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Background
The Me5 is a narrow band of cells that passes immediately next to 

the periaqueductal gray (PAG) and extends from the border between 
the Pons Varolii and midbrain to the superior colliculus (upper limit of 
the midbrain). Its lower limit is rostral to the motor trigeminal nucleus 
(Mo5). Next to Me5, more medially and in front of the fourth ventricle 
is the locus coeruleus (LC), the main source of noradrenergic fibres in 
the nervous system.1 The LC and Me5 are intimately related in early 
development; the LC is important in the differentiation of Me5 neurons 
that are necessary for proper LC function.2 As shown in Figure 1 the 
Me5 is completely surrounded by the reticular formation (RF), and 
its caudal portion is its core consisting of small, multipolar, fusiform 
GABAergic cells that are rostral to the Mo5 and which we denote 
as Me5c (caudal portion of the mesencephalic trigeminal nucleus).3,4 
Conversely, the rostral portion sits in the midbrain and is comprised 
of large pseudounipolar glutamatergic cells without dendrites.5–8 
Me5 cells have gap junctions that form somatosomatic synapses 
among small groups of neurons.9–11 Each neuron is almost entirely 
covered with processes that radiate from two or more astrocytes 
(usually astrocytes cover more neurons).12 The peripheral branches 
of mesencephalic trigeminal nucleus neurons mainly innervate 
mechanoreceptors in the periodontal ligament. These receptors are 
remarkably sensitive to movement of elevator muscles in the jaw; 
they are activated by a simple touch of the teeth, only a very small 
force is needed (1N and 4N in the anterior teeth and posterior teeth, 
respectively).12–15 Moreover, Me5 periodontal mechanoreceptors may 
“fire” in the absence of stimuli.16

In humans, the stimulation of the teeth evokes sensations of 
touch, pressure and pain. The forces acting on the tooth, involve a 
movement of the element in the alveolus, induce tension in the 
periodontal ligament and cause the excitation of mechanoreceptors. 
These receptors, mechanoreceptors periodontal, are scattered in the 

tissues such as gingiva, cementum, periodontal ligament and alveolar 
bone, the receptors arranged to surround the apex, are more frequently 
subjected to intense and prolonged stimuli. Morphologically we 
distinguish three types of nerve endings: free, Ruffin-like corpuscles 
and Pacini-like lamellar corpuscles. The receptors are innervated 
by afferent fibres whose cell body lies or in the ganglion of Gasser 
(TG), or in Me5. Recordings affected in the Me5 nucleus have shown 
the presence of neurons that respond to solicitations of teeth, hard 
palate, and the opening of the mouth.17–19 The receptors belonging to 
the Gasser ganglion (TG) and those relating to Me5 (Me5) have a 
different topographic distribution, with Me5 concentrated around the 
root tip. As we have seen the force required to activate the receptors 
of the nerve endings of Me5 is minimal (1N for the front teeth and 
4N for the back). Most of the peripheral fibres of the Me5 neurons 
run in the mandibular branch of the trigeminal. A collateral branch 
of the fibres of these neurons project directly, through the trigeminal 
mesencephalic tract, to the trigeminal motor nucleus. Within this arc 
reflex originates the masseteric reflex that determines the contraction 
of the masseter muscles in response to a pressure exerted on the 
mandibular teeth or to the lowering of the lower jaw. The central 
branches go to the motor trigeminal nucleus, reticular parvocellular 
area, and dorsolateral midbrain RF (dorsal raphe nucleus [DRN] and 
lateral dorsal nucleus of the tegmentum [LDT]). When they descend 
through the Varolio’s bridge as the “stretch of Probst,” they cross the 
dorsolateral bulb at the level of the dorsal nucleus of the vagus nerve, 
pass into the lateral tegmental field, and terminate in the spinal cord 
at the level of the caudate trigeminal nucleus up to C1/C3.20 Passing 
through the large neurons of the nucleus Probst, located ventrally to 
the solitary tract, they reach the hypoglossal nucleus, trigeminal main 
sensory and caudate nucleus, solitary nucleus, and eventually the 
supratrigeminal nucleus.21 

The nerve cells of the midbrain’s RF, in particular those of 
the DRN and LDT, both directly and through the thalamus, send 
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Abstract

In this work we will outline some unknown aspects of the teeth functions, details of 
their innervations and its relationship with cognitive performance and what happens 
when the teeth are lost. We will address the relationship between teeth and sleep and 
will explain how the teeth activate the ascending reticular activator system (ARAS) 
nuclei and allow the cerebral cortex to respond to any environmental or physiological 
needs even when sleep is profound. This infers that teeth are an important structure not 
only for chewing or the smile but also for a better functioning of our central nervous 
system (CNS); and explaining this correlation, between teeth and brain, is the object 
this paper. It appears that without teeth there is a great loss of cognite functions. The 
tie between the mouth and the brain is the mesencephalic trigeminal nucleus (Me5): 
a unique nerve formation as it contains the cell bodies of primary afferent sensory 
neurons; it is the only site of intra-neuraxial ganglion.
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widespread a specific projections to the entire cortex and form part 
of the ARAS. The Me5 provides glutamatergic signaling to Mo5 via 
its large pseudounipolar neurons and GABAergic signaling from its 
small Me5c neurons. Some branches of Me5 carry on up towards the 
higher colliculi and to the nuclei of the hypothalamus orexinergic.22–24

Figure 1 Posterior (dorsal) view.

Introduction
Every time we open or close the mouth and the teeth are touching, 

the Me5 is activated and activates some nuclei of ARAS, in particular 
those orexinergic and cholinergic, in this way actively participating in 
the nonspecific activation of the cerebral cortex. We can verify these 
claims through studies carried out on the mastication of chewing gum 
during an intelligence test; they show that the forced activation of 
the Me5 nerve endings leads to an increase in intelligence, meant as 
improved performance, accuracy, memory etc..25–28 Vice versa tooth 
loss leads to a decrease in cognitive performance.29–36 But in what 
manner Me5 exerts its action on the CNS? As we have already said, 
every time that the teeth touch the Me5 is activated it activates some 
nuclei of ARAS, and participate in the nonspecific activation of the 
cerebral cortex; this facilitate all the process that are happening. 

The absence of teeth in edentulous, subtracts to our SNC this 
property making the cortex deprived of a part of nonspecific 
activation, so less ready to respond to any solicitation. The lack of or 
poor response to environmental stimuli not only makes less effective 
the response of our SNC but also involves its deterioration due to the 
LTD phenomenon (long-term depression) that leads to a progressive 
decrease in the number of synapses. Conversely when the Me5 is active 
and effective, the LTP (long term potentiation) increases the number 
of synapses making our SNC more efficient. Bruxism is the moment 
in which the teeth touch each other with greater force and, therefore, 
is the time in which the Me5 is more active but bruxism is especially 
nocturnal: it is effective in a time of day in which, apparently, no 
particular “intelligence” is needed; rather it is the moment when our 
SNC works at its minimum, especially in the NREM stage.

What thus the Me5 doing during sleep?

Hypothesis: According to actual literature sleep bruxism is a 
parafunction and needs to be treated as such; we think that sleep 
bruxism has a more profound effect on the brain: it is responsible 
to maintain a constant level of arousal during sleep that can be used 
by the brain to react to unexpected situations. Sleep is, according 
to the classification dell’AASM (American Academy of Sleep 
Medicine; Schulz 2008), an active phenomenon, has a well defined 
temporal sequence, macro-structurally characterized by alternating 
between NREM sleep or slow or synchronized and REM sleep or 
rapid or desynchronized. In humans NREM sleep is divided into three 

different stages: N1, N2, N3. Each stage is distinguished by a greater 
degree of depth and a different brain activity. Already in 1930 von 
Bursar, studying patients with encephalitis accompanied by insomnia, 
he had suggested the presence of a “sleep center” at the hypothalamic 
level, particularly in the preoptic area/basal forebrain (30-von Bursar, 
1930). In the preoptic area, there are two essential nuclei for the 
creation of NREM sleep: the ventrolateral preoptic nucleus (VLPO) 
and the median preoptic area (MNPO). The neurons of these two 
nuclei use inhibitory neurotransmitters such as GABA and galanin 
(Gal), to stimulate sleep.37 In promoting sleep are also involved 
other substances such as adenosine, Substance P, interleukin 1 beta, 
RFGH, Prostaglandins etc.; but the most important neurotransmitter 
remains the GABA of hypothalamic production.38,39 With the increase 
of GABA decreases the production of Ach, Histamine, 5-HT, orexin, 
NA etc.,40,41 and when the GABA level is quite high, is triggered an 
intrinsic mechanism in the brainstem: the of Me5. 

The Me5 is constituted for the most part from pseudounipolar cells, 
devoid of dendrites and, therefore, insensitive to GABA (they are also 
coated with several layers of glial cells that improve the isolation 
from the action of any other neurotransmitters); its caudal termination 
(Me5c), however, is made up of small multipolar cells, typically 
GABAergic that, at the beginning of sleep, inhibit Mo5 (Me5c the 
cells are situated opposite to those of the Mo5). When the GABA level 
is high enough it inhibits Me5c and Mo5 is uninhibited; masticatory 
muscles contract, in some cases so intensely as in RMMA (Rhythmic 
masticatory Muscle Activity), a fairly common event especially 
during NREM sleep; the teeth that are touching activates even more 
Me5 that, in turn, actives the ARAS nuclei always maintaining 
a certain degree of activation of these nuclei and, of course, of the 
cerebral cortex (arousal). Meanwhile the GABA de-activates the 
ARAS, the nonspecific activation; at the same time the Me5 produces 
a cyclic activation such as to allow us respond to any physiological 
or enviroinmental needs. In addition to the macro-structural sleep 
stages NREM and REM, a microstructure has been identified within 
the NREM stage by means of an electroencephalogram (EEG). This 
microstructure consists of alternative fluctuations characterized by 
sleep “superficialization”. This kind of EEG tracing is called CAP 
(cycling alternating pattern) and can continue to occur for either short 
or long periods and can be interrupted by periods of normal EEG 
activity, which is organized according to the characteristics of that 
macro-structural phase (non-CAP tracing or NCAP). As shown in 
Figure 2, each CAP cycle is formed by alternating sequences of two 
kinds of EEG patterns called A-phase and B-phase. The A-phase is 
considered an activation phase that includes either high-voltage slow 
waves or low-voltage fast waves. It occurs with a frequency of about 
10 seconds and makes up about 40% of the entire cycle. This phase 
is characterized by temporary increases in the level of consciousness, 
muscle tone, and vegetative functions and represents the expression of 
activation of neuronal systems during sleep. 

The CAP A-phase is divided into three different 
subtypes: A1, A2, and A3

Functionally, CAP represents an index of the arousal level that 
goes from a high (A-phase) to a low arousal condition (B-phase). 
This instability may be due to various individual internal and external 
factors. This instability of arousal is associated with a corresponding 
activation of various polysomnographic (PSG) parameters (EEG, 
muscle tone, cardio respiratory frequency) during the A-phase. 
However, all these parameters return to their baseline values during 
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the B-phase. The existence of a “permissive window” during NREM 
sleep has been hypothesized, which may occur during the A2 and A3 
sub-types to facilitate the occurrence of pathological events. On the 
other hand, the B-phase may work to oppose such events. This process 
is defined as the gating effect and has been reported in literature 
relating to various types of sleep disorders including bruxism,42 
periodic limb movement (PLM), obstructive sleep apnea syndrome 
(OSAS), epileptic anomalies, and insomnia.43–45 The B-phase, on the 
other hand, has been closely associated to sleep apnea, with breathing 
returning to normal in the A-phase.46

Figure 2 CAP sequences.

Why do the A phases of CAP allow for these 
pathological events?

The difference between the A and B phases is that in the latter, the 
GABA inhibitory effect prevails in the brainstem, while the former 
is characterized by an increase in levels of ARAS neurotransmitters, 
mainly NA and Ach. These neurotransmitters stimulate the cerebral 
cortex, resulting in an increase in arousal, as shown by EEG recordings 
in phase A of CAP. In every CAP phase, especially those with the A2 
and A3 subtypes, there are periods of very high-frequency EEG and 
sympathetic nervous system activity. At the end of these episodes, 
EMG tracing sometimes reveals rhythmic masticatory muscle 
activity (RMMA) with an average frequency of 1.8 occurrences per 
sleep hour in non-bruxism sleepers.47,48 RMMA occurrences are the 
PSG representations of sleep bruxism (SB), but are not associated 
with teeth grinding, orofacial pain, or other disorders. Most RMMA 
occurrences are observed in the NREM phase, with fewer occurring in 
the REM phase For example, in one study, which analyzed 69% of SB 
episodes, 6% occurred in phase N1, 64% in phase N2, 10% in phase 
N3, and 21% occurred during REM sleep.49

Discussion
Approximately 85% of SB episodes occur in a specific 
order

In the 4-8 minutes preceding muscle activation, there is an increase 
in sympathetic autonomic activity in the heart caused by a decrease 
in the parasympathetic effect. In the 4 seconds preceding muscle 
activation, there is an increase in high frequency cortical activity 
(micro-arousal, as seen in the EEG). In the last second preceding 
muscle activation, there is a simultaneous increase of about 25% 
in heart rate and of about 100% of the respiratory effort amplitude. 
Likewise, there is a simultaneous increase of the tone of the suprahyoid 
muscles and respiratory tracts. RMMA occurs following this sequence 
of events. SB episodes occur in clusters (75.8%) and are characterized 

by micro arousals that last between 3 and 10 seconds. During this 
period of time, cerebral, cardiac, and respiratory activity, as well 
as muscle tones are regenerated and RMMA/SB occurs. RMMA 
episodes happen in 58% of the adult population. Therefore, RMMA is 
a normal physiological sleep activity, often associated with the A2 or 
A3 subtypes of A-phase CAP. 

With a calm patient, in a protected environment (such as in a clinic) 
and in the absence of external stimuli, a PSG recording that reveals 
occurrences of CAP indicates that cortical activation is derived solely 
by internal stimuli. Because the majority of physiological functions 
are monitored by PSG and video recording without signs of activation, 
we assume that during clinical recording CAP cortical activation is 
due to the ARAS nuclei. However, these nuclei are subject to the 
GABA inhibitory effect. Furthermore, only the Me5 can activate the 
ARAS nuclei because its cells lack dendrites protection by glia cells 
from the effect of many neurotransmitters; in this case, GABA.26 As 
mentioned above, Me5 periodontal and intramuscular terminations 
are extremely sensitive;12–14 the Me5 periodontal mechanoreceptors 
may also fire spontaneously without stimuli.16 Me5 cells also have 
electrical synapses (gap-junctions) and can form somato-somatic 
synapses between two neurons or among small groups of neurons. 
These gap-junctions are able to promote communication with other 
cells, inducing them to become active, thereby causing CAP. When 
clinical EEG and EMG recordings are simultaneously performed 
and show one CAP (possibly during A2 or A3) and one RMMA, it 
can be assumed that the two effects are related to the same event, 
namely activation of RMMA and more specifically, the Me5. This can 
be assumed because Me5 activation causes the activation of ARAS 
nuclei, which in turn produces arousal and therefore CAP However, 
a noise normally causes arousal, as indicated by a CAP in the EEG. 
But why should the occurrence of a CAP corresponding to a RMMA 
be attributed to a “permissive window” and not to the RMMA? In 
an unprotected environment there are combinations of CAP events 
due to external and internal factors in addition to Me5. However, 
during the protected environment of a PSG, in the absence of any 
patient physical activities, we can be certain that episodes of CAP 
are solely due to the activation of ARAS nuclei by the Me5. This 
is especially true when these episodes occur within the A2 and A3 
subtypes which temporally correspond to the RMMA (as seen in the 
EMG). In a clinical environment, CAP episodes can be attributed to 
Me5 activity even when they do not occur at the same time as those 
of RMMA. In addition the Me5 nucleus is the only nucleus that is 
not inhibited by GABA that can also activate ARAS nuclei. No other 
nuclei present these two properties. Thus, the A phases of CAP that 
occur during PSG recording in a protected environment represent 
the EEG recording of Me5 activity, even in absence of RMMA due 
to Me5’s ability to fire spontaneously.16 RMMA represents periods 
of high Me5 activation. CAP is then characterized by an increase 
of arousal (activation of the ARAS nuclei by Me5) and sympathetic 
activity (LC activation by Me5). Other Me5 target cells are Me5c and 
Mo5. At regularly occurring intervals and during NREM phases N1, 
N2, and N3, the Me5 fires “spontaneously”, releasing GLU in the 
ARAS, Me5c, and Mo5 nuclei. This allows the Me5c to “contrast” 
GABA’s inhibitory effect, making sleep deeper and more restorative 
by producing the higher GABA concentrations required for Me5 
inhibition. Also, this mechanism allows Mo5 to be “ready” to become 
activated immediately after Me5c inhibition. In conclusion, the Me5 
mechanism probably becomes necessary because sleep is naturally 
dangerous when there are high GABA concentrations, as too many 
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cells become non functional, creating a potentially perilous situation. 
For example, sleep apnea is frequent during the N or B CAP phases, 
when GABA levels are very high and probably inhibit respiratory 
centres.50 Basically, if the RMMA is activated it means that Mo5 is 
enabled and therefore that Me5c is deactivated and, since we are in the 
sleep phases, can happen only due to the action of GABA.

Conclusion
There are number of supporting proofs for our hypothesis. First, 

Me5 is present in the midbrain and not in the Gasserian ganglion 
(its location may be due to an evolutionary advantage related to its 
function). Second, it has been shown that activation of the cerebral 
cortex is caused by simple mastication of chewing-gum.50,51 Third, 
there is evidence that the use of pacifiers reduces sudden infant death 
syndrome (SIDS) mortality in infants. Fourth, studies have revealed 
the presence of the same kind of lesions found in children who died 
from SIDS and test subjects that underwent bilateral lesion of Me5 
fibres.52

Fifth and most important are the findings relating to 
CAP

In physiological conditions, such as when a patient sleeps at home, 
CAP can be caused by many factors. However, during CAP recording 
in a protected environment (such as in a clinic), the occurrence of CAP 
can be triggered only by internal factors. In fact, when the majority of 
the body functions are monitored by PSG and sleep activity monitors, 
it can be assumed that CAP is due to the activation of one or more 
of the ARAS nuclei from Me5. This is further confirmed when 
simultaneous EEG and EMG recordings show the presence of CAP 
and RMMA, respectively, as often occurs with CAP with A2 and 
A3 subtypes. This also confirms that Me5 activation causes arousal 
and therefore activation of ARAS nuclei. All individuals have CAP; 
however, only 58% have RMMA. 

In other words, the Me5 is activated in all individuals, but only in 
58% of the cases does this activation occur in the manner described 
above, giving rise to the A2 and A3 subtypes of CAP that temporally 
correspond to RMMA. GABA is naturally the key of this process: 
when GABA levels are high, they inhibit Me5c, activating RMMA. 
On the other hand, low GABA levels can cause decrease in RMMA. 
In any case, the Me5 naturally remains active and can be responsible 
for the CAP A1 subtype characterized by inactivation of muscle tone 
and tonic touch of teeth. This activation of Me5 stimulates the release 
of NA and Ach from VLPO, which are the main GABA inhibitors.
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