they can see or visualize and less familiar with concepts. However, there are
distinctions between the user interface (UI) and the underlying data. UI design
considers ergonomic and aesthetic issues, whereas data structuring has to follow
different, non-visual rules to be effective.

Data Collected for our Case Study
Here is a list, jotted down during the interviews, of potential data elements and
details which seem important to the current information flow. It's very important
during this collection to note, not only the data elements' names – shall we say
"provisional names" at this point – but also sample values. The benefit of this will
become apparent in Chapter 3. In the following data collection, we include sample
values in brackets where appropriate.

Chapter 2

[23]

From the General Manager
Our friend the General Manager keeps surveys filled by buyers about their buying
experience as a whole. Those surveys contain remarks about the salesperson
behavior. Evidently, this information is confidential, as only the General Manager
and the office clerk have access to it. Survey information includes:

Date: (2006-01-02)
Salesperson's name: (Harper, Paul)
Buyer's name: (Smith, Joe)
The points to evaluate: courtesy, quality of information given, etc
For each point, the mark given by the buyer from one to ten.

From the Salesperson
The main form prepared by a salesperson is the Sales Contract, and this person
surely hopes to prepare plenty of these! Here are the elements present on the
Sales Contract:

Buyer's information: name, address, postal code, phone number
Dealer's information: name, address, postal code, phone number
Salesperson information: name, address, postal code, phone number
Quantity of vehicles for this sale (usually 1)
Car description: brand, model, year (Fontax Mitsou 2007)
Car condition: new/used
Car serial number: (D34HTT987)
Car�������������������� color: (aquamarine)
Selling price: (32,500)
Insurance company name: (MicMac Car Insurance Inc.)
Insurance policy number: (J44-5764, but each company has its own code
system for this)
Preparation cost: (800)
Tax amount: (2,400)
Total price: (35,700)
Vehicle giving in exchange:

brand: (Licorne)
model: (Wanderer)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

°

°

Data Collecting

[24]

year: (2006)
serial number: (D45TGH45738)
price of the exchange: (12,000)

Down payment: (4,000)
Interest rate: (9%)
Interest amount: (6345)
Type of credit rate: fixed/variable
Dates of first and last payments: (2007-07-01, 2011-06-01)
Number of payments: (48)
Financial institution's information: name, address, postal code,
phone number

From the Store Assistant
A store assistant assigns a car number to each vehicle that enters the floor. This
helps to manage which set of keys belongs to which car, we refer to physical keys
here – the keys needed to unlock and start the car, not the database keys. The car
number does not refer to the car's serial number; it's assigned sequentially and used
internally only.

Store assistants also prepare a delivery certificate which contains the
following information:

Buyer's name: (Joe Smith)
Dealer's number: (53119)
Vehicle id number: (1400)
Key number: (81947)
Four signatures and dates, from the buyer, general manager, salesperson,
and the store assistant

Finally, the store assistants keep a register about all car movements. For each car, a
card-index contains:

Id number of the car: (432)
Car ordered: date (2007-02-03)
Car arrived: date (2007-02-17)
Car placed in the show room: date (2007-02-19)
Car washed: date (2007-05-30)

°

°

°

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2

[25]

Car gas tank filled-up: date (2007-05-30)
Car delivered to buyer: date (2007-06-01)

Other Notes
Do we include in the model some information about the old car that the
customer exchanges for their new car?
Boundary: during the interviews it was decided that, for now, the model will
not include the dealer's car rental activities, nor their repair service, although
much of the information about cars could be applied to those activities.

The subsequent chapters will put order in the naming aspects of this data and will
explain grouping techniques.

Summary
Building a comprehensive collection of data elements is essential to the success of a
data structuring activity. However, we need to know the exact limits of the analyzed
system. Then, by gathering documents and proceeding with interview activities, we
can record a list of potential data elements – our future column names.

•

•

•

•

Data Naming
In this chapter, we focus on transforming the data elements gathered in the collection
process into a cohesive set of column names. Although this chapter has sections for
the various steps we should accomplish for efficient data naming, there is no specific
order in which to apply those steps. In fact, the whole process is broken down into
steps to shed some light on each one in turn, but the actual naming process applies
all those steps at the same time. Moreover, the division between the naming and
grouping processes is somewhat artificial – you'll see that some decisions about
naming influence the grouping phase, which is the subject of the next chapter.

Data Cleaning
Having gathered information elements from various sources, some cleaning work is
appropriate to improve the significance of these elements. The way each interviewee
named elements might be inconsistent; moreover, the significance of a term can vary
from person to person. Thus, a synonym detection process is in order.

Since we took note of sample values, now it is time to cross-reference our list of
elements with those sample values. Here is a practical example, using the car's
id number.

When the decision is made to order a car – a Mitsou 2007 – the office clerk opens
a new file and assigns a sequential number dubbed car_id number to the file, for
instance, 725. At this point, no confirmation has been received from any car supplier,
so the clerk does not know the future car's serial number – a unique number stamped
on the engine and other critical parts of the vehicle.

This car's id number is referred to as the car_number by the office clerk. The store
assistants who register car movements use the name stock_number. But using this
car number or the stock number is not meaningful for financing and insurance
purposes; the car's serial number is used instead for that purpose.

Data Naming

[28]

At this point, a consensus must be reached by convincing users about the importance
of standard terms. It must become clear to everyone that the term car_number is not
precise enough to be used, so it will be replaced by car_internal_number ������� in the
data elements list, probably also in any user interface (UI) or report.

It can be argued that car_internal_number should be replaced by something more
appropriate; the important point here is we merged two synonyms: car_number and
stock_number,��� and established the difference between two elements that looked
similar but were not, eliminating a source of confusion.

Therefore we end up with the following elements:

Car_serial_number
Car_internal_number (former car id number and stock number)

Eventually, when dealing with data grouping, another decision will have to be taken:
to which number, serial or internal, do we associate the car's physical key number.

Subdividing Data Elements
In this section, we try to find out if some elements should be broken into more simple
ones. The reason for doing so is that, if an element is composed of many parts,
applications will have to break it for sorting and selection purposes. Thus it's better
to break the elements right now at the source. Recomposing it will be easier at the
application level.

Breaking the elements provides more clarity at the UI level. Therefore, at this
level we will avoid (as much as possible) the well-known last-name/first-name
inversion problem.

As an example for this problem, let's take the buyer's name. During the interview, we
noticed that the name is expressed in various ways on the forms:

Form How the name is expressed
Delivery certificate Mr Joe Smith
Sales contract Smith, Joe

We notice that

There is a salutation element, Mr
The element name is too imprecise; we really have a first name and a last name
On the sales contract, the comma after our last name should really be
excluded from the element, as it's only a formatting character

•

•

•

•

•

Chapter 3

[29]

As a result, we determine that we should sub-divide the name into the following
elements:

Salutation
First name
Last name

Sometimes it's useful to sub-divide an element, sometimes it's not. Let's consider
the date elements. We could sub-divide each one into year, month, and day (three
integers) but by doing so, we would lose the date calculation possibilities that
MySQL offers. Among those are, finding the week day from a date, or determining
the date that falls thirty days after a certain date. So for the date (and time), a single
column can handle it all, although at the UI level, separate entry fields should be
displayed for year, month, and day. This is to avoid any possibility of mix-up and
also because we cannot expect users to know about what MySQL accepts as a valid
date. There is a certain latitude in the range of valid values but we can take it for
granted that users have unlimited creativity, regarding how to enter invalid values.
If a single field is present on the UI, clear directions should be provided to help
with filling this field correctly.

Data Elements Containing Formatting
Characters
The last case we'll examine is the phone number. In many parts of the world, the
phone number follows a specific pattern and also uses formatting characters for
legibility. In North America, we have a regional code, an exchange number, and
phone number, for example, 418-111-2222; an extension could possibly be appended
to the phone number. However, in practice only the regional code and extension
are separated from the rest into data elements of their own. Moreover, people often
enter formatting characters like (418) 111-2222 and expect those to be output back.
So, a standard output format must be chosen, and then the correct number of
sub-elements will have to be set into the model to be able to recreate the
expected output.

Data that are Results
Even though it might seem natural to have a distinct element for the total_price of
the car, in practice this is not justified. The reason is that the total price is a computed
result. Having the total price printed on a sales contract constitutes an output. Thus,
we eliminate this information in the list of column names. For the same reason, we
could omit the tax column because it can be computed.

•

•

•

Data Naming

[30]

By removing the total price column, we could encounter a pitfall. We have to be sure
that we can reconstruct this total price from other sub-total elements, now and in the
future. This might not be possible for a number of reasons:

The total price includes an amount located in another table, and this table
will change over time (for example, the tax rate). To avoid this problem, see
the recommendations in the Scalability over Time section in Chapter 4.
This total price contains an arbitrary value, due to some exceptional cases,
for example, where there is a special sale, and the rebate was not planned
in the system, or when the lucky buyer is the brother-in-law of the general
manager! In this case, a decision can be made: adding a new column
other_rebate.

Data as a Column's or Table's Name
Now is the time to uncover what is perhaps the least known of the data naming
problems: data hidden in a column's or even a table's name.

We had one example of this in Chapter 1. Remember the qty_2006_1 column name.
Although this is a commonly seen mistake, it's a mistake nonetheless. We clearly
have two ideas here, the quantity and the date. Of course, to be able to use just two
columns, some work will have to be done regarding the keys – this is covered in
Chapter 4. For now, we should just use elements like quantity and date in our
elements list, avoiding representing data in a column's name.

To find those problematic cases in our model, a possible method is to look for
numbers. Column names like address1, address2 or phone1, phone2 should
look suspicious.

Now, have a look in Chapter 2 at the data elements we got from our store assistant.
Can you find a case of data being hidden in a column name?

If you have done this exercise, you might have found many past participles hidden
into the column names, like ordered, arrived, and washed. These describe the events
that happen to a car. We could try to anticipate all possible events but it might prove
impossible. Who knows when a new column car_provided_with_big_ribbon will
be needed? Such events, if treated as distinct column names, must be addressed by

A change in the data structure
A change in the code (UI and reports)

To stay flexible and avoid the wide-table syndrome, we need two tables: car_event
and event.

•

•

•

•

Chapter 3

[31]

Here are the structure and sample values for those tables:

CREATE TABLE `event` (
 `code` int(11) NOT NULL,
 `description` char(40) NOT NULL,
 PRIMARY KEY ('code')
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO `event` VALUES (1, 'washed');

The usage of backticks here ('event'), although not standard
SQL, is a MySQL extension used to enclose and protect
identifiers. In this specific case, it could help us with
MySQL 5.1 in which the event keyword is scheduled to
become part of the language for some another purpose
(CREATE EVENT). At the time of writing, beta version
MySQL 5.1.11 accepts CREATE TABLE event, but it might
not always be true.

The following image shows sample values entered into the event table from within
the Insert sub-page of phpMyAdmin:

CREATE TABLE `car_event` (
 `internal_number` int(11) NOT NULL,
 `moment` datetime NOT NULL,
 `event_code` int(11) NOT NULL,
 PRIMARY KEY ('internal_number')
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO `car_event` VALUES (412, '2006-05-20 09:58:38', 1);

Data Naming

[32]

Again, sample values are entered via phpMyAdmin:

Data can also hide in a table name. Let's consider the car and truck tables. They
should probably be merged into a vehicle table, since the vehicle's category – truck,
car, and other values like minivan is really an attribute of a particular vehicle.
We could also find another case for this table name problem: a table named
vehicle_1996.

Planning for Changes
When designing a data structure, we have to think about how to manage its growth
and the possible implications of the chosen technique.

Let's say an unplanned car characteristic – the weight – has to be supported. The
normal way of solving this is to find the proper table and add a column. Indeed, this
is the best solution; however, someone has to alter the table's structure, and probably
the UI too.

The free fields technique, also called second-level data or EAV (Entity-Attribute-
Value) technique is sometimes�� used in this case. To summarize this technique, we
use a column whose value is a column name by itself.

Even if this technique is shown here, I do not recommend
using it, for the reasons explained in the Pitfalls of the Free
Fields Technique section below.

The difference between this technique and our car_event table is that, for
car_event, the various attributes can all be related to a common subject, which is
the event. On the contrary, free fields can store any kind of dissimilar data. This
might also be a way to store data specific to a single instance or row of a table.

Chapter 3

[33]

In the following example, we use the car_free_field table to store unplanned
information about the car whose internal_number is 412. The weight and special
paint had not been planned, so the UI gave the user the chance to specify which
information they want to keep, and the corresponding value. We see here a
screenshot from phpMyAdmin but most probably, another UI would be presented
to the user – for example the salesperson who might not be trained to play at the
database level.

CREATE TABLE `car_free_field` (
 `internal_number` int(11) NOT NULL,
 `free_name` varchar(30) NOT NULL,
 `free_value` varchar(30) NOT NULL,
 PRIMARY KEY ('internal_number','free_name')
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO `car_free_field` VALUES (412, 'weight', '2000');
INSERT INTO `car_free_field` VALUES (412, 'special paint needed',
'gold');

Pitfalls of the Free Fields Technique
Even if it's tempting to use this kind of table for added flexibility and to avoid user
interface maintenance, there are a number of reasons why we should avoid using it.

It becomes impossible to link this "column" (for example the special paint
needed) to a lookup table containing the possible colors, with a foreign
key constraint.

•

Data Naming

[34]

The free_value field itself must be defined with a generic field type like
VARCHAR whose size must be wide enough to accommodate all values for all
possible corresponding free_name values.
It prevents easy validation (for a weight, we need a numeric value).
Coding the SQL queries on these free fields becomes more complex – i.e.
SELECT internal_number from car_free_field where
free_name = 'weight' and free_value > 2000.

Naming Recommendations
Here we touch a subject that can become sensitive. Establishing a naming convention
is not easily done, because it can interfere with the psychology of the designers.

Designer's Creativity
Programmers and designers usually think of themselves as imaginative, creative
people; UI design and data model are the areas in which they want to express
those qualities. Since naming is writing, they want to put a personal stamp to the
column and table names. This is why working as a team for data structure design
necessitates a good dose of humility and achieves good results only if everyone is a
good team player.

Also, when looking at the work of others in this area, there is a great temptation to
improve the data elements names. Some discipline in the standardization has to be
applied and all the team members have to collaborate.

Abbreviations
Probably because older database systems had severe restrictions about the
representation of variables and data elements in general, the practice of abbreviating
has been taught for many years and is followed by many data structure designers
and programmers. I used programming languages that accepted only two characters
for variable names – we had to extensively comment the correspondence between
those cropped variables and their meaning.

Nowadays, I see no valid reasons for systematically abbreviating all column and
table names; after all, who will understand the meaning of your T1 table or your
B7 field?

•

•

•

Chapter 3

[35]

Clarity versus Length: an Art
A consistent style of abbreviations should be used. In general, only the most
meaningful words of a sentence should be put into a name, dropping prepositions,
and other small words. As an example, let's take the postal code. We could express
this element with different column names:

the_postal_code
pstl_code
pstlcd
postal_code

I recommend the last one for its simplicity.

Suffixing
Carefully chosen suffixes can add clarity to column names. As an example,
for the date of first payment element, I would suggest first_payment_date. In fact,
the last word of a column name is often used to describe the type of content – like
customer_no, color_code, interest_amount.

The Plural Form
Another point of controversy for table names: should we use the plural form cars
table? It can be argued that the answer is yes because this table contains many cars
– in other words, it is a set. Nonetheless, I tend not to use the plural form for the
simple reason that it adds nothing in terms of information. I know that a table is a
set, so using the plural form would be redundant. It can be said also that each row
describes one car.

If we consider the subject on the angle of queries, we can draw different
conclusions depending on the query. A query referring to the car table –
select car.color_code from car where car.id = 34 is more elegant if the
plural form is not used, because the main idea here is that we retrieve one car
whose id equals 34. Some other queries might make more sense with a plural, like
select count(*) from cars.

As a conclusion for this section, the debate is not over, but the most important point
is to choose a form �� and be consistent throughout the whole system.

•

•

•

•

Data Naming

[36]

Naming Consistency
We should ensure that a data element that is present in more than one table is
represented everywhere by the same column name. In MySQL, a column name does
not exist by itself; it is always inside a table. This is why, unfortunately, we cannot
pick up consistent column names from, say, a pool of standardized column names
and associate it with the tables. Instead, during each table's creation we indicate
the exact column names we want and their attributes. So, let's avoid using different
names – internal_number and internal_num when they refer to the same reality.

An exception for this: if the column's name refers to a key in another table – the
state column – and we have more than one column referring to it like
state_of_birth, `state_of_residence`.

MySQL's Possibilities versus Portability
MySQL permits the use of many more characters for identifiers – database, table,
and column names than its competitors. The blank space is accepted as are accented
characters. The simple trade-off is that we need to enclose such special names
with back quotes like 'state of residence'. This procures a great liberty in the
expression of data elements, especially for non-English designers, but introduces a
state of non-portability because those identifiers are not accepted in standard SQL.
Even some SQL implementations only accept uppercase characters for identifiers.

I recommend being very prudent before deciding to include such characters.
Even when staying faithful to MySQL, there has been a portability issue between
versions earlier than 4.1 when upgrading to 4.1. In 4.1.x, MySQL started to represent
identifiers internally in UTF-8 code, so a renaming operation had to be done to
ensure that no accented characters in the database, table, column and constraint
names were present before the upgrade. This tedious operation is not very practical
in a 24/7 system availability context.

Table Name into a Column Name
Another style I often see: one would systematically add the table name as a prefix
to ���������������������������� every����������������������� column name. Thus the car table would be comprised of the columns:
car_id_number, car_serial_number. I think this is redundant and it shows its
inelegance when examining the queries we build:

select car_id_number from car

is not too bad, but when joining tables we get a query such as
select car.car_id_number,
buyer.buyer_name
from car, buyer

Chapter 3

[37]

Since at the application level, the majority of queries we code are multi-tables like
the one used above, the clumsiness of using a table name even abbreviated as part of
column names becomes readily apparent. Of course, the same exception we saw in
the Naming Consistency section applies: a column – foreign key – referring to a lookup
table normally includes this table's name as part of the column's name. For example,
in the car_event table, we have event_code which refers to the code column in
table event.

Summary
To get a clear and understandable data structure, proper data elements naming is
important. We examined many techniques to apply in order to build consistent table
and column names.

Data Grouping
In the previous chapters, we built a data collection, and started to clean it by proper
naming. We had already introduced, in Chapter 1, the notion of a table, which
logically regroups information about a certain subject. Some of the columns we
gathered were grouped into tables during the naming process. While doing so, we
noticed that the process of name checking was sometimes leading us to decompose
data into more tables, like we did for the car_event and event tables. The goal of
the present chapter is to provide finishing touches to our structure, by examining the
technique of grouping column names into tables.����������������������������������� Our data elements won't be living
"in the air"; they will have to be organized into tables. Exactly which columns must
be placed into which table will be considered here.

Initial List of Tables
When building the structure, we can start by finding general, natural subjects
which look promising for grouping data. These subjects will provide our initial list of
tables – here is an abridged example of what this list might look like:

vehicle
customer
event
vehicle sale
customer satisfaction survey

We'll begin our columns grouping work by considering the vehicle table.

•

•

•

•

•

Data Grouping

[40]

Rules for Table Layout
There can be more than one correct solution, but any correct solution will tend to
respect the following principles:

each table has a primary key
no redundant data is present when considering all tables as a whole
all columns in a table depend directly upon all segments of the primary key

These principles will be studied in details in the following sections.

Primary Keys and Table Names
Let's start by defining the concept of a unique key. A column on which a unique key
is defined cannot hold the same value more than once for this table. The primary
key is composed of one or more columns, it��� is a value that can be used to identify a
unique row in a table.��� Why do we need a primary key? MySQL itself does not force
us to have a primary key, neither a unique key nor any other kind of key, for a specific
table. Thus MySQL puts us under no obligation to follow Codd's rules. However, in
practice it's important to have a primary key; experience acquired while building web
interfaces and other applications shows that it's very useful to be able to refer to a key
identifying a row in a unique way. In MySQL, a primary key is a unique key where all
columns have to be defined as NOT NULL; the name of this key is PRIMARY. Choosing
the primary key is done almost at the same time as choosing the table's name.

Selecting the name of our tables is a delicate process. We have to be general enough
to provide for future expansion – like the vehicle table instead of car and truck. At
the same time, we try to avoid having holes – empty columns in our tables.

To decide if we should have a vehicle table or two separate tables, we look at the
possible attributes for each kind of vehicle. Are they common enough? Both vehicle
types have a��� color��� , a model, a year, a serial number, and an internal id number.
Theoretically, the list of columns must be identical for us to decide that a group of
columns will belong to a single table; but we can cheat a bit, if there are only a few
attributes that are different.

Let's say we decide to have a vehicle table. For reasons explained earlier, we want
to track a vehicle since the moment we order it – we'll use its internal id number
as the primary key. When designing this table, we ask ourselves whether this table
can be used to store information about the vehicles we receive in exchange from
the customer. The answer is yes, since describing a vehicle has nothing to do with
the transactions that happen to it (new vehicle sold, used vehicle bought from the
customer). The section Validating the Structure gives further examples that can help
catching problems in the structure.�������������������������� Here is version 1 of the vehicle table, with

•

•

•

Chapter 4

[41]

column names and sample values – we mark the columns comprising the primary
key with an asterisk:

table: vehicle column name sample value
*internal_id 123

serial_number D8894JF

brand Licorne

model Gazelle

year 2007

color ocean blue

condition new

Should we include the sales info, for example, pricing and date of sale, in this table?
We determine that the answer is no since a number of things can happen:

the vehicle can be resold
the table might be used to hold information about a vehicle received
in exchange

We now have to examine our work and verify that we have respected the principles.
We have a primary key, but what about redundancy and dependency?

Data Redundancy and Dependency
Whenever possible, we should evacuate redundant data into lookup tables – also called
reference tables and store only the value of the codes into our main tables. We don't
want to repeat "Licorne" into our vehicle table for each Licorne sold. Redundant data
wastes disk space and increases processing time when doing database maintenance: if
a modification need arises, all instances of the same data must be updated. ����������Regarding
the vehicle table, it would be redundant to store a full descriptive value in the brand,
model and color columns – storing three codes will suffice.

We have to be careful about evacuating redundant data. For example, w����������� e won't be
coding the year; this would be too much coding for no saving – using A for 2006, B
for 2007 makes no practical saving of space after a few thousand years! Even for a
small number of years, the space saving would not be significant; beside, we would
lose the ability to do computations on the year.

Next, we verify dependency. Each column must be dependent on the primary key.
Is the condition �� new/used�� directly dependent on the vehicle? No, if we consider it

•

•

Data Grouping

[42]

over the time dimension. In theory, the dealer can sell a car, and then accept it later
in exchange. The condition is related more to the transaction itself, for a specific
date, so it really belongs to the sale table – shown here in a non-final state. We now
have version 2:

table: vehicle column name sample value
*internal_id 123

serial_number D8894JF

brand_code L

model_code G

year 2007

color_code 1A6

table: brand column name sample value
*code L

description Licorne

table: model column name sample value
*code G

description Gazelle

table: color column name sample value
*code 1A6

description ocean blue

table: sale column name sample value
*date 2006-03-17

*internal_id 123

condition_code N

Composite Keys
A composite key, also called as compound key, is a key that consists of more than
one column.

Chapter 4

[43]

When laying out our code tables, we must verify that the data grouping principles
are ��� also �� respected �� on those tables��� . Using sample data, and also our imagination to
supplement incomplete sample data, can help to uncover problems in this area. In
our version 2, we overlooked one possibility. What if the companies marketing two
different brands chose an identical �� color��� code 1A6 to represent different ������������ colors������ ? The
same could happen for model codes so we should refine the structure to include the
brand code – which represents Fontax, Licorne or a future brand name – into the
model and� color tables. Thus version 3 displays the two tables that have changed
from version 2:

table: model column name sample value
*brand_code L

*code G

description Gazelle

table: color column name sample value
*brand_code L

*code 1A6

description ocean blue

Both the model and color tables result in having a composite key. Another example
of a composite key was seen in Chapter 3: the car_event table – see the Data
as a Column's or Table's name section. In these kinds of tables, the primary key is
composed of more than one element. This happens when we have to describe data
that relates to more than one table. Usually, the newly formed table for car_event
containing the car internal number and the event code has further attributes like the
date when a specific event occurs for a specific car.

Another possibility for a composite key arises when we encounter subsets like a
department of a company. Associating an employee id to just the company code or
just the department code would not describe the situation correctly. An employee id
is unique only when considering both the department and the company.

We have to verify that all the non-key data elements of this table depend
directly upon the key taken in its entirety. Here is a problematic case where the
company_name column is misplaced because it's not related to dept_code:

Data Grouping

[44]

table: company_dept column name sample value
*company_code 1

*dept_code 16

dept_name Marketing

company_name Fontax

The previous example is non-optimal because the company name would be present in
every row of a table intended to describe each department. The correct structure for the
previous example implies the use of two tables:

table: dept column name sample value
*company_code 1

*code 16

name Marketing

table: company column name sample value
*code 1

name Fontax

Improving the Structure
Even when our table layout respects the rules, we can still refine it by looking at the
following additional issues.

Scalability over Time
In Chapter 3 (section Data that are Results), we saw that we could avoid reserving a
column for the tax amount, provided we have the exact tax rate in a reference table.
However this rate could change so we need a more complete table that contains date
ranges and the corresponding rate. This way, projecting the system over the time
dimension, we can ensure that it will accommodate rate fluctuations. Note that the
following sale table is not complete:

table: sale column name sample value
*date 2006-03-17

*internal_id 123

condition_code N

Chapter 4

[45]

table: condition column name sample value
*code N

description New

Comparing the date column from the sale table with the start_date and end_date
from the following tax_rate table, we can find the exact tax rate for the date of sale:

table: tax_rate column name sample value
*start_date 2006-01-01

*end_date 2006-04-01

rate .075

In fact, all tables should be analysed to find whether the time factor has been
considered. Another example would be the color table. Assuming we are using the
color codes designed by each car manufacturer, does a manufacturer reuse color
codes in a subsequent year for a different color? If this is the case, we would add a
year column to the color table.

Empty Columns
Although empty columns are not necessarily problematic, having some rows where
one or many columns are empty can reveal a structural problem: two tables folded
into one. Let's consider the car movements. We built a structure having a car's
internal number, the code of the event, and the moment. But what if some events
need more data to be described?

In the paper forms, we discover that when a car is washed, the initials of the store
assistant who did the washing appear on the form, and during the interviews, we
learned that these initials are an important data element.

In this case, we can add employee information, the employee code, to the car_event
table. This would have the benefit of enabling the system to identify which store
assistant participated to any event occurring to a car, leading to better quality control.

Another issue that might arise is that for a specific event (say washing) we
require more data more data like the quantity of cleaning product, and the amount
of time used to wash. Of those two elements, one can be beneficial to improve our
structure: storing the start and end time of the event. But adding a column like
quantity_cleaning_product to the car_event table has to be analyzed carefully. For all
events except washing, this column would remain empty, leading to exception

Data Grouping

[46]

treatment in the applications. The structure would only worsen if we added another
column related to another special event.

In this case, it's better to create another table with the same keys and the additional
columns. We cannot avoid having some data elements in this new table name:
car_washing_event.

table: car_washing_event column name sample value
*internal_number 412

quantity_cleaning_product 12

Avoiding ENUM and SET
MySQL and SQL in general offer what looks like convenient data types: ENUM and
SET types. Both types permit us to specify a list of possible values for a column,
along with a default value; the difference being that a SET column can hold multiple
values, whereas an ENUM can contain only one of the potential values.

We see here a very small sale table with the credit_rate column being an ENUM:

CREATE TABLE `sale` (
 `internal_number` int(11) NOT NULL,
 `date` date NOT NULL,
 `credit_rate` ENUM('fixed','variable') NOT NULL,
 PRIMARY KEY (`internal_number`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

When a field is defined as ENUM or SET and we are using phpMyAdmin's insertion
or data edit panels, a dropdown list of the values is displayed so it might be
tempting to use those data types.

Chapter 4

[47]

Let's examine the benefits of such types:

Instead of storing the complete value, MySQL stores only an integer index,
which uses one or two bytes, depending on the number of values in the list
MySQL itself refuses any value that is not comprised in the list

Even after considering these benefits, it is recommended not to use ENUM and SET
types for the following reasons:

Changing the list of possible values needs a developer action, such as a
structure modification intervention
There are limits for those types: 65535 possible values in the list; also a SET
can have 64 active members, which are the chosen values in the set
It's better to keep the system more simple, because if in some cases we use
lookup tables and in other cases ENUM or SET types, the program code is more
complex to build and maintain

It could be argued that problem number one can be solved by including in the
application some ALTER TABLE statements to change the list of values, but this does
not seem the normal way to deal with this matter. ALTER TABLE is a data definition
statement that should be used during system development, not at the application level.

So, an ENUM or SET column should become a separate table whose primary key is a
code. Then, the table which refers to this code simply includes it as a foreign key.
In the case of SET column, a distinct table would contain the key of the master table
plus the key of the table which contains those SET values.

•

•

•

•

•

Data Grouping

[48]

table: sale column name sample value
*internal_number 122

*date 2006-05-27

credit_rate_code F

table: credit_rate column name sample value
*code F

description fixed

Proper validation in the application ensures that the inserted codes belong to the
lookup tables.

Multilingual Planning
There is another benefit of using a code table: if we store the car condition new/used,
it's more complex to do a multi-lingual application. On the other hand, if we code the
car's condition, then we can have a condition table and a language table:

table: condition column name sample value
language_code E

condition_code N

description new

table: language column name sample value
language_code E

description English

Validating the Structure
Validation is done by using precise examples, asking ourselves if we have a column
to place all information, covering all cases. Maybe there will be exceptions – what
to do with those? Should our structure handle them? We can assess the risk factor
associated with those exceptions, versus the cost of handling them and the possible
loss in performance for the queries.

Chapter 4

[49]

An example of an exception: a customer buys two cars the same day – this could
influence the choice of primary key, if a date is part of this key, it will be conducive
to add a column to this key: the time of day for the sale.

The phpMyAdmin utility can prove useful here. Tables are easily built with this
software, while its index management feature permits us to craft our primary keys.
Then we can use the multi-table query generator to simulate various reports and
what-ifs.

Summary
We have seen that our list of columns needs to be placed into appropriate tables,
each having a primary key and respecting some rules for increased efficiency and
clarity. We can also improve the model by looking at the scalability and multilingual
issues; then we learned a way to validate this model.

Data Structure Tuning
This chapter presents various techniques to improve our data structure in terms of
security, performance, and documentation. We then present the final data structure
for the car dealer's case study.

Data Access Policies
We saw in Chapter 1 that data is an important resource, so access to this resource
must be controlled and clearly documented. As each piece of data originates, the
responsibility for data entry must be clearly established. After the data has made
its way into the database, policies must be in place to control access to it, and these
policies are implemented by MySQL's privileges and the use of views.

Responsibility
We should determine who in the enterprise – in terms of a person's name or
a function name – is responsible for each data element. This should then be
documented and a good place to do so is directly in the database structure. An
alternative would be to document data responsibility on paper, but information on
paper can be easily lost and has a tendency to become obsolete quickly.

In some cases, there will be a primary source and an approbation-level source. Both
should be documented – this helps for

application design, when screens have to reflect the chain of authority for
data entry
privilege management, if direct MySQL data access is granted ������������� to����������� end users

phpMyAdmin permits us to describe each column by adding comments to it. If the
current MySQL version supports native comments, those will be used; otherwise,
phpMyAdmin's linked-tables infrastructure has to be configured to enable the storage

•

•

Data Structure Tuning

[52]

of column comments as meta-data. We will indicate responsibility details for this
column in the corresponding column comment. To reach the page that permits us
to enter comments in phpMyAdmin, we use the left navigation panel to open the
database (here marc) then the table (here car_event). We then click on Structure and
choose to edit a field's structure (here event_code) by clicking on the pencil icon.

We can then use phpMyAdmin's Print View from the Structure page to obtain a
listing of the table with comments.

Chapter 5

[53]

Security and Privileges
There are two ways of considering the security of our data. The first and most
commonly implemented is at the application level. Normally, applications should
ask for credentials: user name, password, and use these credentials to generate web
pages or desktop screens that reflect the tasks permitted to this user. Note that the
underlying application still connects to MySQL with all the privileges of a developer
account but, of course, only shows appropriate data according to the user's rights.

Another issue to consider is when a user has direct access to MySQL, either using
a command-line utility or an interface like phpMyAdmin. This might be the case
because the end-user application has been developed only to a certain point and
does not permit maintenance of code tables, for example. In this case, special MySQL
users should be created that have only the needed rights. MySQL supports an access
matrix based on rights on databases, tables, columns, and views. This way, we could
hide specific columns, like the selling price, to all unauthorized persons.

Views
Since MySQL 5.0, we can build ��� views,��� which look like tables but are based on
queries. These views can be used to:

hide some columns
generate modified information based on table columns and the use of
expressions on them
procure a shortcut for data access by joining many tables so as to make them
appear as a single table

Since we can associate privileges to these views without giving access to the
underlying tables, views can prove handy to let users directly access MySQL and
control their actions at the same time.

Here is an example of a view showing the car events and their description – here, we
want to hide the event_code column:

create view explained_events as
select car_event.internal_number, car_event.moment, event.description
from car_event
left join event on car_event.event_code = event.code

•

•

•

Data Structure Tuning

[54]

Browsing this view in phpMyAdmin displays the following report:

Asking a user to work with views does not mean that this user can only read this
data. In many cases, views can be updated. For example, this statement is allowed:

UPDATE `explained_events`
SET `moment` = '2006-05-27 09:58:38'
WHERE `explained_events`.`internal_number` = 412;

Storage Engines
MySQL is internally structured in such a way that the low-level tasks of storing
and managing data are implemented by the plugable storage engine architecture.
MySQL AB and other companies are active in R&D to improve the offer in the storage
engines spectrum. For more information about the architecture itself, refer to
http://dev.mysql.com/tech-resources/articles/mysql_5.0_psea1.html.

Every time we create a table, even if we don't notice it, we are asking the MySQL
server (implicitly or explicitly) to use one of the available storage engines to store our
data physically.

The default and traditional storage engine is named MyISAM. A whole chapter in
the MySQL Reference Manual (http://dev.mysql.com/doc/refman/5.0/en/
storage-engines.html) describes the available engines. Our choice of storage
engine can vary from table to table. There is no such thing as a perfect storage
engine; we have to choose the best one according to our needs. Here are some points
to consider when making a choice:

MyISAM supports FULLTEXT indexes and compressed read-only storage,
and uses about three times less disk space than InnoDB for the equivalent
amount of data
InnoDB offers foreign key constraints, multi-statement transactions with
ROLLBACK support; also, due to its locking mechanism, it supports more
concurrent SELECT queries than MyISAM
MEMORY is of course very fast but the content (data) is not permanently stored
on-disk, while the table definition itself is on-disk

•

•

•

Chapter 5

[55]

NDB (Network DataBase), also called MySQL Cluster, offers synchronous
replication between the servers – the recommended minimum number of
servers in the cluster is four; thus there is no single point of failure in such
a cluster

In short, here is a general guideline: if the application requires multi-statement
transactions and foreign-key constraints, we should choose InnoDB; otherwise,
MyISAM, the default storage engine, is suggested.

Foreign Key Constraints
The InnoDB storage engine (http://www.innodb.com), which is included in MySQL
offers a facility to describe foreign keys in the table's structure. A foreign key is a
column (or group of columns) that points to a key in a table. Usually, the key that
is pointed to is located in another table and is a primary key of that other table.
Foreign keys are commonly used as lookup tables. There are a number of benefits to
describing these relations directly in the structure:

referential integrity of the tables is maintained by the engine – we cannot
add an event code into the car_event table if the corresponding code is not
already present in the event table, and we cannot remove a code from the
event table if it's still referenced by a row in the car_event table
we can program actions that MySQL will accomplish in reaction to certain
events; for example, what happens in the referencing table if the referenced
code is updated

Let's transpose our car_event example into InnoDB. Let's first create and populate
the referenced table, event – notice the ENGINE=InnoDB clause:

CREATE TABLE `event` (
 `code` int(11) NOT NULL,
 `description` char(40) NOT NULL,
 PRIMARY KEY (`code`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

INSERT INTO `event` VALUES (1, 'washed');
INSERT INTO `event` VALUES (2, 'arrived');

Next, the referencing table, car_event:

CREATE TABLE `car_event` (
 `internal_number` int(11) NOT NULL COMMENT 'Resp.:Office clerk',
 `moment` datetime NOT NULL COMMENT 'Resp.: store assistant',
 `event_code` int(11) NOT NULL COMMENT 'Resp.: store assistant',
 PRIMARY KEY (`internal_number`),

•

•

•

Data Structure Tuning

[56]

 KEY `event_code` (`event_code`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

INSERT INTO `car_event` VALUES (412, '2006-05-27 09:58:38', 2);
INSERT INTO `car_event` VALUES (500, '2006-05-29 16:37:46', 1);
INSERT INTO `car_event` VALUES (600, '2006-05-30 16:38:51', 2);
INSERT INTO `car_event` VALUES (700, '2006-05-31 16:39:21', 2);

We must have an index on the event_code column to be able to use it in an InnoDB
foreign key constraint, which is defined here:

ALTER TABLE `car_event`
 ADD CONSTRAINT `car_event_ibfk_1` FOREIGN KEY (`event_code`)
REFERENCES ����������������������������������� `���������������������������������� event����������������������������� `���������������������������� (�������������������������� `������������������������� code��������������������� `��������������������) ON UPDATE CASCADE;

The foreign key in car_event can also be defined in the
initial CREATE TABLE statement. The previous example
was done using ALTER TABLE to show that foreign keys
can be added later.

All these operations can be handled in a more visual way via phpMyAdmin. The
Operations sub-page enables us to switch the engine to InnoDB:

Chapter 5

[57]

Also, when the tables are under the InnoDB storage engine, phpMyAdmin's Relation
view enables us to define and modify the foreign key and related actions:

Having defined this ON UPDATE CASCADE clause, let's see what happens when we
modify a code value in the event table. We decide that the code for washed should
be 10 instead of 1:

Data Structure Tuning

[58]

We now browse the car_event table; sure enough, the code for washed has been
changed automatically to the value 10:

Performance
A number of points must be examined if we want to improve our structure's
efficiency in terms of access speed or disk space used.

Indexes
Adding indexes on columns that are used in a WHERE clause is a common way of
speeding up the queries. Let's say that we intend to find all vehicles for a specific
brand. The vehicle table has a brand_id column and we want to create an index
on this column. In this case, the index won't be unique because each brand is
represented by many vehicles.

Using phpMyAdmin, there are two ways to create an index. First, if the index applies
to a single column, we can open the Structure page for a table and click the index
(flash) icon on the same line as the brand_id column:

This generates the following statement:

ALTER TABLE ������������������������������� `������������������������������ vehicle����������������������� `���������������������� ADD INDEX(�����������`����������brand_id��`�)

We could also create an index on a composite key, for example model_id plus year.
For this, we enter the number of columns for our index (two) on the Structure page
and hit Go.

Chapter 5

[59]

Next, on the index management page, we choose which columns will be part of
the index; then we invent a name for this index (here model-year) and click Go to
create it.

The related SQL command for this action is

ALTER TABLE �� `��� vehicle�� `��� ADD INDEX �������������������������������� `������������������������������� model-year��������������������� `�������������������� (������������������`�����������������model_id���������`��������,�������`������year��`�)

To ascertain which index are used on a particular query, we can prefix this
query with the EXPLAIN keyword. For example, we issue this command in
phpMyAdmin's query box:

explain select * from vehicle where brand_id = 1

Data Structure Tuning

[60]

The results tell us that an index on the brand_id column is a possible key for retrieval:

Helping the Query Optimizer: Analyze Table
When we send a query to the MySQL server, it uses its query optimizer to find
the best way of retrieving the rows. We can help the query optimizer achieve
better results by loading a table with data and then executing the ANALYZE TABLE
statement on it. This statement asks MySQL to store the key distribution for a
table, which means that it counts the number of keys for each index and stores this
information for later reuse. For example, after the ANALYZE TABLE on the vehicle
table, MySQL might notice that there are 12 different brands, 1000 different vehicles
and 100 different model-years. This information will be used later if we ever send
a query using one of these indexes. Thus, the ANALYZE TABLE should be executed
periodically; the exact frequency depends on the number of updates for this table.

Accessing Replication Slave Servers
MySQL supports a scheme where one-way, asynchronous replication of data occurs
between a master server and one or more slave servers. Since normally, the majority
of the requests sent to MySQL are SELECT queries, we can improve response time
by sending those read requests to a slave server. This procures a load-balancing
effect. Care must be taken to send write-type statements such as INSERT, UPDATE and
DELETE to the master.

In current MySQL version (5.0.26), we have to choose the proper server at the
application level to achieve this balancing; however, MySQL plans to offer a feature
that would automatically send the SELECT queries to slaves.

Chapter 5

[61]

Replication is an advanced feature of MySQL that should be
set up by a seasoned MySQL administrator��.

Speed and Data Types
When creating a column, we have to specify a data type for it. Character data types
(CHAR, VARCHAR) are very commonly used. For CHAR, we indicate the length of the
column (0 to 255), and this column occupies a fixed amount of space. For VARCHAR,
each value only takes the space it needs in the table; the indicated length is the
maximum length – 255 before MySQL 5.0.3 and 65532 since this version. Numeric
types – like INT, FLOAT,����� and DECIMAL are fixed-length.

To summarize, here are some data types and information about how they are stored:

Data type Storage method
CHAR fixed
INT fixed
FLOAT fixed
DECIMAL fixed
VARCHAR variable

We should be aware that MySQL can silently decide to convert a data type to another
one. The reasons for this are explained in the MySQL manual: http://dev.mysql.
com/doc/refman/5.0/en/silent-column-changes.html. This is why, after
the table's creation, we should re-examine its structure to verify that silent
conversion has occurred.

It might seem that we should always choose VARCHAR for character fields, since by
using this data type, a shorter value takes less space but there is a reason to still want
to use CHAR: speed.

In a table, when all fields are using non-variable data types, the MyISAM storage
engine uses a fixed table format. In this format, MySQL can predict the size of each
row and thus can easily find the distance from, say, one first_name column to
the first_name column of the next row. This implies that queries on non-indexed
columns are relatively quickly executed. On the contrary, when there is even one
VARCHAR column in a table, this is no longer possible, as MyISAM uses dynamic table
format in this case. Hence, a decision must be made between the speed of data
retrieval and the space overhead of using fixed-length columns.

Data Structure Tuning

[62]

In phpMyAdmin, when looking at a table's structure, the Row Statistics section
informs us about the fixed or dynamic format:

There is another point in favor of using the fixed format. When rows are deleted,
the space previously occupied by these – the holes in the table become available for
future insertions so the table does not become physically fragmented.

BLOB and TEXT data types are also variable in length. A BLOB is typically used to store
binary data like a car's or a customer's photo. MySQL takes care internally to store
these columns separately from the remainder of the table's data, so the impact of
having them in a table is not significant.

Table Size Reduction
A utility, myisampack, can be used to transform a MyISAM table into a read-only one
while compressing data. In some cases, the table's physical size could be reduced by
70%. This technique is only available if we have access to this command-line utility
– there is no SQL query which we can send to achieve this result.

In-Column Data Encoding
The situation I am about to describe happened while I was working on a search
engine for bibliographic data but I am transposing it for the car dealer's system.

When we have to migrate data from a pre-existing system into our newly-born data
structure, we might encounter data that was formatted in a special way. For example,
a list of possible colors for a car model could be expressed as a series of color codes,
separated by semi-colons:

1A6;1A7;2B7;2T1A65

Chapter 5

[63]

Users of the pre-existing system are comfortable with this method of entering data
in this format, and in the case I experienced, users �������refused to let go of this way of
entering data – and they had direct access to the MySQL tables. From a developer's
perspective, however, such format makes the task of query generation more
complex. Finding the 1A6 color involves splitting the data element, and avoiding the
2T1A65 data element, which also has the 1A6 string.

A proper structure for this case implies getting rid of the semicolon-based format
completely and storing just the pure data in table format:

table: model_color column name sample value
*model 1

color_code 1A6

Another case for which it's even more complex to find coherent data with a query is
when there is more than one element between the separators, such as a list of names:

Murray Dan; Smith Peter; Black Paul

Special care must be taken to avoid matching this list of names when we search for
Murray, Paul because Murray and Paul are present in the full string. This case only
reinforces the case for moving away from such a format or at least – if we must keep
this format due to political issues – for building an intermediary table, which will be
used for searching. In this case, the special table must be synchronized whenever the
main table's contents changes.

Case Study's Final Structure
In this section we examine the final data structure for our case study. There are many
ways to present this structure. First we'll see all the tables that are related to each
other – almost all tables are – then we will examine group of related tables and
their columns.

The following schema is produced by phpMyAdmin's PDF Page feature. To access
this feature, we open a database and access the Operations sub-page. Then we click
Edit PDF pages.

Data Structure Tuning

[64]

When generating the PDF schema, we can also ask phpMyAdmin to produce a data
dictionary. In order to do this, we click the Data Dictionary checkbox in the Display
PDF schema dialog. Here is the page of this dictionary describing the person table:

This combined data dictionary/schema offers a noteworthy feature: we can click on
a table name in the schema to reach the table's description in the dictionary, and the
other way around.

Chapter 5

[65]

The following CREATE TABLE commands come directly from the Export feature of
phpMyAdmin. To access this feature, simply open a database and choose the Export
menu, then select all the tables, click the SQL checkbox and hit Go.

The commands have been grouped into smaller chunks of related tables, even if
ultimately there are relations between the tables of those groups. You'll notice that
phpMyAdmin adds – in the form of comments in the export file – information about
the relations with other tables. Another point to note: the primary key for most tables
is id, an integer. Thus, a column pointing to the id column of table brand is named
brand_id.

Vehicle
--
-- Table structure for table `brand`
--

CREATE TABLE `brand` (
 `id` int(11) NOT NULL,
 `description` varchar(40) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

-- --
--
-- Table structure for table `brand_color`
--

Data Structure Tuning

[66]

CREATE TABLE `brand_color` (
 `brand_id` int(11) NOT NULL,
 `id` int(11) NOT NULL,
 `description` varchar(40) NOT NULL,
 PRIMARY KEY (`brand_id`,`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- RELATIONS FOR TABLE `brand_color`:
-- `brand_id`
-- `brand` -> `id`
--

-- --
--
-- Table structure for table `brand_model`
--

CREATE TABLE `brand_model` (
 `brand_id` int(11) NOT NULL,
 `id` int(11) NOT NULL,
 `description` varchar(40) NOT NULL,
 PRIMARY KEY (`brand_id`,`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- RELATIONS FOR TABLE `brand_model`:
-- `brand_id`
-- `brand` -> `id`
--

-- --
--
-- Table structure for table `event`
--

CREATE TABLE `event` (
 `id` int(11) NOT NULL,
 `description` varchar(40) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

-- --
--
-- Table structure for table `vehicle`
--

Chapter 5

[67]

CREATE TABLE `vehicle` (
 `internal_number` int(11) NOT NULL,
 `serial_number` varchar(50) NOT NULL,
 `brand_id` int(11) NOT NULL,
 `model_id` int(11) NOT NULL,
 `year` year(4) NOT NULL,
 `physical_key_id` int(11) NOT NULL,
 `color_id` int(11) NOT NULL,
 `category_id` int(11) NOT NULL,
 PRIMARY KEY (`internal_number`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- RELATIONS FOR TABLE `vehicle`:
-- `brand_id`
-- `brand` -> `id`
-- `category_id`
-- `vehicle_category` -> `id`
-- `color_id`
-- `brand_color` -> `id`
-- `model_id`
-- `brand_model` -> `id`
--
-- --
--
-- Table structure for table `vehicle_category`
--

CREATE TABLE `vehicle_category` (
 `id` int(11) NOT NULL,
 `description` varchar(40) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

-- --
--
-- Table structure for table `vehicle_event`
--

CREATE TABLE `vehicle_event` (
 `internal_number` int(11) NOT NULL,
 `moment` date NOT NULL,
 `event_id` int(11) NOT NULL,
 `person_id` int(11) NOT NULL,
 PRIMARY KEY (`internal_number`,`moment`)

Data Structure Tuning

[68]

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- RELATIONS FOR TABLE `vehicle_event`:
-- `event_id`
-- `event` -> `id`
-- `internal_number`
-- `vehicle` -> `internal_number`
-- `person_id`
-- `person` -> `id`
--

Person
--
-- Table structure for table `gender`
--

CREATE TABLE `gender` (
 `id` TINYINT(4) NOT NULL,
 `description` varchar(40) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

-- --
--
-- Table structure for table `person`
--

CREATE TABLE `person` (
 `id` int(11) NOT NULL,
 `category_id` int(11) NOT NULL,
 `gender_id` TINYINT(4) NOT NULL,
 `salutation_id` TINYINT(4) NOT NULL,
 `first_name` varchar(50) NOT NULL,
 `last_name` varchar(50) NOT NULL,
 `address` varchar(300) NOT NULL,
 `city` varchar(50) NOT NULL,
 `postal_code` varchar(20) NOT NULL,
 `phone_area` varchar(20) NOT NULL,
 `phone_number` varchar(20) NOT NULL,
 `phone_extension` varchar(20) NOT NULL,
 `email` varchar(100) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

Chapter 5

[69]

--
-- RELATIONS FOR TABLE `person`:
-- `category_id`
-- `person_category` -> `id`
-- `gender_id`
-- `gender` -> `id`
-- `salutation_id`
-- `salutation` -> `id`
--
-- --
--
-- Table structure for table `person_category`
--

CREATE TABLE `person_category` (
 `id` int(11) NOT NULL,
 `description` varchar(40) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

-- --
--
-- Table structure for table `salutation`
--

CREATE TABLE `salutation` (
 `id` TINYINT(4) NOT NULL,
 `description` varchar(40) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

-- --

Sale
--
-- Table structure for table `condition`
--

CREATE TABLE `condition` (
 `id` int(11) NOT NULL,
 `description` char(15) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
-- --

Data Structure Tuning

[70]

--
-- Table structure for table `credit_rate`
--

CREATE TABLE `credit_rate` (
 `id` int(11) NOT NULL,
 `description` char(30) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

-- --
--
-- Table structure for table `sale`
--

CREATE TABLE `sale` (
 `internal_number` int(11) NOT NULL,
 `date_sold` date NOT NULL,
 `condition_id` int(11) NOT NULL,
 `customer_id` int(11) NOT NULL,
 `salesperson_id` int(11) NOT NULL,
 `base_price` decimal(9,2) NOT NULL,
 `insurance_id` int(11) NOT NULL,
 `insurance_policy_number` varchar(40) NOT NULL,
 `preparation_cost` decimal(9,2) NOT NULL,
 `exchange_vehicle_id` int(11) NOT NULL,
 `exchange_price` decimal(9,2) NOT NULL,
 `down_payment` decimal(9,2) NOT NULL,
 PRIMARY KEY (`internal_number`,`date_sold`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- RELATIONS FOR TABLE `sale`:
-- `condition_id`
-- `condition` -> `id`
-- `customer_id`
-- `person` -> `id`
-- `exchange_vehicle_id`
-- `vehicle` -> `internal_number`
-- `insurance_id`
-- `organization` -> `id`
-- `internal_number`
-- `vehicle` -> `internal_number`
-- `salesperson_id`
-- `person` -> `id`

Chapter 5

[71]

--

-- --
--
-- Table structure for table `sale_financing`
--

CREATE TABLE `sale_financing` (
 `internal_number` int(11) NOT NULL auto_increment,
 `date_sold` date NOT NULL,
 `financial_id` int(11) NOT NULL,
 `interest_rate` decimal(9,4) NOT NULL,
 `credit_rate_id` int(11) NOT NULL,
 `first_payment_date` date NOT NULL,
 `term_years` int(11) NOT NULL,
 PRIMARY KEY (`internal_number`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

--
-- RELATIONS FOR TABLE `sale_financing`:
-- `credit_rate_id`
-- `credit_rate` -> `id`
-- `financial_id`
-- `organization` -> `id`
-- `internal_number`
-- `vehicle` -> `internal_number`
--

-- --
--
-- Table structure for table `tax_rate`
--

CREATE TABLE `tax_rate` (
 `start_date` date NOT NULL,
 `end_date` date NOT NULL,
 `rate` decimal(9,4) NOT NULL,
 PRIMARY KEY (`start_date`,`end_date`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

-- --

Data Structure Tuning

[72]

Other tables
--
-- Table structure for table `parameters`
--

CREATE TABLE `parameters` (
 `dealer_number` varchar(30) NOT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

-- --
--
-- Table structure for table `organization`
--

CREATE TABLE `organization` (
 `id` int(11) NOT NULL,
 `category_id` int(11) NOT NULL,
 `name` varchar(50) NOT NULL,
 `address` varchar(300) NOT NULL,
 `city` varchar(50) NOT NULL,
 `postal_code` varchar(20) NOT NULL,
 `phone_area` varchar(20) NOT NULL,
 `phone_number` varchar(20) NOT NULL,
 `phone_extension` varchar(20) NOT NULL,
 `email` varchar(100) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- RELATIONS FOR TABLE `organization`:
-- `category_id`
-- `organization_category` -> `id`
--

-- --
--
-- Table structure for table `organization_category`
--

CREATE TABLE `organization_category` (
 `id` int(11) NOT NULL,
 `description` varchar(40) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
-- --

Chapter 5

[73]

--
-- Table structure for table `road_test`
--

CREATE TABLE `road_test` (
 `internal_number` int(11) NOT NULL,
 `date` date NOT NULL,
 `customer_id` int(11) NOT NULL,
 `salesperson_id` int(11) NOT NULL,
 `customer_comments` varchar(255) NOT NULL,
 PRIMARY KEY (`internal_number`,`date`,`customer_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- RELATIONS FOR TABLE `road_test`:
-- `customer_id`
-- `person` -> `id`
-- `internal_number`
-- `vehicle` -> `internal_number`
-- `salesperson_id`
-- `person` -> `id`
--

-- --
--
-- Table structure for table `survey`
--

CREATE TABLE `survey` (
 `id` int(11) NOT NULL,
 `date` date NOT NULL,
 `customer_id` int(11) NOT NULL,
 `salesperson_id` int(11) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- RELATIONS FOR TABLE `survey`:
-- `customer_id`
-- `person` -> `id`
-- `salesperson_id`
-- `person` -> `id`
--

-- --
--

-- Table structure for table `survey_answer`
--

CREATE TABLE `survey_answer` (
 `survey_id` int(11) NOT NULL,
 `question_id` int(11) NOT NULL,
 `answer` varchar(30) NOT NULL,
 PRIMARY KEY (`survey_id`,`question_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- RELATIONS FOR TABLE `survey_answer`:
-- `question_id`
-- `survey_question` -> `id`
-- `survey_id`
-- `survey` -> `id`
--

-- --
--
-- Table structure for table `survey_question`
--

CREATE TABLE `survey_question` (
 `id` int(11) NOT NULL,
 `description` varchar(40) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
-- --

Summary
We improved our data structure's implementation by assessing the responsible
person for each data element and by storing this information into column comments.
We then saw how to use privileges and views to improve security, how to choose
the best storage engine per table, and how to benefit from foreign key constraints.
Performance issues were considered, and then we were presented with the final
model for the car dealer's case study.

Supplemental Case Study
Now, it's time to apply our newly learned principles to a completely different theme.
We upgrade from cars to planes, covering a simple airline system.

This chapter's case study does not pretend to encompass the full collection of data
from real airline – it's only a sample. Nonetheless, we'll see that the principles we
learned previously can be applied to build and refine a correct and coherent
data structure.

Normally, each airline has its own information system. We assume here that we have
got the mandate to build an information system that encompasses many airlines.

Results from the Document Gathering
Phase
After reviewing the airline system's current website, a booking agent's website, some
electronic tickets, and boarding passes, we gather a large amount of information.
We'll first express this information with sentences which present the system and
data exchange on a rather high level. Each sentence is followed by a list of the data
elements which we can deduce from it. An element can be present in more than
one sentence. Refer to the Tables and Sample Values section for more details about
each data element. There are also some notes that will help us in the naming and
grouping phase.

Flight 456 of Air Quebec leaves Montreal-Trudeau airport at 22:45 on October 2nd,
2007 heading for Paris's Charles de Gaulle.

The following are the data elements that can be obtained from the above sentence:

flight_number
airline_name

•

•

Supplemental Case Study

[76]

airport_name
flight_departure_moment

We need to indicate whether the airport is for departure
or arrival.

The airport code for Montreal-Trudeau is YUL and the one for Charles de Gaulle is
CDG.

The data element obtained from the above sentence is:

airport_code

Should we use the airport_code as a primary key? Maybe
not, due to space considerations.

This flight is scheduled to land at 11:30 the day after (local time).

The data element obtained is:

flight_arrival_moment

Do we need to split the date and time into two fields?
Probably not, to benefit from date and time calculations
functions (how many hours and minutes takes a flight,
taking the date into account).

An aircraft model APM-300 from Fontax services this flight.

The data elements obtained from above sentence are:

plane_model
plane_brand

Do we need to associate the plane model to a flight, but
also to which specific plane. (There can be more than one
APM-300.)

•
•

•

•

•
•

Chapter 6

[77]

The pilot on this flight is Dan Murray and the flight attendant is Melanie Waters.
Other crew members are to be confirmed.

The data elements obtained from the above sentence are:

pilot_first_name
pilot_last_name
flight_attendant_first_name
flight_attendant_last_name

We should generalize using the notion of a
crew category.

Peter Smith buys a ticket for this flight from Fantastic Tour, Inc., a booking agency.
The ticket number is 014 88417654. This is a one-way ticket.

The data elements obtained from the above sentence are:

passenger_first_name
passenger_last_name
booking_agency_name
ticket_number
ticket_type

We'll also need a primary key for the passenger and
probably for the booking agency if we don't use its code.
Should the ticket itself be represented in a table, or will
the ticket number be part of something more general like
a reservation?

For this flight, Mr. Smith is seated at 19A, located in the economy section of
the plane.

The data elements obtained from the above sentence are:

passenger_last_name
seat_id
plane_section

•
•
•
•

•

•

•

•

•

•
•
•

Supplemental Case Study

[78]

The sections available on a plane depend not only on the
plane model but also on the airline.

This ticket is non-refundable.

The data element obtained from the above sentence is:

ticket_refundability

Flight 456 can be boarded at gate number 74, 35 minutes before takeoff.

The data elements obtained from the above sentence are:

flight_number
gate_id
boarding_time

In economy class, passengers are entitled to one bag inside the cabin and two
registered bags – total weight 50 kg max. Mr Smith has one registered bag, bearing
the tag AQ636-84763.

The data elements obtained from the above sentence are:

plane_section
max_number_in_cabin_bags
max_number_registered_bags
max_weight_registered_bags_kg
tag_id

We have detected that "class" is a synonym
for "section".

There are information screens in the airport that indicate the state of each flight: on
time, boarding, delayed, or cancelled.

The data element obtained from the above sentence is:

flight_status

•

•
•
•

•
•
•
•
•

•

Chapter 6

[79]

Will need to be coded (id and description).

Two meals are served on this flight. Air Quebec has arrangements with Montreal
Chef Service for the preparation and delivery of food.

The data elements obtained from the above sentence are:

number_meals
airline_name
meal_supplier

Air Quebec owns four Fontax APM-300 aircraft but aircraft #302 (code-named
Charlie) is scheduled for repairs in October 2007.

The data elements obtained from the above sentence are:

airline_name
plane_brand
plane_model
plane_id
description
plane_event
plane_event_start_moment
plane_event_end_moment

Each plane is affectionately nicknamed, the element for
this will be "description". About the repairs, we generalize
them with the concept of events, having a starting and
ending moment.

Passenger Smith can use the quick reference code A6BCUD and his last name to
access his flight information on the airline web site.

The data elements obtained from the above sentence are:

passenger_last_name
web_site_quick_reference

•
•
•

•
•
•
•
•
•
•
•

•
•

Supplemental Case Study

[80]

Preliminary List of Data Elements
We list here the data elements as they can be deduced from the document gathering
phase. In many cases, they are not in a format already suitable for the final model
because they are prefixed with a table name. For example, a data element identified
as pilot_last_name will become the column last_name in the� pilot table.
Sample values and more detailed information about each data element appear in
the next section.

Data elements
flight_departure_moment seat_id
flight_arrival_moment plane_section
departure_airport_code ticket_refundability
arrival_airport_code gate_id
airline_code boarding_time
airline_name max_number_in_cabin_bags
airport_name max_number_registered_bags
plane_brand max_weight_registered_bags_kg
plane_model tag_id
pilot_last_name ticket_issued_on
pilot_first_name number_meals
flight_attendant_last_name web_site_quick_reference
flight_attendant_first_name meal_supplier
passenger_last_name plane_id
passenger_first_name plane_event
passenger_id plane_event_start_moment
booking_agency_name plane_event_end_moment
ticket_number flight_status

Tables and Sample Values
To prepare the list of tables, we start with the physical objects or persons we can
observe in the sentences built from the documents gathering phase. Then we have a
look at all the elements and build new tables to accommodate them.

In the following table descriptions, the table layout is followed by design comments
when appropriate.

Chapter 6

[81]

Code Tables
Usually the following tables are designed first because they are easier to model and
they are needed for establishing the relations from more complex tables.

table: airport column name sample value
*id 1

international_code YUL

description Montreal-Trudeau

The airport table could contain other columns like the address, phone, and website.

table: airline column name sample value
*id 1

description Air-Quebec

table: plane_brand column name sample value
*id 1

description Fontax

We avoid naming this table as brand because it's a too generic name.

table: meal_supplier column name sample value
*id 9

description Montreal Chef Service

table: booking_agency column name sample value
*id 1

description Fantastic Tour

Again, this table could have more details about the agency, like phone and address.
We could also merge this table with meal_supplier table by adding a code
identifying the type of company, but it's not done in the present model.

table: ticket_type column name sample value
*id 1

description one-way

Supplemental Case Study

[82]

table: crew_category column name sample value
*id 1

description Pilot

To avoid columns like pilot_last_name, copilot_first_name, we form a
crew_category table. See also the related flight_crew table later in this chapter.

table: ticket_refundability column name sample value
*id 1

description non-refundable

table: flight_status column name sample value
*id 1

description boarding

table: event column name sample value
*id 1

description repair

If we need to include other types of events in the model, this event table will have to be
renamed as something more precise like plane_event, and a new name will be needed
for our current plane_event table that is used to associate an event with a plane.

Themed Tables
These tables are more comprehensive than the code tables. Each one refers to a
specific theme that needs more columns than a simple code table.

table: plane column name sample value
*id 302

airline_id 1

brand_id 1

model_id 2

description Charlie

This table identifies which aircraft belongs to which airline, with the description
being an internal means of describing this particular aircraft within the airline. Other
fields like an aircraft serial number can be added here.

Chapter 6

[83]

table: passenger column name sample value
*id 1302

last_name Smith

first_name Peter

passport_info CDN234234

table: crew column name sample value
*id 9

category_id 1

last_name Murray

first_name Dan

Passengers and crew members cannot be physically merged into one table even
if they belong to the same flight because the set of columns used to describe a
passenger diverges from the one associated to a crew member. We'll cover in the
Sample Queries section how to produce a combined list of all persons on a plane.

table: flight column name sample value
*id 34

airline_id 1

number 456

departure_moment 2007-10-02 22:45

arrival_moment 2007-10-03 11:30

departure_airport_id 1

arrival_airport_id 2

plane_id 302

meal_supplier_id 9

number_meals 2

departure_gate 74

arrival_gate B65

boarding_moment 2007-10-02 22:10

status_id 1

Supplemental Case Study

[84]

The notion of flight is central to this system, thus we'll have a flight table. This
means that we have to determine a primary key and, at first sight, the flight number
would be a good candidate – but it's not and the reason for this is that the flight
number is not painted on an aircraft; it's only a logical way of expressing the
movement of a plane between two airports, and also the persons or companies
related to this movement. We note that the flight number is kept short – three or
four digits for improved reference on all printed matter and on airport information
screens; thus, this flight number is only meaningful when accompanied by
supplemental information, like the airline code (AQ) or company name, and a date.

Keeping in mind that there will be other tables associated with this flight table, we
have two choices here for the primary key:

create a surrogate key (an artificial primary key whose value is not derived
from other table's data)
use a combination of columns – airline_id, flight_number, departure_moment

It is better to create a surrogate key, id. This id will be propagated to the related
tables in just one column, which could help to speed up retrieval times because there
is just one field to compare between tables. Using the flight's id will also simplify the
writing of queries. Of course we include the flight number – the information known
to the public in the flight table but not as a primary key.

table: reservation column name sample value
*flight_id 34

*passenger_id 1302

web_site_quick_reference KARTYU

ticket_number 014 88417654

ticket_issued_moment 2007-01-01 12:00

booking_agency_id 1

ticket_refundability_id 1

ticket_type_id 1

seat 19A

section_id 2

It would be a mistake to include columns such as passenger1, passenger2 or
seat_1a, seat_1b in the flights table. This is why we use the reservation table
to hold passenger information related to a specific flight. This table could also be
named flight_passenger.

•

•

Chapter 6

[85]

Normally we would not need the section_id in the reservation table, ��������� since we
can refer to it via the seat_id but the seat_id may be unknown at the time of
reservation, so seat assignment can be delayed until the boarding pass is issued.

Composite-Key Tables
These tables have more than one key because some key segments refer to a code or
themed table.

table: plane_brand_
model

column name sample value

*brand_id 1

*id 2

description APM-300

Here, the brand_id and a unique id form the primary keys for the plane model. We
want to know to which brand this model refers, and still keep integers for the keys
instead of using APM-300 as a key value.

table: plane_section column name sample value
*airline_id 1

*id 1

description economy

Each airline can potentially describe the sections of their planes the way they want
– some are using hospitality instead of economy.

table: airline_brand_model_
restriction

column name sample value

*airline_id 1

*brand_id 1

*model_id 2

max_number_in_cabin_bags 1

max_number_registered_bags 2

max_weight_registered_bags_kg 50

Supplemental Case Study

[86]

table: plane_section_seat column name sample value
*airline_id 1

*brand_id 1

*model_id 2

*section_id 1

*seat 19A

The plane_section_seat table describes which seats are located in a specific section
of the aircraft. This is per airline, brand, model, and section, because different airlines
could possess the same kind of aircraft but use different seat numbers or have a
larger business section than others airlines. Also, in some cases, seats 1A and 1C
may exist but 1B may not. Thus, we need this table to hold the complete list of
existing seats.

table:flight_crew column name sample value
*flight_id 34

*crew_id 9

With these sample values, we can deduce that Dan Murray is the pilot for flight 456
of Air-Quebec. Another possible column in this table would be the status of this crew
member for this flight: arrived on time, cancelled, or replaced.

table: plane_event column name sample value
*plane_id 302

*event_id 1

*start_moment 2008-10-01

end_moment 2008-10-31

table: reservation_registered_
bags

column name sample value

*flight_id 34

*passenger_id 1302

*tag AQ636-84763

Other columns for tag tracking could be added here.

Chapter 6

[87]

Airline System Data Schema
Here again we use phpMyAdmin's PDF schema feature to display the relations
between tables and the keys involved.

Sample Queries
As a complement to the list of tables and the database schema, let's see our tables in
action! We will enter sample values into the tables, and then build some SQL queries
in order to pull the needed data.

Supplemental Case Study

[88]

Inserting Sample Values
We use the sample values described in the above list of tables. Please refer to this
book's support site�� �(http://www.packtpub.com/support) for the code download
which contains the tables' definition and sample values.

Boarding Pass
A passenger can print his or her boarding pass while at home by using the website's
quick reference for his or her reservation, which is KARTYU in our example. Here is
the generated query to retrieve the boarding pass information:

select passenger.last_name,
passenger.first_name,
flight.number,
airline.description,
flight.departure_moment,
flight.departure_gate,
flight.boarding_moment,
reservation.seat,
plane_section.description
from reservation
inner join passenger on reservation.passenger_id = passenger.id
inner join flight on reservation.flight_id = flight.id
inner join airline on flight.airline_id = airline.id
inner join plane_section on (airline.id = plane_section.airline_id
 and reservation.section_id = plane_section.id)
where reservation.web_site_quick_reference = 'KARTYU'

Executing this query retrieves these results:

Passenger List
Here, the airline wants a list of passengers for a specific flight; we use flight_id,�
which is the primary key of the flight table, and not the flight ��������������� number��������� because
flight numbers are not unique.

select
reservation.seat,
passenger.last_name,
passenger.first_name,

Chapter 6

[89]

passenger.passport_info,
airline.description,
flight.number
from reservation
inner join passenger on reservation.passenger_id = passenger.id
inner join flight on reservation.flight_id = flight.id
inner join airline on flight.airline_id = airline.id
where reservation.flight_id = 34
order by reservation.seat

Currently, this flight is not very popular, and it looks like Peter and Annie will be
able to chat together:

All Persons on a Flight
In the unlikely event of a plane crash, we might need to extract quickly the list of all
persons on a flight. The following query does just that:

select
passenger.last_name as 'last name',
passenger.first_name as 'first name',
'passenger' as 'type',
airline.description,
flight.number
from reservation
inner join passenger on reservation.passenger_id = passenger.id
inner join flight on reservation.flight_id = flight.id
inner join airline on flight.airline_id = airline.id
where reservation.flight_id = 34
union
select
crew.last_name as 'last name',
crew.first_name as 'first name',
'crew' as 'type',
airline.description,
flight.number
from flight_crew
inner join crew on flight_crew.crew_id = crew.id
inner join flight on flight_crew.flight_id = flight.id
inner join airline on flight.airline_id = airline.id

Supplemental Case Study

[90]

where flight_crew.flight_id = 34
order by 'last name', 'first name'

The results are sorted by last name and first name; note the "type" column that
indicates whether this person is a passenger or a crew member.

Summary
From the study of a few documents about an airline system, we listed the possible
data elements that become columns grouped into tables. We carefully chose the
primary key or keys for each table and built relations between these tables, verifying
that all potential data elements were included in at least one table.

Index
A
airline system, case study

about 75
all persons on a flight, sample query 89, 90
boarding pass, sample query 88
code tables 81
composite-key tables 85
data elements 80
document gathering, results 75-77, 79
passenger list, sample query 88, 89
sample queries 87
sample values 80, 84, 85
tables 80, 84, 85
themed tables 82, 84, 85

C
case study

airline system 75
car dealer 11
final structure 63

case study, car dealership
about 11
car dealer 11
data elements 22
general manager, data elements 23
sales contract, data elements 23
salesperson, data elements 23
store assistant, data elements 24
data model, building 11
example of data cleaning 27
goal 17
scope 17, 18
system goals 12

Codd’s rules 10

composite key
about 42
using 43

compound key 42

D
data

access policies 51
application level, security 53
as column name 30-32
as results 29, 30
as table name 30-32
data cleaning 27, 28
data design, with case study 11
data structure 10
data structure, changing 32
data structure, normalization 10
dependency 41
encoding 62
previleges 53
redundancy 41
security 53

data, collecting
data elements, example 22
document, gathering 19
interviews 20, 22
system boundaries, identifying 17, 18

data access policies
about 51
application level, security 53
data responsibility 51
previleges 53
security 53
views 53

data cleaning 27, 28

[92]

data dependency 41
data design

technique 10
data elements

examples 22
subdividing 28, 29
subdividing, example 28, 29
with formatting characters 29

data models
challenges 18
Codd’s rules 9
flexibility 19
relational model, overview 9

data naming
abbreviations 34, 35
about 34
consistency 36
designer’s creativity 34
MySQL issues 36
 plural form 35
problems 30-32
table name into a column name 36

data redundancy
about 41
drawbacks 41

data structure
efficiency, improoving 58
indexes 58

document, gathering
existing system 20
forms 20
general reading 19
goal 19

E
EAV. See free fields technique
Entity-Attribute-Value. See free fields

technique
entity relationship diagram 10
ERD. See entity relationship diagram

F
foreign key

about 55

benefits 55
constraint 56
defining 56

forms 20
free fields technique

about 32
drawbacks 33
example 33

I
index

about 58
creating 58
creating on composite key 58
EXPLAIN keyword 59
query optimizer 60

interviews
goal 20
perceptions 21
perceptions, example 21
relevant questions 21
chronological events, relevant questions 22
destinations, relevant questions 22
existing system, relevant questions 21
sources, relevant questions 22
urgency, relevant questions 22
users, finding 21
users, finding issues 21

M
master server 60
modular development

advantages 18
priorities 18

MySQL
BLOB datatype 62
CHAR datatype 61
datatypes 61
datatypes and storage methods 61
InnoDB 55
query optimizer 60
storage engines 54
TEXT datatype 62
VARCHAR datatype 61

[93]

N
non-relational table 12
normalization 10

P
phpMyAdmin

comments, adding to columns in table 51,
52

Display PDF schema 65
Export feature 65
PDF Page feature 63

primary key
about 10, 40
need for 40

Q
query optimizer 60

R
relational model

Codd’s rules 9
overview 9

S
second level data. See free fields technique
slave servers 60
storage engines, MySQL

about 54
architecture 54
general guideline 55
InnoDB 54, 55
MEMORY 54
MyISAM 54
NDB 55
pluggable storage engine architecture 54

surrogate key 84
system boundaries

identifying 17, 18
model flexibility 19
modular development 18

T
table layout

primary key 40
rules 40
table name, selecting 40, 41
unique key 40

table name
selecting 40, 41

tables
about 10
code tables, laying out 43
comments, adding to columns 51, 52
data encoding 62
dynamic table format 61
fixed table format 61
foreign key 55
InnoDB clause 55
InnoDB storage engine 57
list of tables 39
lookup tables 41
name, selection 40, 41
ON UPDATE CASCADE clause, used 56,

57
primary key 40
reference tables 41
referencing tables 55
rules for table layout 40
size reduction 62
structure, improoving 44
too wide table 12
unique key 40

table structure
brand_color table 66
brand_model table 66
brand table 65
comments, adding to columns in table 51,

52
condition table 69
credit_rate table 70
empty columns 45
ENUM 46
ENUM, advantages 47
ENUM, disadvantages 47

[94]

ENUM and SET, avoiding 46, 47
event table 66
gender table 68
improoving 44
multilingual application 48
organization_category table 72
organization table 72
parameters table 72
person_category table 69
person table 68
road_test table 73
Row Statistics section 62
sale_financing table 71
sale table 70
salutation table 69
scalability over time 44
SET 46
survey_answer table 74
survey_question table 74
survey table 73
tax_rate table 71
validating 48
vehicle_category table 67

vehicle_event table 67
vehicle table 67

too wide table
about 12
example 13
example, phpMyAdmin, used 14
example, problem, examining 15, 16
need for 13
script, for creating example 14

U
unique key

about 40

V
views

about 53
example 53
previleges 53
updating 54
uses 53

Thank you for buying
Creating your MySQL Database:
Practical Design Tips and Techniques

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Creating your MySQL Database: Practical Design Tips and
Techniques, Packt will have given some of the money received to the MySQL project.

In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authors@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Mastering phpMyAdmin 2.8 for
Effective MySQL Management
ISBN: 1-847191-60-6 Paperback: 248 pages

Increase your MySQL productivity and control by
discovering the real power of phpMyAdmin 2.8

1.	 Effectively administrate your MySQL databases

2.	 Manage users and privileges with MySQL
Server Administration tools

3.	 Get to grips with the hidden features and
capabilities of phpMyAdmin

Building Websites with Joomla!
ISBN: 1-904811-94-9 Paperback: 250 pages

A step by step tutorial to getting your Joomla! CMS
website up fast

1.	 Walk through each step in a friendly and
accessible way

2.	 Customize and extend your Joomla! site

3.	 Get your Joomla! website up fast

Please check www.PacktPub.com for information on our titles

Building Websites with XOOPS : A
step-by-step tutorial
ISBN: 1-904811-28-0 Paperback: 180 pages

Get your XOOPS website up fast using this
easy-to-follow guide

1.	 Simple and practical guide to XOOPS

2.	 Manage blocks, modules, users, and themes

3.	 Case study reinforces effective learning

Smarty PHP Template Programming
and Applications
ISBN: 1-904811-40-X Paperback: 250 pages

A step-by-step guide to building PHP websites and
applications using the Smarty templating engine

1.	 Bring the benefits of Smarty to your PHP
programming

2.	 Give your designers the power to modify
content and layout without PHP programming

3.	 Produce code that is easier to debug, maintain,
and modify

4.	 Useful for both Smarty developers and users

Please check www.PacktPub.com for information on our titles

	Cover
	Table of Contents
	Preface
	Chapter 1: Introducing MySQL Design
	MySQL's Popularity and Impact
	The Need for MySQL Design
	"What do I do Next?"
	Data Design Steps

	Data as a Resource
	But this is my Data!

	Data Modeling
	Overview of the Relational Model
	Rule #1
	Rule #2

	Simplified Design Technique

	Case Study
	Our Car Dealer
	The System's Goals

	The Tale of the Too Wide Table
	Summary

	Chapter 2: Data Collecting
	System Boundaries Identification
	Modular Development
	Model Flexibility

	Document Gathering
	General Reading
	Forms
	Existing Computerized Systems

	Interviews
	Finding the Right Users
	Perceptions
	Asking the Right Questions
	Existing Information Systems
	Chronological Events
	Sources and Destinations
	Urgency

	Avoid Focusing on Reports and Screens

	Data Collected for our Case Study
	From the General Manager
	From the Salesperson
	From the Store Assistant
	Other Notes

	Summary

	Chapter 3: Data Naming
	Data Cleaning
	Subdividing Data Elements
	Data Elements Containing Formatting Characters

	Data that are Results
	Data as a Column's or Table's Name
	Planning for Changes
	Pitfalls of the Free Fields Technique

	Naming Recommendations
	Designer's Creativity
	Abbreviations
	Clarity versus Length: an Art
	Suffixing

	The Plural Form
	Naming Consistency
	MySQL's Possibilities versus Portability
	Table Name into a Column Name

	Summary

	Chapter 4: Data Grouping
	Initial List of Tables
	Rules for Table Layout
	Primary Keys and Table Names
	Data Redundancy and Dependency
	Composite Keys

	Improving the Structure
	Scalability over Time
	Empty Columns
	Avoiding ENUM and SET
	Multilingual Planning

	Validating the Structure
	Summary

	Chapter 5: Data Structure Tuning
	Data Access Policies
	Responsibility
	Security and Privileges
	Views

	Storage Engines
	Foreign Key Constraints

	Performance
	Indexes
	Helping the Query Optimizer: Analyze Table

	Accessing Replication Slave Servers
	Speed and Data Types
	Table Size Reduction

	In-Column Data Encoding
	Case Study's Final Structure
	Vehicle
	Person
	Sale
	Other tables

	Summary

	Supplemental Case Study
	Results from the Document Gathering Phase
	Preliminary List of Data Elements
	Tables and Sample Values
	Code Tables
	Themed Tables
	Composite-Key Tables

	Airline System Data Schema
	Sample Queries
	Inserting Sample Values
	Boarding Pass
	Passenger List
	All Persons on a Flight

	Summary

	Index

