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Abstract

We introduce the Vacuum Breathing Theory (VBT), in which spacetime is mod-
eled as a single, globally synchronized oscillator—a universal “lung” that breathes
isotropically at the Planck frequency with Planck-scale amplitude. Unlike approaches
that invoke local phases or desynchronized fluctuations, VBT postulates one coher-
ent global rhythm. Matter and fields arise as resonant standing waves and envelope
modulations riding on this universal carrier.

From this postulate, atomic stability, photon emission and absorption, electro-
magnetism, and gravitation emerge as different facets of the same breathing sub-
strate. Local curvature corresponds to amplitude suppression of the breathing, while
quantum phenomena reflect envelope detunings relative to the global carrier. Cosmo-
logically, the same mechanism produces redshift scaling and time-dilation consistent
with observations, while predicting distinctive signatures such as redshift drift.

The theory is falsifiable: it reproduces benchmarks including hydrogen spectra,
Casimir forces, and weak-field gravitational effects, but also predicts small spec-
troscopic shifts, vacuum birefringence, and measurable deviations in cosmological
redshift evolution. VBT therefore offers a unified, testable framework in which mi-
croscopic and cosmic phenomena share a single synchronized heartbeat of spacetime.
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1 Introduction

Modern physics rests on two towering frameworks: quantum mechanics and general relativ-
ity. Each has been spectacularly successful within its own domain, yet they remain conceptually
and mathematically disjoint. Quantum theory, from Planck’s discovery of the energy quantum [1]
through Bohr’s model of the atom [2] and Schrédinger’s wave mechanics [3], describes microscopic
structure with extraordinary precision. General relativity, beginning with Einstein’s formulation
in 1916 [4], explains gravitation as spacetime curvature and accounts for astrophysical phenomena
across scales. Cosmology, from Hubble’s redshift relation [5] to the precision of the Planck satel-
lite results [6], has revealed a universe whose dynamics challenge both frameworks, requiring dark
matter and dark energy in the standard account.

At the same time, several foundational puzzles remain unresolved. The physical interpretation
of quantum mechanics leaves open questions about wave—particle duality, entanglement, and un-
certainty. Gravitation has resisted quantization, while the vacuum itself is alternately invoked as
a source of infinite zero-point energy or as an otherwise featureless stage. Observables such as the
Casimir effect, Lamb shift, and magneto-optical phenomena highlight the subtle interplay between
matter, radiation, and the vacuum substrate.

In this paper we advance a unifying postulate: spacetime is a single, globally synchronized fab-
ric that “breathes” isotropically at the Planck frequency, with a peak-to-peak displacement of one
Planck length per cycle. This universal rhythm acts as the carrier upon which all physical phenom-
ena are built. From this simple assumption, atomic structure, electromagnetism, gravitation, and
cosmology emerge as different manifestations of the same substrate. The remainder of the paper
shows how this Vacuum Breathing Theory (VBT) reproduces established observables across scales
while providing fresh interpretations of long-standing puzzles. Dimensionless constants such as the
fine-structure constant o and the electron—proton mass ratio remain invariant, ensuring consistency
with laboratory physics. In parallel with this theoretical development, a concrete experimental pro-
posal has been published for testing the temporal structure of single-photon emission with trapped
ions, providing a direct falsifiability pathway for the present framework using equipment already
available in most atomic, molecular, and optical (AMO) physics laboratories [7].

2 Vacuum Breathing Postulate

We postulate that the vacuum is an isotropic, elastic medium undergoing a global, symmetric
breathing at the Planck frequency. Ideas treating spacetime (or vacuum) as an elastic, deformable
medium have been explored in prior work [8-10], offering conceptual parallels to—but distinct
from—the Planck-frequency breathing dynamics proposed here. The breathing modulates the local
scale of space by

s5(t) = s [1 4+ e cos(wpt)] (1)

where sg is the mean spatial scale, wp = t;l is the Planck angular frequency, and € is the fractional
amplitude. We choose ¢ such that the peak-to-peak scale change equals one Planck length per
Planck length unit:

Smax _ l1+e&
Smin 1—¢

2 = e= (2)

Wl

The physical metric is taken to be conformally related to the Minkowski metric:

G (t,x) = Q2(t, X) Ny Qt,x) = A(t) [1 + a(x)]. (3)



Here A(t) is the strictly global, perfectly synchronized Planck-frequency breathing (one universal
clock), while a(x) encodes small, slowly varying amplitude suppressions near mass—energy. There
are no spatially varying carrier phases in VBT.

No local phases. In VBT the Planck-carrier phase ®p(t) = wpt is universal and synchronized
across the entire universe. Any “phase” mentioned elsewhere refers to the matter-wave envelope
phase of a system, not a spatially varying vacuum carrier phase.

In the absence of local modulation (#,« = 0), the breathing is a pure conformal scaling that
preserves light cones and yields no observable effect at low energies.

2.1 Vacuum Breathing Scale Factor

The instantaneous breathing factor of the vacuum is denoted A(t). This dimensionless quantity
rescales physical lengths according to

Lphys(t) = A(?) Leomoving-

Definition of the mean amplitude. We define the slow mean of this oscillation by a Planck—cycle
average:

Amean(t) = (A(2)), (4)

where the angle brackets denote averaging over many cycles of the fast Planck—frequency oscillation.
This mean evolves cosmologically from 0.5 shortly after the Big Bang toward 1 as the vacuum
smooths.

Multiplicative decomposition. It is convenient to separate the slow mean from the fast oscil-
latory component multiplicatively:

A(t) = Amean(t) exp(§(t)),  (&(t)) =0. (5)

Here £(t) is a rapidly varying Planck—frequency phase with vanishing mean and decreasing variance
over cosmic history. In the limit of vanishing breathing, & — 0, the instantaneous scale factor
reduces to the mean: A(t) — Amean().

Planck-scale bound. The Planck length ¢p imposes a lower bound on physical lengths. Since
Lphys(t) = A(t) Leomoving With A(t) = Amean(t) exp(£(t)), we require

Amean(t) eXp({(t)) Lcomoving > UIp. (6)

This inequality constrains the allowed excursions of the oscillatory component &(t), ensuring that
the breathing never pushes physical lengths below the Planck floor.

Absolute vs. fractional oscillation. The peak-to-peak excursion of the breathing remains fixed
at one Planck length, even as the cycle-averaged amplitude Apean evolves cosmologically. What
changes is the fractional modulation € = AA/Apean: as Amean grows, the relative oscillation be-
comes smaller when measured against co-moving rulers that themselves scale with Apean. This
ensures that dimensionless ratios remain invariant in local physics.

Crucially, the 2x modulation of the Coulomb field, which stabilizes atomic orbitals, arises from
the instantaneous rescaling of the metric (1/A2(¢)) rather than from the absolute fractional size
of €. Thus the forcing mechanism is preserved across cosmic time, even though the fractional
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Figure 1: Schematic illustration of the breathing vacuum scale factor. The instantaneous oscillation
A(t) (blue) occurs at constant frequency, bounded between a fixed top peak (dashed black) at
1.0 and a bottom peak (dashed red) that rises from 0.5 toward 1.0 as the universe evolves. The
mean Apmean(t) (orange) drifts smoothly upward, representing the cycle-averaged amplitude defined
in Eq. (4). The shaded band shows the peak-to-peak breathing envelope. The dotted purple line
marks the Planck floor £p, which constrains the early-time oscillations as expressed in Eq. (6). The
breathing frequency is constant in physical time; the envelope narrows because the amplitude decays,
not because the rate changes.

oscillation amplitude diminishes. This distinction between absolute Planck-length excursion and
relative modulation resolves the apparent tension between vacuum breathing and long-term stability
of matter.

On the constancy of Planck’s constant. In the present framework the Planck length /p =
/hG/c3 is tied to the breathing amplitude of the vacuum and thus evolves over cosmic history.
At first sight this seems to imply a varying A, which would undermine the foundations of atomic
physics. The resolution is that Ak is operationally constant: all atomic processes that define our
standards of length and time (orbital radii, transition frequencies, binding energies) co-evolve with
the breathing vacuum. As a result, every local measurement yields the same numerical value for £,
even if the underlying vacuum scale drifts. In this sense, A is relational rather than absolute. Only
in cosmological comparisons (e.g. between epochs, via redshift) can the slow drift of the vacuum
amplitude be inferred. What carries invariant meaning are the dimensionless ratios, such as the
fine-structure constant o = e?/(4mweghc), which remain fixed.

Interpretation. All clocks, rulers, and physical processes are tied to the cycle-averaged vacuum
amplitude Apean(t). In this sense it represents the effective spacetime that we inhabit: the smooth
background against which the rapid Planck oscillations occur, and the reference scale for both
microscopic atomic stability and macroscopic cosmological redshift.



Dimensionless invariants. In the VBT framework, all dimensionless constants of nature remain
fixed. For example,

e? Me

a = —— — g-factors
deghc’ mp’ ’

retain their observed values. This follows because laboratory rulers and clocks co-evolve with the
breathing vacuum, so dimensional scales drift together while pure ratios remain unchanged.
2.2 Symmetry and gauge invariance

The vacuum breathing picture is formulated without introducing a preferred frame. The under-
lying dynamics are governed by an action of the form

— iF#yFW/ + Ematter(wa D;ﬂﬁ) ’

S—/d4x\/jg

with g, = a2(7') N a conformally flat metric, F),, = d,A, —0,A,, and D, = 9, +ieA, the usual
gauge-covariant derivative. This structure guarantees:

e Local Lorentz invariance: In conformal coordinates the metric is proportional to 7,,, so
the light cone and causal structure are identical to special relativity. No observer can detect
the background oscillation as a preferred rest frame.

e Gauge invariance: The action is invariant under the U(1) transformation A, — A, + d,«,
1 — e **1). Thus charge conservation and minimal coupling are preserved exactly.

e Consistency with standard QED: At scales large compared to the Planck-frequency os-
cillation, the averaged dynamics reduce to Maxwell 4+ Dirac in Minkowski space. Observable
quantities therefore respect the same symmetry algebra (Poincaré x U(1)) as conventional
electrodynamics.

In this way, the vacuum breathing medium does not introduce an observable preferred frame
or break gauge symmetry. The oscillatory factor a(7) enters only through cycle-averaged effective
parameters such as fig and m*, while the symmetry principles remain exact.

The Vacuum Breathing Theory was first publicly released in Rev. 1 on Zenodo [11], with
subsequent revisions expanding the scope and predictions.

3 Quantum Mechanics as an Envelope on the Planck Carrier

Let ®p(t) = wpt be the carrier phase of the vacuum breathing [1]. The slowly varying component
of a matter wave is described as an envelope A, riding on the Planck carrier. We model a matter
wave as a weakly detuned beat pattern riding on this carrier,consistent with the early insights of de
Broglie on matter waves [12]:

U(x,t) = A(x, ) e! (PP Te0] (7)
where:
o A(x,t) is a slowly varying amplitude envelope.

e o(x,t) is a slowly varying phase detuning.



e The “slow” scale is many orders of magnitude below wp.
Applying a multiple-scale expansion to the wave equation in the conformal metric
|:]g\II =0, Juv = Qz(tvx)nuuv
and averaging over the fast carrier yields, at leading order, the Madelung form [13] of the Schrodinger
equation for the envelope [3]:
ihO A = =5 —V2A 4 Verr(x) 4, (8)
where:

e e 1 arises from the carrier—envelope detuning:

m = , Odw=wp— Wphase-lock

héw
2

o Vg arises from spatial gradients of the amplitude suppression a(x) (i.e. curvature encoded
as local reductions of the global breathing midpoint). There are no spatially varying carrier
phases in VBT.

Key Point: The de Broglie relations emerge directly [12]:
E=h¢, p=hVe,

as the slowly varying phase ¢ determines the beat frequency and wavenumber relative to the Planck
carrier. Standing-wave conditions on A in bound states produce the quantum orbital structure, with
radial nodes corresponding to vacuum-relative velocity maxima [2].

3.1 Madelung representation.

Writing the complex amplitude as A = \/ﬁei¢, the Schrodinger equation separates into hydro-
dynamic form:
op Vo
—+V. =0 = —. 9
LIV =0,  v=" 9

Here p = |A|? acts as a probability density, while v plays the role of a velocity field. This reinforces
the fluid analogy of the breathing vacuum substrate.
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Figure 2: Left: A high-frequency Planck carrier (blue) modulated by a slower Gaussian envelope (red
dashed). This illustrates the decomposition A(t) = Amean(t) exp(£(t)), where the carrier provides
phase and the envelope sets |A|?> = p. Right: Spatial probability density |¥(x,t)|? for a breathing
Gaussian wavepacket, visualized as a function of position and time. Together these figures show
how the Madelung representation naturally emerges: the envelope defines density p while the phase
encodes velocity potential.
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Figure 3: Three-dimensional visualization of a breathing Gaussian wavepacket. The spatial proba-
bility density |¥(z,t)|? evolves in time as the packet width oscillates. This illustrates the Madelung
interpretation: the density p = |¥|? encodes the envelope, while the underlying Planck-frequency
carrier provides the hidden phase dynamics.

Uncertainty as an Envelope Constraint: Within this framework, the Heisenberg uncertainty
principle [14] arises naturally. A sharply localized envelope A(x,t) requires broad Fourier support



in p(x,t), and hence large spread in momentum:
Az Ap 2 h/2.

Likewise, confining the envelope phase ¢ to a narrow frequency band implies loss of temporal

localization, leading to
AtAE 2 h/2.

Thus, uncertainty is not an abstract axiom but a direct consequence of attempting to resolve both
the amplitude and the phase of the slow modulation imposed on the Planck-scale carrier. The
uncertainty relation emerges as a geometric constraint [15]. The vacuum breathing provides the
“hidden clock” that makes these conjugate trade-offs unavoidable [16].

While the envelope—carrier geometry provides the intuition for uncertainty, the full wave treatment
reproduces the exact Robertson bound:

Az Ap > h/2,

with equality achieved for Gaussian envelopes. Thus the heuristic picture is fully consistent with
the formal operator derivation.

These complementary views (Figs. 2-3) emphasize that quantum uncertainty is a direct manifesta-
tion of the envelope—carrier decomposition of the breathing vacuum.

4 Atomic model

In this section we derive the hydrogenic bound states from the averaged vacuum dynamics,
confirm the analytic distributions with numerical validation, and provide interpretive visualizations
of orbital motion. Further validation examples (2s, 2p) and a higher-state illustration (3d,2) are
included in Appendices H and A.

4.1 Setup and motivation

We consider an electron bound in the breathing vacuum, with radius r(t) = a(t)x(t), where a(t)
encodes the rapid Planck-frequency oscillation and x(¢) the slow envelope. The Bohr radius ag and
the averaged Hamiltonian derived in Sec. 4.4 provide the natural scale.

4.2 Resonance picture and factor-of-two compliance

The hydrogen atom can be interpreted as a resonance: the de Broglie frequency of the electron
orbit is phase-locked to the breathing frequency of the vacuum. Expanding the modulated Coulomb
force,

1

5 =1 — 28acoswt + 36a? cos®> wt — .. ., (10)
(1+ dacoswt)

reveals the characteristic factor-of-two term. This is not a unique requirement but rather a com-
pliance condition: it shows how the cycle-averaged kinetic and potential energies satisfy the virial
balance implied by the averaged Hamiltonian (Sec. 4.4).

Figure 4 illustrates this compliance in two ways. Panel (a) compares a direct simulation of the
radial probability density, constructed with the Bohr radius and a Coulomb force modulated at the
de Broglie frequency, against the analytic 1s hydrogen distribution. The close match confirms that

10



the resonance condition yields the correct radial statistics. Panel (b) shows the vacuum breathing
amplitude (blue) together with its envelope (orange), making the factor-of-two modulation explicit.
Together these plots provide a physical visualization of how the resonance picture naturally enforces
stability of the ground state, consistent with the analytic derivation of Sec. 4.4.

1e10 Comparison of Simulated Envelope vs Analytical 1s Hydrogen Vacuum Breathing Modulated by Electron Motion (Zoomed In)
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(a) Radial probability density (b) Vacuum breathing modulation

Figure 4: Resonance compliance in the hydrogen ground state. (a) Comparison of simulated
radial distribution using Bohr radius and modulated Coulomb force at the de Broglie frequency with
the analytic 1s hydrogen distribution. (b) Vacuum breathing amplitude (blue) and its envelope (or-
ange) showing the factor-of-two modulation. These illustrate how the resonance condition enforces
kinetic—potential balance, consistent with the analytic derivation in Sec. 4.4.

4.3 From conformal wave operator to envelope dynamics

Lemma 4.1 (Envelope dynamics from conformal wave operator). Consider a scalar field ¢ obeying
the conformal wave equation

ngs = 07 g[U/ = a2(t) nMVa a(t) = 1 + ECOS(WPt), € << ]-7

with 1, the Minkowski metric and wp the fast carrier frequency. Introduce the multiple—scales
ansatz '

P(t,x) = “Plap(t,x) + c.c., Op ~ O(werp) < wp,
where 1 is a slowly varying envelope. Then, to leading order in worp/wp and after averaging over
the fast oscillations, 1 satisfies the Madelung form of the Schridinger equation:

h2
iheg O = —5 T2 + Ve,

with effective parameters determined by cycle averages of the breathing factor:
k*
m* =m (a?), hgﬁ x m{a?), Vep(x) = — —, k* =k{a").
r
Sketch of proof. For the conformal metric one has

Oy = a? O (a277“”8,,¢) .

Substituting the two-scale ansatz separates the fast e®?? carrier from the slow envelope. Expanding
in € and in weh/wp, then averaging over one fast period, eliminates oscillatory terms and leaves
transport equations for |¢|2 and its phase S = argi. These combine into continuity and Euler
equations with a “quantum pressure” proportional to (a2). Identifying this with A reproduces the
stationary Schrodinger system with effective constants as stated. O

11



Remark. This establishes the bridge from a conformal metric with fast Planck—scale oscillations to
an effective quantum envelope description. The following subsection (§4.4) shows that the resulting
envelope equation yields hydrogenic bound states with the correct spectrum.

4.4 Derived bound states

We now apply the envelope dynamics from Lemma 4.1 to obtain the hydrogenic spectrum. The
following result makes the connection explicit.

Theorem 4.1 (Hydrogen from the averaged fabric dynamics). Under the scale separation wp >> worp
and the averaging leading to (14), the slow envelope obeys (15). Its square-integrable solutions are
the hydrogenic bound states with

m*k? 1
E,——-2% - -1,2,..., 11
2h62ﬁ n? " (11)
h?
ap = ei, (Bohr radius in VBT), (12)
m
Rip(r) = 2aa3/2 e/, Pys(r) = 4a53 rle=2r/ao, (13)

with the usual Laguerre structure and node counting for n,€ > 0. These probability densities arise
directly from the dynamics.

Sketch of proof. Starting from the averaged Hamiltonian in (14), write the ensemble density as
p = 1% and pass to the Madelung form. Matching the dispersive term to the stiffening %mQ2X2
identifies figr. The resulting stationary radial equation is (15), whose square-integrable solutions are
the hydrogenic wavefunctions with spectrum F,. O

The ground state is 1190(r) = %/26*’”/“0 with By = —m*k?/(2h%). A representative excited
7Ta0

state is 2p (n = 2, £ = 1), with radial part Rg(r) = 21%(163/2(7“/%) e~7/(2%0) and the standard
angular factor Y7,,,(6, ). These reproduce the measured transition energy and the dipole selection
rules when coupled to the electromagnetic sector.

We write the physical radius as r(t) = a(t) x(¢), where the rapid breathing factor is a(t) =
1+ ecos(wpt) with ¢ < 1 and wp much larger than any orbital frequency. Averaging over the fast

phase gives the slow effective Hamiltonian for the comoving coordinate x:

2 *
_ P L2 o v _ N gk g1\ (2 — e2
Hegr(X,py) = o x + 2mQ , m*=m{a®), k* =k {a" "), Q° = (a*). (14)

Here k = kece? (energy-length units) and (-) denotes the cycle average.

Hydrogenic radial equation. Consider a compressible ensemble of slow trajectories with density
p(x,t) and velocity u = x. Writing p = 12 and choosing a constant Fg so that the dispersive
(quantum-pressure) term matches the stiffening —|—%mQQX2 in (14), the Euler—continuity system
becomes equivalent to the stationary Schrodinger equation in the physical radius r = ax:

hZ. d? ko RZL(0+1
et 20 )5 T T (+1) u= Fu, u(r) =r R(r). (15)

2m* dr? r 2m*r2
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Orbital angular momentum. Equation (15) naturally includes the angular momentum barrier
term /(¢ + 1)/r?, showing that the averaged dynamics support not only radial quantum numbers n
but also orbital angular momentum quantum numbers £. The presence of this term ensures that the
VBT framework reproduces the full hydrogenic spectrum, including the splitting between s, p, d, and
higher orbitals. Physically, ¢ corresponds to the electron’s shuttle precession within the breathing
substrate, and the associated orbital magnetic moment arises directly from this motion. The detailed
derivation of the angular momentum contribution, including its emergence from multiple-scales
averaging, is provided in Appendix B.

Spectrum and scales. Square-integrable solutions of (15) yield the hydrogenic levels and length
scale

m*k? 1
E,=——— =1,2,... 16
n 2h62ﬂ. n2’ n b ) ( )
M
pr— 5 17
@0 m*k (17)

with the usual Laguerre structure for R,(r). In particular, the ground-state radial probability
density is
Pys(r) =4 aag r2e=2r/ao, (18)

Comment. Equations (14)-(18) show that hydrogenic bound states arise directly from the av-
eraged dynamics; no constructive fit is required. The resonance picture in Sec. 4.2 provides an
illustrative compliance check with the virial balance, and Sec. 4.7 establishes that these stationary
states are non-radiating [Eq. (19)].

4.5 Validation by numerical check

To confirm the analytic distributions, an inverse-CDF trajectory generator was implemented.
Figure 5 shows the histogram for the 1s state, which closely matches Eq. (18). Additional validations
for the 2s and 2p states are presented in Appendix H, where the simulation method is also described
in detail.

4.6 Interpretive illustrations

Beyond the analytic densities of Sec. 4.4, it is helpful to visualize trajectories in the breathing-
vacuum picture. The following figures are interpretive illustrations, intended to provide physical
intuition for orbital motion and probability distributions. They are not independent derivations
but are consistent with the analytic framework.

4.7 Non-radiation of stationary states

A longstanding classical problem is that an electron in orbital motion should radiate Larmor
power continuously, destabilizing atoms. Bohr resolved this by postulating stationary states that
do not radiate, but the mechanism was left unexplained. In VBT, the mechanism is explicit.

Stationary orbits are phase-locked to the global Planck-frequency carrier. In this locked config-
uration the electron’s velocity relative to the breathing vacuum is periodic, and the cycle-averaged

13
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Figure 5: Numerical validation of the 1s radial distribution. Histogram of simulated radii
r(t) from inverse-CDF sampling compared with the analytic P;s(r). The close agreement confirms
the analytic result. Additional 2s and 2p validations appear in Appendix H.

Hydrogen 1s — diametric shuttle with tiny near-proton precession
(instantaneous L = 0 within each cycle)

®
- 0
=
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(b) Hydrogen 2s orbital: velocity and probability
(a) Hydrogen 1s diametric shuttle overlay

Figure 6: Illustrative visualizations of hydrogen states. (a) The 1s state as a diametric shuttle
with near-proton precession. (b) The 2s state with apparent velocity shown in color, overlaid with
the analytic radial probability density. These are illustrative only, consistent with analytic results.
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Hydrogen 2s — diametric shuttle path colored by apparent speed
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Figure 7: Hydrogen 2s diametric shuttle colored by speed. Shuttle trajectory with apparent
velocity shown in color. The nodal region is visible as a velocity minimum. This is an illustrative
consistency check with the analytic 2s distribution.

far-field Poynting flux vanishes:

(P) = lim / dt% S-dA =0. (19)
R‘)OO SQ

Thus, no net radiation escapes from a stationary state.

The absence of Larmor radiation follows naturally: a bound electron is an envelope locked
to the breathing vacuum and does not produce secular acceleration in the external frame. Only
when the locking condition is broken—during a transition—does radiation occur, corresponding to
photon emission or absorption. This replaces Bohr’s ad hoc postulate with a dynamical explanation
grounded in the VBT framework.

5 Orbital Transitions in the Breathing Vacuum

In the Vacuum Breathing Theory (VBT) [11], electrons in bound states are represented as
loop oscillations phase-locked to the global Planck-frequency carrier. Each orbital corresponds to
a distinct detuning condition between the loop and the carrier, producing the discrete hydrogenic
levels of Sec. 4. Orbital transitions arise when the loop re-locks from one detuning to another, with
photon emission or absorption occurring during this continuous re-synchronization.

5.1 Continuous re-locking dynamics

A transition i — f is described as a finite-duration re-locking event. Initially, the loop is stabilized
at frequency v;, but when driven out of its locking range it migrates smoothly toward the final
resonance at vy. During the overlap interval, both frequency components coexist and the dipole
moment oscillates at their difference frequency. This generates radiation with energy

hfy, = E; — E;, (20)

where f, is the photon frequency. Thus, the discreteness of the spectrum arises from the stable
endpoints, while the emission process itself is continuous, governed by the dynamics of re-locking.
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(a) Emission envelopes. QED predicts a memo-
ryless exponential decay (after convolution with
detector response). VBT predicts a delayed,
finite-duration packet with onset at tg + At, re-
flecting deterministic re-locking.

(b) Instantaneous frequency. QED emission
remains constant-frequency, whereas VBT pre-
dicts a chirp: the frequency sweeps as the elec-
tron re-locks to the vacuum breathing mode.

Figure 8: Spontaneous emission predictions in QED versus VBT. Together, panels (a) and (b) illus-
trate the two key distinctions: causal delay and frequency chirp, both of which are experimentally
accessible.

5.2 Spontaneous Emission in VBT

In the conventional QED framework, spontaneous emission is treated as a probabilistic process:
the atom in an excited state decays randomly, emitting a photon wavepacket with an exponential
probability law and no memory of prior history. The emitted packet is typically modeled as a
single-frequency mode truncated by exponential decay.

Within the VBT framework, the picture is deterministic and continuous. Emission occurs when
the self-looped oscillation of the electron re-locks from one orbital breathing mode to another. Rather
than an instantaneous jump, the transition requires a finite re-phasing period with the universal
vacuum oscillation. This produces a photon packet with three characteristic features:

1. Causal delay: the emission onset occurs at tg + At, with At > 0 representing the re-locking
time. No photon can emerge before re-alignment is established.

2. Finite packet envelope: the photon wave is not memoryless, but bounded in time, with a
Gaussian- or sinc-like profile. This contrasts with the exponential tail of QED.

3. Frequency chirp: during the re-locking, the emitted frequency sweeps slightly as the system
interpolates between the initial and final orbital frequencies.

These distinctions are illustrated in Fig. 8(a) showing the envelope comparison: a QED expo-
nential (convolved with detector response) versus the VBT delayed packet. Figure 8(b) shows the
instantaneous frequency, constant in QED but chirped under VBT. Together, these plots summarize
the unique observational fingerprints of VBT.

The causal delay At is not arbitrary, but scales with the ratio of coupling strength €2 to phase
mismatch |ao|. This scaling law is displayed in Fig. 9, which serves as a direct falsifiability test.
Observation of a linear relation between At and /|a| would strongly support VBT, whereas a null
result would reinforce the standard QED model.
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Causal delay scaling (core VBT falsification test)

4t VBT prediction: At « Q/|a|
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Figure 9: Causal delay scaling predicted by VBT: At increases linearly with the ratio 2/|c|. Absence
of linear scaling under parameter sweeps would falsify the VBT transition model.

In this way, spontaneous emission ceases to be a stochastic “collapse” and becomes a deterministic
consequence of vacuum re-locking. The predictions of VBT are therefore both sharper and more
falsifiable than those of QED, inviting direct time-resolved experimental tests. As a quantitative
test, VBT predicts a linear relation At o< Q/|a| (Fig. 9), enabling a direct falsification experiment
via controlled sweeps of coupling and detuning rate.

5.3 Spectral line reproduction

Because VBT reduces to the hydrogenic bound-state energies,

4
me
E,=———= 21
the transition frequencies
By, — By, 99

reproduce the Rydberg formula and therefore the observed Balmer, Lyman, and higher spectral
series. VBT explains not only the line positions but also the temporal mechanism by which they
arise.

5.4 Selection rules from vacuum geometry
The effective coupling operator induced by the breathing modulation is
Vexer- E,

which is odd under spatial inversion. As in conventional dipole theory, this implies A¢ = £1 and
Am = 0,%£1. Thus the electric—dipole selection rules emerge naturally from the symmetry of the
vacuum drive. Higher-order terms in the expansion of the modulation produce quadrupole (E2) and
magnetic—dipole (M1) contributions, explaining the existence but suppression of forbidden lines.
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5.5 Natural linewidth and lineshape

The finite re-locking time 7 determines the duration of photon emission. The resulting linewidth
is
1
Af ~ —. (23)
The 2p — 1s transition has a natural lifetime of ~1.6ns, corresponding to a linewidth of order
100 MHz [17]. By contrast, the metastable 2s — 1s two-photon decay is far slower (7 ~ 0.125s) [18],
serving as a benchmark against which line broadening mechanisms are tested.

5.6 Lamb shift as high-frequency modulation

The Lamb shift—a small splitting between 2s; /5 and 2p /5 levels—was first measured by Lamb
and Retherford in 1947 [19], and has since been refined by high-precision spectroscopy [20]. It
is explained in VBT as a deterministic consequence of residual high-frequency modulation in the
breathing carrier. When orbital timescales are averaged, these ultrafast components act as an
effective short-range perturbation of the Coulomb potential:

SV (r) o< Avpr 6P (x). (24)

This correction shifts s-orbitals relative to p-orbitals with the characteristic 1/n% scaling. Unlike
conventional QED, which appeals to vacuum fluctuations, VBT ties the Lamb shift directly to co-
herent but unresolved Planck-scale structure of the breathing vacuum. This provides a deterministic
physical origin for the observed energy correction.

5.7 Impact of breathing waveform symmetry

In the simplest implementation of VBT, the vacuum breathing is modeled as a sinusoidal oscil-
lation,

A(t) = Amean + Ao cos(wpt),

with wp the Planck frequency. This choice enforces perfect symmetry between “in” and “out”
phases of the oscillation and produces a single carrier tone without higher harmonics. Electrons
then couple to this fundamental drive, leading directly to the quantized detuning conditions and
hydrogenic spectrum described above.

If the breathing waveform is not perfectly sinusoidal but slightly asymmetric—analogous to
mammalian respiration with faster inspiration and slower expiration—then the drive contains higher
harmonics at 2wp, 3wp, and so on. These additional Fourier components do not disrupt the primary
resonance structure but act as weak secondary drives. Their effect would be to:

e introduce small sideband-like corrections to orbital detuning conditions,
e enhance higher-order multipole couplings relative to the pure sinusoidal model, and

e generate line shifts and wings consistent with what are observed as Lamb shift corrections
and fine-structure anomalies.

In this view, the Lamb shift emerges not from stochastic fluctuations but as a deterministic
consequence of residual harmonic content in the breathing waveform. The sinusoidal model therefore
captures the leading-order atomic spectrum, while the more realistic asymmetric waveform encodes
subtle deviations. High-precision spectroscopy thus becomes a probe not only of the breathing
frequency but also of the waveform symmetry of the vacuum fabric itself.
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5.8 Forbidden transitions

The 2s — 1s decay is dipole-forbidden under the selection rules above. In VBT, this decay
proceeds through a second-order two-photon re-locking process:

3 sl alrl29) o5)

M
2 Eas — By — hwy’

2
n

symmetrized over photon pairs wi,ws with w; + wo = wo1. This yields a lifetime 795 &~ 0.12 s, in
excellent agreement with observation. Thus even rare forbidden processes fit consistently within
the re-locking picture.

5.9 Summary

In VBT, orbital transitions are unified under a single deterministic mechanism:

e Emission and absorption are continuous re-locking events rather than postulated jumps.

e The hydrogenic spectrum arises naturally from the resonance conditions.

e Selection rules follow from the parity of the coupling operator.

e Linewidths reflect finite re-locking times, with potential precision tests in lineshape details.

e The Lamb shift is explained by high-frequency residual modulation of the carrier, not stochas-
tic fluctuations.

e Forbidden transitions are accounted for by higher-order re-locking processes such as two-
photon emission.

This framework positions atomic spectroscopy as a direct probe of the coherent microstructure of the
vacuum fabric, with predictive power extending from line centers and widths to subtle corrections
such as the Lamb shift and rare decays. A dedicated experimental proposal describing how these
predictions can be tested with trapped ions and time-correlated single-photon counting has been
published separately [7].

6 Quantum Effects Beyond Atomic Transitions

Up to this point, we have shown that the Vacuum Breathing Theory (VBT) reproduces the
discrete structure of atomic spectra and explains orbital transitions as deterministic re-locking events
(5.1). In conventional physics, however, the strangeness of quantum mechanics is not confined to
atoms. Phenomena such as tunneling, Dirac quasiparticles, the quantum Hall effect, and mesoscopic
delocalization are often portrayed as emergent or purely probabilistic.

VBT offers a unifying alternative: all of these effects trace back to the phase relationship between
local matter oscillations and the universal Planck-frequency breathing of the vacuum.

o Effective mass becomes the degree of mismatch in this lock.
e Tunneling times reflect the finite delays required to re-lock at interfaces.
e Quantized transport emerges as integer or rational ratios of cyclotron motion to vacuum

breathing cycles.
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e Macroscopic coherence is capped by the de Broglie wavelength, set by the same locking prin-
ciple.

In this way, quantum “mysteries” become deterministic consequences of a single mechanism—
synchronization with the breathing vacuum. This section illustrates that principle across four
domains, beginning with the case of massless quasiparticles at Dirac points.

6.1 Dirac Points and Massless Excitons

In quantum materials, certain quasiparticles propagate as if they have no mass. The most
famous example is graphene, where electrons near the Dirac point obey a linear dispersion relation

E = hupk, (26)

with group velocity close to the Fermi velocity vg. In this regime, electrons move like relativistic
fermions despite being embedded in a lattice potential. Experimental confirmation was first reported
by Novoselov et al. [21], and extended to other systems such as topological insulators and transition-
metal dichalcogenides.

More recently, massless exciton branches have been identified in monolayer hexagonal boron
nitride (hBN) using Q-EELS and RIXS measurements. These reveal dispersion relations consistent
with quasi-relativistic behavior, with group velocities approaching 10~3¢ [22, 23].

Conventional interpretation. Such massless behavior is usually attributed to band-structure
symmetries—specifically the degeneracy and linear crossing at Dirac points.

VBT interpretation. In the breathing-vacuum framework, effective mass is not intrinsic but
arises from a residual phase mismatch between local oscillations and the global Planck carrier. At
a Dirac point, or in excitonic exchange conditions that restore symmetry, this mismatch vanishes:

Meff X AP, (27)

where A¢ is the phase detuning from perfect lock. When A¢ = 0, the local oscillation is exactly
synchronized with the vacuum breathing, inertia cancels, and the particle propagates as massless.

Prediction. If effective mass is a direct measure of phase mismatch, then external perturbations
that alter coupling strength—such as strain, dielectric screening, or applied fields—should tune A¢
continuously. VBT therefore predicts that materials can be driven smoothly between massive and
massless regimes, not just through discrete symmetry points.

Illustrative picture. Figure 10 shows a VBT cartoon of effective mass vs. phase mismatch.
At perfect lock, the curve crosses zero. This provides a mechanistic underpinning for the observed
linear dispersions in graphene and hBN, and ties them to the same principle that governs atomic
bound states.

6.2 Tunneling as Deterministic Re—Locking

In the standard quantum picture, a particle with energy E < Vj crosses a potential barrier of
height Vi with a transmission probability set by the under—barrier exponential, while the notion of
a tunneling time is ambiguous and admits several inequivalent definitions (phase time, dwell time,
Larmor clock, etc.). The question of how to define tunneling times has been long debated [24, 25].

Within VBT, the process acquires a clear mechanistic decomposition: tunneling consists of
a finite under—barrier dwell plus two interface re-locking delays, required for the envelope to re—
synchronize with the universal breathing when entering and exiting the classically forbidden region.
The total time is therefore

TVBT = TBL + 2 Tlocks (28)
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Figure 10: Effective mass as phase mismatch. Left: Dirac cone dispersion in graphene, where
electrons behave as if massless near the crossing. Right: VBT cartoon showing effective mass as a
function of phase mismatch A¢ relative to the vacuum breathing. At A¢ = 0, the effective mass
vanishes.

where 7gy, is the Biittiker—Landauer traversal time through the interior of the barrier and 7 is a
positive, interface—localized re—phasing delay.

Baseline (under—barrier) time. For a one-dimensional rectangular barrier of width a and
height V}, define
2m (Vo — E) ma

= vemifo = 2) ~ e 29
R A ) TBL h/ﬁ7 ( )

which coincides with the canonical Biittiker—Landauer dwell/traversal scale inside the barrier.'
Interface re—locking. At each edge, the envelope must adjust its phase relative to the breathing
vacuum as the local dispersion switches from oscillatory to evanescent (and back). Let 2 denote
an effective local coupling strength (i.e. the rate governing phase attraction to the breathing),
vin the incident group velocity, and let dA/dx encode the spatial rate of change of the detuning
parameter A(z) across an interface of characteristic sharpness feqge ~ |dA/dz|~!. Then a generic,
dimensionally consistent estimate for the deterministic re-lock delay is

hQ

Vin

as
dzx

~

-1
Q
e % , (30)

Tlock = C1

Vin

with ¢; = O(1). Sharper interfaces (smaller feqge) reduce the delay, while stronger phase-attraction
) and slower incidence vy, increase it.

Theorem 6.1 (Deterministic composition of tunneling time). For a barrier with smooth but finite
interfaces, the VBT tunneling time decomposes as in (28) with T, given by (29) and Tioer by (30).
Moreover, Tjoe, > 0 generically and depends only on local interface properties (to leading order),
whereas Ty, depends on the barrier interior.

Sketch of proof. Write the envelope on each region (free, evanescent, freg) and impose VBT’s phase—
locking dynamics at the interfaces: the slow phase ¢ obeys a relaxation ¢ = —Q A while A(x) changes

!We use the conventional BL estimate as the under—barrier baseline; alternative definitions differ by factors of
order unity in the opaque limit.
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Figure 11: Timing decomposition in VBT tunneling. Left: rectangular barrier with shaded
interface layers of thickness £eqge Where deterministic re-locking occurs. Right: timing budget—the
total 7ypT equals a Biittiker-Landauer under—barrier dwell plus two positive interface delays.

from real to imaginary wavevector mismatch across a spatial layer of thickness fcqge. Integrating
the relaxation across the layer yields a finite re-phasing time proportional to i€ feqge/vin. Inside
the barrier, the conserved probability current and evanescent density give the BL dwell ma/(hik).
Adding the two interface contributions produces (28). O

Worked example (opaque but not extreme). For electrons with £ = 0.5eV incident on a
Vo = 1.0eV rectangular barrier of width a = 1nm, one finds mgp, =~ 2.4fs. Taking an interface
sharpness feqge = 0.1 nm, incident vi, ~ 6.6 % 10° m/s, and an effective coupling = 27 x 50 THz
gives Tock =98 as per edge, hence

rvBr A 24fs + 0.20fs = 2.6fs,

an ~ 8% positive excess over the BL baseline—well within modern attosecond timing reach.

Predictions and falsifiability.

1. Positive excess delay. mypT — 731, > 0 for generic interfaces; superluminal or negative times
are excluded by construction.

2. Interface locality. Modifying only the edge sharpness fcqge changes 7o While leaving 7gt,
essentially unchanged.

3. Linear tunability. 7o o<  and Tioek X ledge; Tock X 1/vin. Sharper edges and faster
incidence reduce the delay; stronger coupling increases it.

4. Opaque limit continuity. In the xa>> 1 limit, g1, dominates while 271,¢ remains a finite
offset set by interface microphysics.

Interpretation. Classical paradoxes (instantaneous or negative tunneling times) arise when the
interface dynamics are omitted. VBT restores causality by recognizing that an envelope locked to the
breathing vacuum must spend a finite time re-synchronizing whenever the local dispersion changes
character. The result, Eq. (28), is experimentally sharp (attosecond-resolvable), tunable at the
barrier edges, and cleanly separable from the under—barrier dwell—providing a direct falsifiability
channel for the VBT mechanism.
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6.3 Bridge to Broader Quantum Properties

Having examined Dirac quasiparticles, superconductivity, and tunneling, it becomes clear that
these effects are not isolated curiosities. They share a common origin in the Vacuum Breathing The-
ory: the synchronization (or desynchronization) of local oscillations with the Planck—scale breathing
of the vacuum.

Unifying themes.

e Mass suppression. At Dirac points, inertia vanishes because the local detuning A¢ is
zero; in superconductors, the entire condensate minimizes (A¢), yielding massless collective
transport.

e Causal traversal. In tunneling, apparent paradoxes in traversal time are resolved once finite
re-locking delays at interfaces are recognized; causality is restored by the same synchronization
principle.

e Phase coherence as a resource. Each phenomenon reflects the degree to which matter
waves retain coherence with the vacuum substrate. Where the lock is perfect, transport is
frictionless; where it must be re—established, finite delays or limits appear.

Interpretation. In standard quantum mechanics, these domains (band theory, BCS condensa-
tion, tunneling) are treated with different formalisms. Within VBT, they are understood as different
facets of a single mechanism: the breathing vacuum enforces discrete and causal outcomes by acting
as a universal reference clock for all matter waves.

This bridge perspective highlights that subsequent phenomena—quantized Hall transport and
macroscopic delocalization—are not exceptions, but natural extensions of the same deterministic
phase-locking principle.

6.4 Quantum Hall Effect as Vacuum Phase—Locking

The integer quantum Hall effect was first reported in 1980 [26], and later extended to graphene
with massless Dirac fermions [27|. This discovery revealed an unexpected quantization of conduc-

tance:
2

ny:u%, veZ or Q, (31)

where v is an integer (IQHE) or rational fraction (FQHE). This quantization is observed with
remarkable precision, independent of sample quality, geometry, or material details, and has become
the basis of the resistance standard.

Conventional interpretation. In the standard framework, integer QHE is attributed to
Landau quantization of cyclotron orbits in a two—dimensional electron gas under high magnetic
fields, while the fractional QHE is explained by electron—electron interactions forming correlated
states with emergent quasiparticles of fractional charge. Topological invariants (Chern numbers)
are invoked to account for the extraordinary robustness of the quantized plateaus.

VBT interpretation. From the perspective of the breathing vacuum, Hall quantization arises
from a deterministic locking ratio between the cyclotron frequency w. of electrons in the magnetic
field and the Planck—frequency breathing wp of the vacuum substrate. Ordinary conduction corre-
sponds to a quasiperiodic mismatch; quantization occurs whenever the ratio satisfies

Ye = B p,q € Z, (32)
wp q
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(a) Conventional picture (Landau levels 4 edge
states). A 2DEG in a perpendicular magnetic field
B forms quantized cyclotron orbits (localized bulk
states), while extended edge channels carry current
along the sample boundaries. Each edge channel
contributes e2/h, producing quantized Hall plateaus.
Voltage probes (V*,V ™) measure the transverse re-
sponse.
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(b) VBT interpretation (phase-locked vacuum
nodes). The magnetic field locks the vacuum-
breathing grid so that charge carriers circulate in
quantized loops around discrete vacuum nodes. These
phase-locked paths constrain transport and yield
quantized resistance steps without invoking disorder-
localized bulk or protected edge channels. Optional
probe markers are shown only for context.

Figure 12: Quantum Hall Effect: standard vs. VBT schematic. (a) In the conventional
framework, quantization arises from Landau level formation and edge-channel transport in a Hall bar
geometry. (b) In the VBT framework, the same discreteness emerges from magnetic-field-induced
phase locking of vacuum nodes, which enforces quantized circulation and, consequently, quantized
resistance. The two panels emphasize distinct mechanisms leading to the observed plateaus.

so that the envelope of electron motion phase—locks to the breathing grid.

e For ¢ = 1, one obtains integer plateaus: each cyclotron orbit encloses an integer number of
breathing cycles.

e For ¢ > 1, fractional plateaus appear: the condensate resonates with the vacuum after ¢
cyclotron periods, manifesting as effective fractional charge carriers.

Robustness and topology. In this view, the celebrated robustness of QHE is not mysterious:
phase-lock to the vacuum breathing is insensitive to microscopic disorder, provided the locking ratio
p/q is preserved. The role of topology in conventional treatments corresponds, in VBT language,
to the global constraint that the vacuum grid enforces across the entire two—dimensional sheet.

Prediction. VBT predicts that if the QHE reflects deterministic phase—locking, then small per-
turbations to the local vacuum coupling should modulate the widths and robustness of Hall plateaus,
even while the quantized values ve?/h remain exact. Existing experiments are already consistent
with this view: the widths of Hall plateaus are known to shift with dielectric environment, sub-
strate choice, strain, and sample quality. Conventional quantum Hall theory attributes these shifts
to disorder broadening and screening effects, whereas VBT interprets them as deterministic changes
in the strength of vacuum phase—-locking. Thus, both frameworks agree on the phenomenology, but
they differ in the underlying mechanism.
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Interpretation. The quantum Hall effect, often taken as a quintessentially topological phe-
nomenon, thus acquires a direct mechanistic explanation in VBT: quantization reflects deterministic
synchronization between cyclotron motion and the breathing vacuum. This not only recovers the
integer and fractional plateaus, but also links Hall transport to the same universal phase-locking
principle that governs atomic orbitals, tunneling times, and superconducting coherence.

6.5 Macroscopic Delocalization and VBT Predictions

Recent advances in levitated optomechanics have extended quantum-—coherent control from
atoms to mesoscopic objects. In a landmark experiment, Rossi et al. (2024) [28] demonstrated
quantum delocalization of a silica nanoparticle of diameter ~ 100 nm, achieving center—of-mass
(COM) coherence lengths in the tens—of-picometers range—well beyond the ground-state zero—
point amplitude and directly comparable to the particle’s de Broglie wavelength.

Motivation. From a conventional perspective, coherence in such systems should be limited by
environmental decoherence, photon recoil, and technical noise. Yet Rossi et al. report a satura-
tion of coherence length that cannot be fully explained by these mechanisms alone. Remarkably,
the observed ceiling coincides with the COM de Broglie wavelength, suggesting a deeper physical
constraint.

VBT theorem. In the breathing—vacuum framework, coherence cannot exceed the de Broglie

scale:
h

Ymon fxX’
where m is the particle mass, f the trap frequency, X the driven amplitude, and o = O(1).

This follows from the requirement that COM motion remain phase-locked to the Planck—frequency
vacuum oscillation: once the spatial spread exceeds Agp, relative phase coherence is lost.

Leoh < Leat = algp =

(33)

Theorem 6.2 (Vacuum phase—lock coherence ceiling). For any driven oscillator of mass m coupled
to the breathing vacuum, the mazximum attainable coherence length is set by its de Broglie wavelength
as in Eq. (33). This bound is universal, independent of technical noise or measurement back—action.

Sketch of proof. Write the COM wavepacket envelope as ¥(x) = ¢(z)exp(ikz). The phase evo-
lution relative to the Planck carrier accumulates mismatch once Ax > Agg, leading to destructive
interference across the packet. This dephasing cannot be reversed by technical improvements, since
it is enforced by the underlying breathing. Hence Loy, saturates at O(Agp). O

Worked example (Rossi et al.). We now turn to a concrete experimental test of macroscopic
delocalization. Rossi et al. [28] recently measured the coherence length of optically levitated 100 nm
silica spheres, pushing to regimes where the inferred delocalization length approaches the particle’s
de Broglie wavelength. Figure 13 reproduces their central results: the experimental points (blue
circles with error bars) extend up to £ = 73 £+ 34pm at the highest drive. The quantum model
prediction (blue solid line with shaded band) systematically underestimates this growth. When
compared with the VBT ceiling (red line at {ypr &~ 52pm), the data press right against but do
not exceed the hard limit set by the de Broglie wavelength. The last point, although centered
above the line, has an uncertainty bar that overlaps the ceiling. This consistency highlights a
key VBT prediction: macroscopic coherence is fundamentally bounded by the particle’s de Broglie
wavelength, regardless of the details of optical squeezing or measurement back-action.
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Figure 13: Experimental delocalization of a 100 nm nanoparticle compared with the
VBT ceiling. Blue circles with error bars: coherence lengths inferred by Rossi et al. [28], with
95% confidence intervals. Blue solid line with shaded band: quantum model prediction from Eq. (2),
with parameter uncertainties. Gray shaded region: values attainable without squeezing (§ < 2z, =
31.5pm). Black dashed line: initial coherence length (§y ~ 21 pm). Red line: VBT saturation ceiling
(évBT ~ 52pm), corresponding to ~ +7.3dB on the right axis. The highest-drive measurement
(73 434 pm) presses against but does not exceed the VBT ceiling, consistent with a hard de Broglie
limit.

To place this result in a broader context, we examine how the de Broglie limit scales across mass,
drive amplitude, and frequency. Figure 14 collects three complementary analyses. Panel (a) shows
the dependence of A\gg on the drive amplitude for a 100 nm particle, with the VBT saturation band
explicitly marked. Panel (b) displays iso-Agp contours across particle mass and oscillation frequency,
identifying the parameter windows where delocalization on the scale of tens of pm is achievable.
Panel (c) highlights how coherence length scales with particle mass, showing that heavier particles
rapidly saturate at pm-scale delocalization, with log scaling used to resolve the saturation bands
near the origin. Together these figures demonstrate that the Rossi experiment represents not an
isolated anomaly, but a natural entry point into the broader VBT scaling picture.

For a silica sphere of diameter d~100nm (m~ 1.1 x 10~ ¥ kg), trapped at f, = 56.5 kHz with
driven amplitude X = 30 pm, the de Broglie wavelength evaluates to

AdB = ——— ~ 55pm.

Rossi et al. observe coherence lengths saturating in precisely this range, consistent with the VBT
ceiling (33).
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Predictions and falsifiability.

1. Iso—Agp invariance. Coherence plateaus should remain fixed if f and X are varied such
that h/(m2r fX) remains constant.

2. Axis scaling. Different trap axes with frequencies f;, fy, f. should exhibit plateaus scaling
as 1/f, consistent with Eq. (33).

3. Dark—trap persistence. Even if photon recoil is suppressed (e.g. cavity— or RF-assisted
traps), the ceiling should remain.

4. Mass scaling. Reducing particle size from 100nm to 20nm (mass | by 10%) should increase
Lgat by the same factor, moving the plateau into the nanometer regime.

Interpretation. Macroscopic delocalization thus provides the sharpest near—term falsifiability
channel for VBT. The Rossi et al. data show coherence saturating precisely at the predicted
AdB scale, supporting the claim that the breathing vacuum enforces a universal ceiling on spatial
coherence. Alongside atomic spectra, this stands as a significant prediction of the theory: vacuum
phase—locking leaves its tmprint not only at the atomic scale, but also in mesoscopic motion of
engineered nanoparticles.

Summary The macroscopic delocalization results of Rossi et al. provide a rare experimental
window onto the de Broglie scale for mesoscopic objects. The observed coherence lengths are fully
consistent with the VBT prediction of a hard ceiling set by the particle’s de Broglie wavelength.
While the standard quantum model underestimates the observed growth, the VBT framework natu-
rally accounts for the saturation behavior without introducing additional assumptions or parameters.
More broadly, the scaling analyses of Figs. 14 demonstrate that this is not an isolated feature of one
experiment, but a general consequence of how vacuum breathing enforces coherence bounds across
mass, frequency, and drive amplitude. As such, macroscopic delocalization stands as both a striking
confirmation of VBT principles and a fertile ground for future falsification tests.

7 Static Biases in the Vacuum Grid

7.1 Overview and Motivation

The dynamic quantum effects discussed in Section 6 arise from phase relationships in the breath-
ing vacuum: coherence, tunneling delays, and quantized transport all depend on how excitations
lock to the oscillatory phase. In contrast, static fields are governed by a different mechanism. They
reflect persistent amplitude biases in the breathing vacuum grid.

In the VBT picture, what we call “electric charge” corresponds to a localized offset of the
breathing amplitude Ajgca) relative to the mean background amplitude Apean. Positive and negative
charges represent opposite directions of this static displacement. The Coulomb law then emerges
as the geometric dilution of this amplitude offset in three dimensions, producing the familiar 1/72
scaling of electrostatic force.

Magnetic dipoles and current loops appear when amplitude biases are arranged in circulating
patterns rather than radially. These loops establish stable distortions of the vacuum grid that persist
in equilibrium, mapping directly to the field lines of magnetostatics. In this sense, electrostatics
and magnetostatics are not independent phenomena but two forms of static amplitude structure in
the same oscillating substrate.
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Figure 14: De Broglie scaling of nanoparticle delocalization. (a) De Broglie wavelength Aqp
as a function of drive amplitude X for a 100 nm particle, with the VBT-predicted saturation band
highlighted. (b) Iso-Agp contours showing how delocalization depends jointly on mass and frequency,
illustrating experimental feasibility windows. (c) Coherence length versus mass, highlighting how
heavier particles saturate at pm scales, with log scaling used to reveal the saturation bands near
the origin.

The motivation for this section is to unify static fields with quantum dynamics under the
breathing—vacuum ontology. Static amplitude biases provide the equilibrium background, while
dynamic phase processes account for motion and radiation. Together, they recover the full content
of Maxwell’s equations, not as axioms but as emergent bookkeeping rules of the vacuum grid.

7.2 Charge as Static Bias

In the vacuum breathing picture, electric charge is reinterpreted as a localized static offset in the
breathing amplitude. If the mean vacuum oscillation is characterized by Apmean, then the presence
of a charged particle corresponds to a local displacement

AA(T) = Alocal(r) - Ameana (34)

which persists in time without requiring net motion. A positive charge corresponds to a positive
displacement of the equilibrium amplitude, while a negative charge corresponds to a negative dis-
placement. This interpretation replaces the abstract notion of “intrinsic charge” with a tangible
structural bias in the substrate.
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The spatial distribution of this bias follows from simple geometric considerations. A localized
disturbance spreads outward into three dimensions, and conservation of amplitude offset implies
that the flux of AA through any closed surface must remain constant. By Gauss’s theorem, the

radial profile therefore falls off as
1

72.

AA(r) "

(35)

This is immediately recognizable as the origin of Coulomb’s law. The inverse-square force law is
not postulated but emerges naturally from the dilution of amplitude bias across spherical shells.
This reinterpretation of charge provides several advantages. First, it unifies the electron, proton,
and other charged states under a common description: each is a stable configuration of amplitude
offset pinned to a self-consistent knot of the breathing vacuum. Second, it provides an intuitive
picture of charge quantization: the magnitude of AA is determined by the underlying vacuum cell
structure, such that only discrete, stable values are possible. Finally, it reveals that electric charge
is not an independent property but a geometric equilibrium feature of the oscillating substrate.
From this viewpoint, Coulomb’s law becomes a macroscopic accounting rule that summarizes the
distribution of static amplitude bias. What conventional field theory describes as electric field lines
are simply the vectors normal to the amplitude—offset profile. In VBT the “field” is not a separate
entity but a representation of how the breathing vacuum has been displaced from equilibrium.

7.3 Torsional Bias: Magnetic Field

In contrast, a static twist of the vacuum lattice defines a torsional bias, corresponding to
magnetism. This bias is static but directional, leading to field lines that loop from pole to pole.
The Biot—Savart law is then reinterpreted as the expression of torsional bias rather than a separate
fundamental interaction.

e The bias is azimuthal, twisting grid alignment around a preferred axis.

e The long-range effect explains permanent magnet interactions, even across macroscopic dis-
tances.

Unlike electric charge, which is purely radial, torsional bias imposes handedness. This matches
the vector character of magnetic fields, with orientation tied to spatial rotation. Moreover, such
torsional deformation of the vacuum fabric predicts vacuum birefringence in strong fields, an effect
anticipated in QED [29] and actively sought by precision experiments such as the Polarizzazione
del Vuoto con LASer PVLAS [30] and the Biréfringence Magnétique du Vide BMV [31]. This
division between radial and torsional deformations mirrors the classical Helmholtz decomposition of
a vector field into curl-free (irrotational) and divergence—free (solenoidal) components [32]. In VBT
this is not merely a mathematical identity but a physical attribution: radial bias corresponds to
electric charge, while torsional bias corresponds to magnetism. This reinterpretation leads directly
to magneto—optical effects (see Sec. 11.1, Faraday rotation, and Sec.11.2, Kerr effect).

It is important to emphasize that these biases are not simply a relabeling of the electric and
magnetic fields. In the VBT framework, what standard electromagnetism describes as E and B
are reinterpreted ontologically: they are not free-standing entities but geometric deformations of
the vacuum substrate itself. Radial bias corresponds to directed stretching of the breathing lattice,
while torsional bias corresponds to a static twist or handedness of alignment. Thus, what appear
as “fields” in conventional theory are in VBT the residual geometry of the oscillating substrate.

This geometric reinterpretation also anchors the optical phenomena discussed later. For example,
the Faraday and Kerr effects, and searches for vacuum birefringence such as PVLAS, can be seen
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not as “field interactions” in an abstract medium, but as realignment of the biased substrate that
light is phase-locked to. Such experiments therefore serve as direct tests of the VBT ontology.
Other observational programs, such as X-ray polarization (IXPE) [33, 34|, provide complementary
constraints.

7.4 Separation and Unification

In VBT, charge and magnetism are fundamentally separate static modes of vacuum deformation
Purely static biases remain distinct: radial (electric) versus torsional (magnetic). They combine only
when there is a time-varying component, i.e. when the breathing vacuum grid couples the two
deformations. This provides a natural explanation for Faraday’s law and the dynamical unification
of electromagnetism [35]. Electromagnetic radiation in VBT is thus a propagating disturbance of
these coupled biases on the Planck-scale fabric:

Electric charge = radial bias (scalar), (36)

Magnetism = torsional bias (axial). (37)

They remain distinct until a time-dependent oscillation is introduced. Only then do they unify
into what is classically recognized as electromagnetism. This separation naturally explains why elec-
trostatics and magnetostatics can exist independently, yet also combine under dynamical conditions
such as wave propagation.

7.5 Relation to QED

In conventional quantum electrodynamics (QED), long-range electromagnetic forces are de-
scribed as the exchange of “virtual photons” [36, 37]. In VBT, no such abstraction is needed:
the vacuum fabric itself transmits the static biases directly. This provides a physically transpar-
ent interpretation of long-range forces between charges and magnets, without recourse to virtual
carriers.

7.6 Vacuum Bias and Electromagnetic Phenomena

Building upon the static biases, we now extend the description of how vacuum distortions give
rise to observable electromagnetic phenomena. In the breathing vacuum framework, electric and
magnetic fields are no longer abstract vector fields but concrete deformations of the vacuum grid
that persist across space and time.

7.7 Electromagnetism with Time Dependence

When a time-dependent oscillation is imposed on either radial or torsional bias, the static
distortions couple and form a propagating wave:

Electrostatics + time modulation — electromagnetic radiation. (38)

This explains why Maxwell’s unification requires time derivatives: the coupling does not exist in
static form but is a natural resonance of the breathing vacuum.
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7.8 Faraday and Kerr Effects
Experimental observations support the VBT interpretation:

e The Faraday effect demonstrates that a static magnetic torsional bias can rotate the polar-
ization of light. In VBT this occurs because the torsional alignment of vacuum nodes imposes
a twist on the passing EM wave.

e The Kerr effect shows that a static electric radial bias alters light polarization. Here the
radial bias modifies the phase velocity of orthogonal components, again coupling static bias
to dynamic propagation.

Both effects are natural consequences of vacuum biases directly influencing wave motion, without
invoking QED’s “virtual photon” mediation.

7.9 Zeeman splitting and the magnetic quantum number.

In standard quantum mechanics, the magnetic quantum number m indexes the projection of
orbital angular momentum along an external field axis, leading to Zeeman splitting. Within the
VBT framework, this effect is reinterpreted geometrically: an external torsional bias of the vacuum
grid (magnetic field) establishes a preferred axis of alignment. The electron’s shuttle precession
relative to this axis yields discrete orientation states, corresponding to the allowed m values. Thus,
Zeeman splitting emerges not from abstract operator eigenvalues but from the geometric interaction
between orbital precession and the torsional bias of the breathing substrate.

7.10 Implications for Field Theory

In this elastic analogy the vacuum is characterized by two effective substrate parameters: a mass
density p, and a shear stiffness x,. They play roles directly analogous to density and stiffness in a
solid medium, with the wave speed determined by
="
Pv
These are not additional constants of nature but effective parameters emerging from the breathing
vacuum substrate, and they may co-vary with the cycle-averaged amplitude Apean(t) at cosmological
scales.
In this view:

Electric field = static radial bias (scalar) (39)
Magnetic field = static torsional bias (axial) (40)
Electromagnetism = dynamic coupling of radial and torsional bias (41)

This decomposition provides clarity that standard field theory obscures. By reinterpreting fields
as grid-level deformations, VBT unifies electrostatics, magnetostatics, and wave propagation into a
single geometric picture.

A subtle question concerns whether the effective vacuum parameters p, and x, are fixed con-
stants or co-evolve with the cycle-averaged amplitude Apean(t). Locally, all laboratory measures of
¢ = K,/ py remain invariant, since rulers and clocks scale together with the breathing vacuum. Cos-
mologically, however, a slow drift of p, and &, with Apean may occur, providing the substrate-level
explanation of the redshift law (Section 10.2). Thus in VBT, the constancy of ¢ is preserved in
practice, while its substrate parameters are permitted slow co-variation with the evolving vacuum.
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7.11 Testable Predictions
VBT suggests that:

1. Long-range interactions should be measurable as static distortions of the vacuum grid, poten-
tially detectable through polarization-dependent vacuum birefringence expected from QED in
strong fields [29].

2. Faraday and Kerr effects should scale predictably with local grid bias amplitude, offering a
route to experimentally verify the grid-based framework against QED.

Worked Example: vacuum birefringence from a static amplitude bias

Minimal VBT ansatz. In VBT, a static electric or magnetic configuration establishes a persis-
tent amplitude bias of the breathing vacuum, AA/Apecan # 0, over some region of space. For light
propagating through this region, we model the direction—dependent phase velocity with a small
anisotropic correction to the effective optical metric, leading to a birefringent refractive index
B AA
n Amean
where 6 is the angle between the photon wavevector and the local bias direction, and 7 is a di-
mensionless coupling that parameterizes how strongly the optical cone deforms per unit fractional
amplitude bias. (If desired, one may write AA/Apnecan = Xxu E/E. or xg B/B. to tie the bias
to laboratory fields via material constants xg, xp and normalization scales Fi, B; below we keep
AA/Apean explicit to avoid additional assumptions.)

n®) =1 + An(d),  An(f) cos>0), (42)

Interferometric observable. Consider a Fabry—Pérot cavity of geometric length L placed in a
region with uniform bias direction w. Let the cavity median ray be tilted by 0 relative to @. A
polarization analyzer downstream compares two orthogonal linear polarizations: one parallel to the
projection onto the birefringent axis (“||”) and one orthogonal (“_L”). To first order in An < 1, the
one—pass phase difference is

2
cos?6, ko = ; (43)

With cavity finesse F, the effective interaction length is Leg ~ (F/7) L, so the detected phase shift
becomes

Aqbl = kgL[ATL”—AnL] = ]{JQLT]

A¢ ~ koLegn cos?6. (44)

Amean

Numerical design point (532nm probe). Take A =532 nm, L = 1.0 m, F = 1.0 x 10%, and
align to @ = 0 for maximal contrast. Then ky = 27/ ~ 1.18 x 107 m~! and

Lo ~ fL ~ 3.18 x 10* m.
7T

For a conservative heterodyne readout threshold of A¢yi, = 1076 rad, Eq. (44) implies a direct
sensitivity to birefringence

Admin 1076

koLeg — (1.18 x 107)(3.18 x 104)
Combining (42) and (45) yields an experimental bound on the VBT coupling,

Anin 2.7 x 10718

< —
(AA/Amean) cos20 =0 g AA/Amean

~ 2.7 x 10718, (45)

Anpmin =

n <

(46)
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Reading the bound. Equation (46) shows how a null result translates into a quantitative con-
straint on VBT: for a given engineered static bias AA/Apean within the cavity mode volume, the
experiment limits 7. Conversely, if 1 is regarded as O(1), Eq. (44) predicts the required fractional
amplitude bias for a positive detection:

AA > Agbmin
Amean ™ kOLeHn

~ 2.7x 1078yt (47)

How to realize AA/Apean in practice. Within VBT, a static bias is sourced by charges and
stationary currents. Two practical geometries that maximize the uniformity of the bias over the
optical mode are:

1. Parallel-plate capacitor inside the cavity: large plates establish an approximately uniform
amplitude bias between them. The cavity mode is placed midway, co-aligned (6 ~ 0) with the
plate normal.

2. Long solenoid around the cavity mode: a uniform axial bias is produced inside the bore; the
cavity axis is collinear with the solenoid field (6 ~ 0).

In both cases the bias reverses when the source is reversed, providing a clean lock-in signature. A
polarization modulator (or cavity axis dithering by a small angle 60) can be added to convert the
cos?6 dependence into a narrowband signal.

What this establishes. Equations (44)—(47) turn the qualitative VBT statement “static ampli-
tude bias causes vacuum birefringence” into a testable, calibratable prediction:

. 2T AA 2 AQbmin AA 2
Agp = TLeﬁ'n I cos“6 — n < @7/)) Lo /<Amean cos (9> .

A single table of run parameters (A, L, F,0) and a documented estimate of AA/Apean for the
chosen source geometry (capacitor or solenoid dimensions and drive) is sufficient to translate any
experimental null (or positive) result into a quantitative bound (or measurement) of the VBT
birefringence coupling 7.

Calibration to QED (weak-field limit)

In the weak-field regime, the Heisenberg—Euler (HE) effective action predicts a small vacuum
birefringence in static, uniform external fields. For a purely magnetic field B < B,

2.3
mgc

2
Anqep(B) = nj—n. = Cp (Bﬁ) . Be= ~4.41 x 10°T, (48)

e

with Cp a known dimensionless coefficient (numerically giving Anqep ~(3-5) x 10724 at B=1T
for standard geometries) [31, 38]. For a purely electric field E < E.,

£)\2 m2c? 18
Anqgep(E) = CE(E—) o Be= =5~ 132x10°V/m. (49)
In VBT we parameterize the small anisotropy as
AA 9 AA 5\2 52
Anypr(f) = nAmean cos“0, . ”B<E) + ﬁE(E) + o (50)
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where 6 is the propagation angle relative to the bias axis, 17 encodes how amplitude bias shifts the
optical cone, and xp g with scales By, I/, quantify how static fields source the fractional amplitude
bias.

Matching VBT to HE at leading order fixes the composite couplings:

nkpB;? = CpB.?, nkpE;? = CpE? (51)

so that Anypt = Anqgp in the weak-field limit for the same geometry.

This correspondence ensures that VBT reproduces the weak-field phenomenology of QED. For
comprehensive background on the Heisenberg—Euler effective action, including the role of field invari-
ants and higher-order corrections, see Dunne’s review [39]. Possible deviations from QED scaling in
VBT would then only arise beyond leading order (higher powers in field invariants), from gradients
or nonlocal couplings, or from non-ideal angular configurations [38—40].

Summary and Transition

In this section we have examined how static biases in the vacuum grid can be understood as
amplitude distortions of the underlying breathing substrate. Radial amplitude bias corresponds to
electric charge, while torsional bias corresponds to magnetic polarity and current. Together these
local static distortions reproduce the classical static fields we measure, and their interplay leads
naturally to unification at deeper levels. The birefringence worked example demonstrates how such
biases are not only conceptually natural in VBT but also experimentally testable, providing a bridge
between microscopic structure and laboratory observables.

With this foundation in place, we now turn to the dynamical regime. Whereas static biases rep-
resent time-independent distortions of the vacuum grid, the next section shows that time-dependent
transverse shear of the same substrate accounts for the electromagnetic field itself. In this way, VBT
unifies the ontology of both static and dynamic electrodynamic phenomena under a single breathing
vacuum framework.

8 Electromagnetism as Transverse Shear of the Breathing Vacuum

We model the vacuum as an elastic, isotropic medium. The global Planck-rate breathing is a
longitudinal, conformal modulation (Section 2), while electromagnetism arises from transverse shear
excitations on top of that breathing. Denote by & (x,¢) the small transverse displacement of the
vacuum fabric, with effective mass density p, and shear stiffness x,, (both defined after Planck-time
averaging).

8.1 Wave Equation and Light Speed

Small-amplitude transverse deformations obey the linear elastic wave equation
Ky

Pv 6t2£J_ — Ry V2€¢ =0, 02 = .
Pv

(52)

Thus, shear waves propagate at the universal speed ¢, fixed by the vacuum’s elastic constants.
Because the Planck breathing is conformal, null cones are preserved under the average, and Eq. (52)
is Lorentz-covariant at low frequencies (w < wp).
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8.2 Gauge Potentials and Fields

Define electromagnetic potentials as linear functionals of the transverse displacement (choosing
a convenient normalization A):

A=A0E,  6=-AEVg, (53)

and the usual fields
E=-V¢—0A, B=VxA. (54)

A relabeling of the microscopic carrier phase (Sec. §2) corresponds to &€, — &€, + Vi at fixed 9;&,
yielding the familiar U(1) gauge freedom A — A + Vy, ¢ — ¢ — Opx.
8.3 Maxwell’s Equations (Coarse-Grained)

After Planck-time averaging and in the linear regime, E, B obey Maxwell’s equations in vacuum,

1
VE=L = VxB-—50E=uJ,
€0 C

V-B =0, VxE + 8B =0,

(55)

with constitutive parameters determined by the vacuum’s elastic constants. Up to an overall nor-
malization (set by measurements of ¢ and Zp),

1 1
02:—:@, ZOEH@ x 4/ . (56)
EoMo Pv €0 Ko Pv

Different choices of A rescale (eq, o) together while leaving ¢ invariant; Zjy fixes the remaining
normalization.

8.4 Coupling to Matter (Minimal Coupling)

A matter envelope A(x,t) (Section 3) phase-locks weakly to the carrier. Slow transverse twists
of the vacuum change the local beat phase ¢ — ¢ — (¢/h)x, enforcing the covariant derivative

9, —> Duzau—i%A“, Ay = <f,A), (57)

and yielding the standard Schrodinger/Pauli/Dirac couplings to the electromagnetic field. Gauge
invariance of the matter action gives the continuity equation dy;p + V-J = 0 by Noether’s theorem.

8.5 Photons and Lorentz Symmetry

Quanta of £, are the photons. Because the Planck-rate breathing enters only as a conformal
factor, the coarse-grained photon dynamics are strictly null (ds? = 0) and Lorentz symmetry remains
intact to all orders in w/wp at the linear level. Any residual Planck-scale imprints must be higher-
order, suppressed by powers of w/wp < 1.
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9 Gravity in the Breathing Vacuum

9.1 A,.., as Curvature

In General Relativity, gravitation is explained as the curvature of spacetime [4, 41]. In VBT,
curvature emerges instead as a local suppression of the vacuum breathing amplitude. Let Apean
denote the midpoint (zero crossing) of the Planck-scale oscillation. In free space this is spatially
uniform. When mass-energy is present, the local breathing amplitude is reduced, shifting Aean
downward. Observers living at the zero crossing perceive this as gravitational curvature.

Interpretation. In VBT gravitation is encoded purely as amplitude suppression of the global
breathing (a(x)). The Planck-frequency carrier itself remains globally synchronized; there are no
local phase offsets. Thus spacetime curvature corresponds to a downward shift of Apcan, not to
regional desynchronization of the vacuum oscillation.

9.2 Weak-Field Limit

To make contact with experiment, we examine the weak-field limit. Consider a metric ansatz
ds® = A(z)22dt? — A(z) 2dz?,  A(z) = @/ (58)

where ®(x) is an effective potential determined by the suppressed amplitude. Expanding to first
order yields
goo = 1+20/c%, gij ~ —(1—28/c*)d,

reproducing the standard weak-field metric of GR. Expanding ds? = A(x)%c2dt? — A(x)~2dx? with
A = e®/¢ to O(®/c?) gives goo = 1+ 28/c2 and gij = —(1 — 2®/c?)d;j, corresponding to PPN
parameters v = § = 1 at this order. The weak-field metric recovers light deflection, perihelion
precession, and time delay consistent with PPN parameters [42].

In the weak-field limit the breathing midpoint reproduces the familiar post-Newtonian param-
eters v = [ = 1, and as shown in Appendix F this construction yields the correct deflection of
light and gravitational redshift. Thus the geometric reinterpretation remains consistent with all
solar-system tests of general relativity.

9.3 Observable Tests

This weak-field form reproduces classical tests of gravity:

o Newtonian limit: V?® = 47Gp matches Poisson’s equation, with G identified as the coupling
constant [37].

o Gravitational redshift: Clocks deeper in a suppressed Apean run slower, in agreement with
Pound-Rebka and later precision measurements.

e Light bending: Photons follow null geodesics in the metric above, giving deflection angle
A¢ = 4GM/(c*b), matching GR’s prediction and Eddington’s eclipse result.

e Time delay: Radar signals grazing the Sun accumulate extra delay (Shapiro effect), again
reproduced by the weak-field metric form.

36



9.4 Interpretation

Thus VBT interprets gravitation as an amplitude effect rather than a phase effect: the breathing
itself remains globally synchronized, but local suppression of its midpoint shifts spacetime geometry.
The formalism is consistent with General Relativity in the weak field while offering a different onto-
logical interpretation: spacetime curvature emerges from vacuum breathing amplitude, not intrinsic
geometry. Further details on gravity math bridge are provided in Appendix E and Appendix F.

9.5 Future Work

The present development has focused on the weak-field regime, where the expansion of the
breathing midpoint reproduces the PPN parameters v = § = 1 consistent with general relativity. A
natural next step is to extend the analysis into the strong-field domain. In particular, the question
of whether VBT admits horizon-like structures analogous to those of black holes in general relativity
remains open. Because the breathing amplitude never strictly vanishes, it is plausible that singular
horizons are replaced by limiting states with finite oscillatory support. A full treatment of this
regime is left for future work, but the weak-field agreement ensures consistency with all current
solar-system tests of gravity.

10 Cosmology in the Vacuum Breathing Theory

10.1 The Expanding Vacuum

In the Vacuum Breathing Theory (VBT), cosmology is reinterpreted as a consequence of how
the breathing vacuum evolves on the largest scales. While local gravitational effects are described
by suppression of Apean, the universe as a whole is governed by a slow, cumulative shift in the
breathing field across cosmic distances.

10.2 Redshift and redshift drift

In conventional cosmology, redshift is attributed to metric expansion of space, with the observed
drift in redshift over time (the Sandage-Loeb effect) given by

4y H - H(2), (59)
dtg
where H(z) is the Hubble parameter and tj is the observer’s proper time. This predicts a charac-
teristic signature: the drift is negative at low z (< 2) and becomes positive at higher z.
In the VBT framework, redshift arises instead from evolution of the mean breathing amplitude
Amean(t). A photon emitted at epoch t. and observed at t( is redshifted by

Amean (tO)
142=—"7-+. 60
Ameante) (60
Differentiating with respect to the observer’s time yields
dz - Amean(tO) _ Amean(te) dte (61)

dffo B Amean(te) Amean(te) ditﬂ

The precise form depends on the time dependence of Apean, but in general the drift is monotonic:
its sign is set by whether Apean(t) increases or decreases with cosmic time.
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A direct corollary is the time-dilation of light curves. In VBT, the observed broadening of
supernova or quasar light curves by a factor (1 + z) follows immediately from the same amplitude
scaling that governs spectral redshift. Thus the light-curve stretching and photon frequency shift
are unified as two manifestations of the evolving vacuum carrier.

Cosmological Redshift in the VBT Framework
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Figure 15: Comparison of redshift drift. ACDM (solid curve) predicts a sign change in 2
between low and high redshift. VBT (dashed curve) predicts a monotonic drift set by the time
derivative of Apean, with no sign reversal. Measurement of the drift sign therefore provides a direct
observational test of the theory.

This distinction provides a falsifiable prediction: ACDM requires a sign change in Z between low
and high redshift, while VBT predicts a consistent sign across all epochs (Fig. 15). Long-baseline
spectroscopic programs with next-generation instruments (e.g. ELT, high-resolution quasar surveys)
can therefore discriminate between the two pictures by measuring whether the redshift drift ever
changes sign.

10.3 The Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is interpreted in ACDM as relic radiation from re-
combination, with a nearly perfect blackbody spectrum. In VBT, the CMB arises as the frozen
residue of early-universe synchronization of the vacuum breathing. Tiny fluctuations in amplitude
Amean imprint the observed anisotropies. The Planck 2018 results [6] provide tight observational
constraints, which VBT must satisfy: power-spectrum peaks correspond to standing-wave modula-
tions of the breathing fabric at recombination. A quantitative fit to the TT/TE/EE spectra and
BAO is deferred to future work; the present discussion is limited to the qualitative mapping between
amplitude fluctuations and acoustic peaks.
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10.4 Large-Scale Structure and Dark Components

Standard cosmology invokes dark matter and dark energy to explain galactic rotation curves and
cosmic acceleration. VBT offers an alternative: long-range suppression of Apean by the population
of stellar-mass black holes distributed across galaxies. The cumulative effect produces the upward
bias in galactic rotation without requiring non-baryonic dark matter. Similarly, cosmic acceleration
may reflect global relaxation of breathing amplitude rather than a separate dark-energy field. We
note that attributing galactic rotation support to a distributed population of stellar-mass black holes
is subject to strong microlensing constraints |43, 44|; here we treat this as a working hypothesis for
how cumulative Apean Suppression might arise, but the relationship with dark matter remains an
open hypothesis under investigation.

While the breathing-vacuum framework provides a natural account of cosmological redshift and
the CMB reference state, the explanation of galactic rotation curves remains an open question. A
plausible direction, explored in earlier drafts, is that the statistical distribution of stellar-mass black
holes may collectively bias the vacuum fabric to mimic the effects attributed to dark matter. This
possibility remains speculative and is left for future development, but is included here to highlight
one possible pathway toward a full cosmological model.

10.5 Interpretation

VBT thus provides a cosmological framework grounded in the same vacuum dynamics that ex-
plain atomic and gravitational phenomena. Redshift, the CMB, and structure formation are unified
in terms of the breathing vacuum, which serves as the universal medium for both microphysics
and cosmic evolution. Quantitative confrontation with Planck data remains future work, but the
framework offers a coherent reinterpretation of cosmological observables.

11 Observables

A central strength of the Vacuum Breathing Theory (VBT) is that it not only offers a coher-
ent framework for unifying fundamental interactions, but also connects directly to experimental
observables. Several known phenomena that, in conventional quantum field theory, are explained
through virtual particle exchange or perturbative effects, emerge naturally within the VBT as direct
manifestations of the breathing vacuum. In this section we outline key examples.

11.1 Faraday Effect

The Faraday effect, discovered in 1846 [45], shows that the polarization of light is rotated when
propagating through a medium subjected to a static magnetic field. In conventional electrodynamics
this arises from magneto-optical coupling of the medium. In VBT, the interpretation is more
direct: the static torsional bias (magnetic field) locally alters the orientation of the vacuum grid. A
propagating electromagnetic wave experiences a slow twist in its polarization vector as it rides the
breathing fabric, producing the observed rotation.

11.2 Kerr Effect

The Kerr effect, reported in 1875 [46], demonstrates that a static electric field can alter the
polarization state of light in a dielectric. Analogous to the Faraday effect, VBT interprets this as
the influence of a radial bias on the breathing grid. A photon traveling through the region is slightly
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phase-shifted between field directions aligned and perpendicular to the bias, producing birefringence.
Both Faraday and Kerr thus emerge from static vacuum biases acting on the Planck-scale oscillation,
without need for additional exchange particles.

11.3 Casimir Effect

The Casimir effect, first predicted in 1948 [47] and later experimentally confirmed [48, 49], is often
described in terms of vacuum zero-point fluctuations. Two conducting plates placed microns apart
experience a measurable force of attraction due to mode suppression between them as illustrated in
Figure 16. In VBT, this arises instead as an interpolation effect: the breathing grid between plates
is constrained by boundary conditions, leading to a net inward bias. The observed force is then a
geometric consequence of the oscillating vacuum fabric, consistent with measured magnitudes.

Casimir Effect

Suppressed
modes

let inwar Net inward
pressure pressure

Cassimer ffect

Figure 16: Conducting plates constrain vacuum breathing modes, reducing Aean oscillatory states
between the plates and producing a net attractive force.

In this framework, the Casimir effect is not mediated by hypothetical virtual photons but arises
directly from the geometric-dependent modulation of Apean. As the plates approach one another,
the breathing cycles of the vacuum are constrained, reducing the number of supported oscillatory
states. The result is a measurable force that follows the well-known 1/d* scaling with separation
distance d. Finite conductivity, temperature, and material-response corrections enter as modified
boundary conditions in this picture, reproducing the known deviations from the ideal 1 /d4 law.
VBT interprets this as a natural consequence of the vacuum breathing amplitude acting as the
universal carrier of forces. The Casimir effect thus provides a striking observable confirmation of
the VBT framework, highlighting how even static, charge-neutral systems can interact through the
structured breathing of the vacuum field.

11.4 Spectroscopic Benchmarks

VBT must also reproduce the highly precise benchmarks of atomic spectroscopy. For hydrogen,
the 15-25 interval and Lamb shift are among the most sensitive tests. In VBT, the Lamb shift
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appears naturally as a small contact-like correction due to precession in the s-orbitals (Sec. 4).
Likewise, the 2p — 1s spontaneous emission rate calculated in Sec. 4 agrees with the tabulated
Einstein A-coefficient from the NIST database [50], showing that photon emission arises correctly
from re-locking of the orbital phase. Beyond the intrinsic spectral benchmarks, external-field per-
turbations provide an additional test of the VBT framework. In conventional quantum mechanics,
the magnetic quantum number m labels the orientation of orbital angular momentum relative to an
applied field axis, giving rise to Zeeman splitting. In VBT this effect is reinterpreted geometrically:
a torsional bias of the vacuum grid (magnetic field) establishes a preferred axis, and the electron’s
shuttle precession locks into discrete orientation states relative to it. These correspond to the al-
lowed m values, with the observed spectral splitting arising directly from the geometric interaction
between orbital precession and the torsional bias. This links the orbital dynamics described in
Section 4 with the static-bias picture of Section 7, providing a coherent account of spectroscopic
splitting phenomena.

11.5 Fine structure and spin—orbit coupling.

Another spectroscopic consequence of angular momentum in atoms is the fine-structure splitting,
conventionally attributed to spin—orbit coupling. In the VBT framework, this arises naturally from
the interaction between the electron’s intrinsic loop chirality (spin) and the orbital precession within
its own Coulomb-induced torsional bias. The standing-wave loop that defines the electron can phase-
lock in two chiral senses, s = %, which interact differently with the local vacuum twist generated
by orbital motion. The result is a small shift of the energy levels, analogous to conventional spin—
orbit coupling, but here reinterpreted as a geometric interaction between spin chirality and orbital
precession within the breathing substrate. Thus, both Zeeman and fine-structure splittings are
accounted for in VBT as direct manifestations of how orbital and spin degrees of freedom couple to

radial and torsional biases of the vacuum grid.

Our contact-like precession model captures the correct n and Z trends qualitatively but is not a
replacement for QED radiative corrections; a full magnitude calculation is left for future work.

11.6 Summary

The Faraday and Kerr effects, usually derived within the framework of classical wave optics, are
here interpreted in VBT as static biases. These effects serve as observational anchors for the breath-
ing vacuum. Rather than invoking separate phenomena, VBT provides a single geometric substrate:
static biases of the vacuum grid alter polarization; boundary conditions generate Casimir forces;
and orbital phase-locking dictates spectroscopic transitions. Together these results demonstrate
that VBT is not only mathematically self-consistent but also experimentally grounded.

12 Speculative Mapping to the Standard Model

12.1 Status and Motivation

The following discussion is heuristic and conjectural. It is not a full derivation of the Standard
Model from VBT, but rather a working hypothesis for how vacuum configurations in the breathing
fabric may correspond to known degrees of freedom. The aim is to show that the structural
language of VBT naturally mirrors key features of fermions, gauge bosons, and the Higgs sector.
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The idea of quantized structures resembling knots and vortices dates back to Helmholtz’s original
work on vortex dynamics [32], which provides historical context for these heuristic mappings.

12.2 Knots as Fermions

Localized knotted configurations of the breathing fabric may be identified with fermionic matter.
The conserved topological charge of such a configuration serves as an analogue of baryon or lepton
number. For example, a Chern-Pontryagin index of the form

1

Cor = 352

/ P Fy Foy d*x (62)

is quantized and conserved, suggesting that knot number plays the role of a fermion count. The
stability of electron- or proton-like states then follows from the nontrivial topology of the vacuum
knots.

12.3 Torsional Links as Gauge Bosons

A torsional bias in the vacuum grid resembles a gauge connection. Promoting the torsional fields
to a non—Abelian structure yields curvatures of the form

G, = O AL — 0, A% + fabCAZA,C,, (63)

the standard Yang-Mills field strength. In this picture, gluons (and more generally gauge bosons)
emerge as quanta of torsional excitations in the vacuum fabric.

12.4 Higgs Analogy
A nonzero mean amplitude of the breathing field plays the role of a vacuum expectation value:
(A(t)) = Amean # 0. (64)
This offset sets effective inertial scales and couples to knot states, analogous to how the Higgs field
endows particles with mass in the Standard Model.
12.5 Summary Table

The speculative correspondences may be summarized as:

VBT construct Standard Model analogue
Knotted vacuum configuration Fermion (electron, quark, proton)
Torsional link / bias Gauge boson (gluons, W, Z, photon)
Nonzero mean breathing amplitude Apean Higgs vacuum expectation value

12.6 Future Work

At present this mapping is schematic. We have shown that radial and torsional biases generate
Coulomb- and Biot—Savart-like fields, and that knots can carry conserved charges. To extend
this framework into a full Standard Model embedding, one would need to construct explicit non—
Abelian gauge structures within the vacuum lattice, classify distinct knot families, and show how
three fermion generations and mixing arise. These steps are beyond the present work, but define a
concrete path forward.
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13 Discussion

The Vacuum Breathing Theory (VBT) offers a framework in which multiple long-standing puz-
zles of quantum mechanics emerge naturally from the dynamics of the vacuum fabric. A central
insight is that all matter is built from closed standing-wave configurations of the vacuum oscilla-
tion, with Apean defining the spacetime “zero crossing” in which physical reality resides. Within
this framework, phenomena often treated as fundamentally mysterious can be reframed in a direct
physical manner.

13.1 Entanglement as Vacuum Synchronization

In VBT, entanglement correlations are attributed to shared phase histories written into the
breathing vacuum at interaction, yielding non-signaling correlations without superluminal commu-
nication. This account is explicitly compatible with experimental violations of Bell inequalities; it
does not restore local hidden variables but frames the correlations as arising from common vacuum-
phase constraints rather than dynamical signals.

13.2 Double-Slit Interference

The double-slit experiment remains a touchstone for wave—particle duality. In VBT, the ex-
planation is straightforward: every quantum entity is a standing wave on the breathing vacuum.
Passage through both slits corresponds to two coherent paths of the same envelope on the Planck
carrier. The interference pattern is the direct manifestation of vacuum modulation, not a para-
dox of “particle deciding path.” Collapse upon detection reflects the re-locking of the standing
wave to a specific localized oscillation of the fabric. Thus, wave—particle duality becomes a natural
consequence of the carrier—envelope framework.

13.3 Interpretive Scope

These examples illustrate how VBT reframes some of the most puzzling quantum phenomena
without additional postulates. Entanglement follows from global synchronization of the breathing
fabric; interference arises from the wave nature of all excitations; uncertainty (Sec. 3) emerges as
a carrier—envelope constraint. Together, these interpretations suggest that the breathing vacuum
provides a unifying ontological substrate for both quantum mechanics and relativity.

14 Conclusion and Outlook

The Vacuum Breathing Theory (VBT)|11] reframes atomic and quantum dynamics as deter-
ministic phase-locking to a universal vacuum oscillation. In place of stochastic jumps or purely
abstract symmetry arguments, VBT introduces a physical mechanism: inertia, transition delays,
and apparent randomness all emerge from the degree of mismatch between local oscillations and
the breathing of the vacuum.

14.1 Summary of Achievements

e Atomic transitions: VBT provides a continuous description of electron orbital changes,
reproducing hydrogen spectral lines without relying on discontinuous quantum jumps. The
Lamb shift is reinterpreted as a modulation of vacuum phase-locking, not random vacuum
fluctuations.
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e Photon emission: Whereas QED assumes exponential spontaneous decay, VBT predicts

finite, delayed photon wavepackets whose causal onset scales with coupling parameters. This
yields measurable departures from the purely memoryless exponential law in single-photon
time-correlated experiments.

Massless quasiparticles: Dirac fermions in graphene and massless excitons in hBN are
explained as cases where phase mismatch to the vacuum vanishes, eliminating effective mass.
VBT therefore unifies atomic inertia and emergent condensed-matter anomalies within the
same framework.

Tunneling: The paradox of instantaneous or undefined tunneling times is replaced by a
deterministic account. VBT adds finite re-locking delays at barrier interfaces on top of the
Bittiker-Landauer dwell, producing causal, tunable corrections in the attosecond regime.

14.2 Falsifiable Predictions

VBT is falsifiable by multiple, independent experimental probes:

1.

Orbital transitions: Continuous energy—time trajectories predict specific spectral envelopes.
Observation of strictly discontinuous behavior would contradict VBT.

Photon emission: Single-photon time-correlated histograms should reveal causal onsets and
finite packet envelopes, not perfect exponentials. The predicted delay scales with Q/« and
should be tunable.

Lamb shift: Residuals in precision spectroscopy should scale with S-state wavefunction den-
sity oc 1/n3. Absence of such a systematic trend would falsify this aspect of VBT.

Massless quasiparticles: Effective masslessness should be tunable by strain, dielectric en-
vironment, or applied fields. If massless points prove fixed and untunable, VBT’s coupling
interpretation fails.

Tunneling times: Attosecond measurements should show a positive, finite excess delay over
TBL, scaling with interface gradient and coupling strength. Observation of strictly memoryless
exponential decay with no tunable delay falsifies VBT.

14.3 Outlook

Together these predictions define a program of near-term experimental tests. Attosecond streak-
ing can probe tunneling delays, single-photon sources with TCSPC can test emission envelopes, and
precision spectroscopy can check S-state scaling. Condensed-matter experiments on graphene and
hBN provide a bridge to quantum materials. In all cases the VBT predictions are concrete, causal,
and testable. Either confirmation or falsification will advance our understanding of whether vac-
uum breathing is a true foundation of quantum physics. In addition to astrophysical signatures
such as redshift scaling, laboratory tests are possible. A concrete proposal for probing the temporal
structure of single-photon emission with trapped ions provides a direct falsification pathway for the
VBT framework [7].
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Glossary

Ajocal The local breathing amplitude, representing deviations in the vacuum near mass-energy
concentrations. It defines how the grid oscillates relative to the cosmic reference state Amean.
Amean The cycle-averaged amplitude of the breathing vacuum. This dimensionless parameter
defines the reference state of spacetime and is tied to cosmic evolution. Laboratory rulers and
clocks are implicitly calibrated to Amean-

Apparent Speed (7)) The velocity of an electron or wavepacket measured in laboratory coordinates.
Apparent speed varies because of the breathing factor a(t), even when motion through the fabric is
uniform.

Breathing Amplitude (¢) The fractional modulation of space per Planck cycle. Defined such
that one full peak-to-peak oscillation corresponds to one Planck length per Planck length.
Breathing Factor (a(t)) The instantaneous scaling factor relating the comoving (fabric) coordinate
X to the physical radius r(t): r(t) = a(t)x(¢).

Breathing Phase (u) A normalized parameter u € [0, 1] describing progress within one breathing
cycle, used to schedule electron motion and inverse-CDF sampling of radial probability densities.
Carrier Phase (®p) The rapid Planck-frequency oscillation of the vacuum fabric. Serves as the
universal reference clock on which slower matter-wave envelopes are imposed.

Comoving / Fabric Coordinate (x) The coordinate that moves with the breathing vacuum.
Motion at constant || is non-radiating, even though the apparent lab-frame motion may oscillate.
Diametric Shuttle The motion assigned to s-orbitals (e.g., hydrogen 1s, 2s) in VBT: back-and-
forth passes through the nucleus along nearly diametric lines, with azimuthal updates between cycles
to restore isotropy.

Dwell Probability The effective time spent near a given radius in orbital motion. At orbital
nodes, the dwell probability tends to zero, ensuring smooth transit rather than reflection.
Envelope (A) The slowly varying amplitude of a matter wave riding on the Planck carrier. De-
termines probability densities and obeys the Schrodinger equation after averaging over the fast
oscillation.

Factor-of-Two Modulation The requirement that the Coulomb potential experienced by an elec-
tron be modulated such that its orbital radius oscillates between r¢/2 and 2ry during each cycle.
This ensures the virial theorem and reproduces the hydrogen 1s probability density.

Fabric Frame The reference frame comoving with the breathing vacuum, in which particle speed |x|
is constant and radiation is absent. Contrasts with the lab frame, where apparent speeds oscillate.
Inverse-CDF Construction A numerical technique used to generate electron radial motion consis-
tent with quantum-mechanical probability densities P,;(r). By mapping uniform breathing phase u
to radius via the inverse cumulative distribution, exact reproduction of quantum radial distributions
is achieved.

Knot Closed standing-wave configurations of the vacuum oscillation, representing particles such as
electrons (complete knots), neutrinos (partial knots), and quarks (fractional phase-locked knots).
ko The effective shear stiffness of the vacuum substrate. Together with p,, it defines the wave speed
¢ = Ky /po. Like py, it is an emergent property of the breathing vacuum rather than an independent
constant of nature. At cosmological scales, x, may also co-vary with Apean-

Loop Frequency (fc) The Compton frequency of a closed electron loop at rest, defined by fo =
mec?/h. Interpreted in VBT as a large integer subdivision of the Planck frequency.
Phase-Locking Resonant synchronization between the electron’s de Broglie frequency and the
vacuum’s breathing. Ensures stationarity of atomic orbitals and underlies spectroscopic stability.
Precession (060) A tiny azimuthal increment added between diametric shuttles. Arises from near-
nucleus asymmetries and ensures isotropy without imparting net angular momentum.
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pv The effective mass density of the vacuum substrate. It appears in the elastic analogy (Sec. 6)
alongside k., with the wave speed given by ¢? = k,/p,. It is not a new fundamental constant but
an emergent parameter of the breathing vacuum. At cosmological scales, p, may co-vary with the
cycle-averaged amplitude Apean.

Radial Bias A static outward (positive charge) or inward (negative charge) displacement of the
vacuum grid. Produces electrostatic fields with inverse-square law behavior.

Torsional Bias A static twist of the vacuum grid corresponding to magnetism. Produces azimuthal
field lines looping from pole to pole.

Vacuum Grid The notional lattice of points representing the breathing spacetime fabric. Local
radial or torsional biases of this grid correspond to charges and magnetic fields.

forb — orbital frequency of the electron in its bound state trajectory (Sec. 4.2).

fp — vacuum breathing frequency; the high-frequency oscillation of the isotropic background fabric

(Sec. 4.2).

L? — orbital angular momentum operator, eigenvalues £(¢ + 1)h? for quantum number £.

L, — z-component of orbital angular momentum, eigenvalues m#h for magnetic quantum number
m

®p(t) — The global Planck-carrier phase ®p(t) = wpt, perfectly synchronized across the universe.
o(z,t) — Envelope phase of a matter wave, spatially varying and responsible for momentum //energy
relations. Distinct from ®p.

0r7(1)(x) — Internal order parameter describing topological winding (charge).

Appendices

A Higher hydrogenic states example (3d.2)

Example of a Higher Hydrogenic State (3d,2)

This appendix illustrates how higher hydrogenic statises emerge naturally from the analytic
framework of Sec. 4.4, and shows how numerical validation confirms their expected structure.
A.1 Analytic form.

The radial function for the 3d state (n =3, ¢ =2) is

1 — 2
Rsa(r) = W ag 3/2 <ao> exp(—ﬁ) , (A1)

with angular dependence given by the spherical harmonic Ya0(0,¢) = i\/% (3cos?f — 1). The

resulting probability density P(r,0,¢) = |Rs2(r)|?|Y20(0, ¢)|?> has the familiar nodal surfaces: two
radial nodes and an angular node.

A.2 Numerical validation.

To check consistency, synthetic trajectories were generated with the inverse-CDF method de-
scribed in Appendix H, and histograms were compared with the analytic densities. The method is
used here solely as a wvalidation tool: it reproduces the analytic weighting but does not constitute
an independent derivation.
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e Radial PDF match: The histogram of r(t) agrees with the analytic | Rs2(r)|?r? on [0, 20aq]
with Ly error < 1072

e Angular PDF match: The histogram of polar angles matches |Ya0(6, ¢)|? to within 1072 in
L1 norm.

e Angular momentum: From the synthetic trajectory, L? ~ 642 and L, ~ 0, consistent with
=2, m=0.

3d_z2 — XZ-plane probability density

3d_z2 — radial probability
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Figure 17: Validation of the 3d,. orbital. (a) Radial probability histogram from inverse-CDF
validation compared with the analytic |Rs2(7)|?r?, confirming the expected radial structure. (b)
XZ-plane probability density from inverse-CDF validation, showing the lobes and nodal planes of
the 3d,2 orbital in agreement with the analytic angular form |Y29(6, ¢)[?. Together these results
confirm that the VBT sampling reproduces both radial and angular features of the 3d,2 state.

A.3 Conclusion.

The 3d,2 example illustrates that higher-¢ orbitals follow straightforwardly from the analytic
derivation in Sec. 4.4. Numerical validation confirms the expected radial and angular structure.
The main text focuses on 1s, 2s, and 2p as representative cases; this appendix is included for
completeness and intuition.

B Averaged Dynamics and Derived Radial Distributions

B.1 Setup and multiple-scales averaging

Let the physical radius be r(t) = a(t) x(t), where x is the comoving (fabric) coordinate and
a(t) = 14 ecos(wpt) is the isotropic breathing factor (¢ < 1). For a central Coulomb potential
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V(r) = —k/r (with k = k.e?), write the Lagrangian in :
m 2 k
2 i~ ()
ax
o . (B.1)
= — (dx—i—a)'()Q—l——.
2 ax

L(x, x,t) =

Introduce fast and slow times ¢; = wpt and tg = t, and average over a breathing cycle keeping O(¢?)
terms:

1
@) =1+12  (aa)=0, (&% =L2uwd, <E> — 1+ 122+ 0(h). (B.2)
The cycle-averaged (slow) Lagrangian is
m m k /1
L. .:72.27-227<7>. B.
£ X) = 5 (@) X"+ 5 (@) x 3 \a (B.3)

Defining m, = m (a?) and Q2 = (a2), the effective Hamiltonian reads

2
D ks 1
Heff(vaX) = - = + 7m92 21

2,2

The quadratic term in x is O(e”wp) and originates purely from the fast metric oscillation. In this
construction the averaging is precisely over the fast oscillatory component £(t) in Eq. (5), leaving
only the smooth mean amplitude Apean(t).

B.2 Emergent quantum dynamics (Madelung form and fieg)

Consider a compressible ensemble of slow trajectories in phase space (x, py) with density p(x,t)
and velocity u(y,t) = x. The Euler—continuity system implied by Heg contains, besides the Coulomb
term —0, (k*/x) and the centrifugal barrier (for £ > 0), a dispersive contribution arising from the
%mQQX2 piece.

Writing p = 12 and choosing a constant heg such that

2 0%
27;1; >\</\gﬁ = %mQ2X2—|—(curvature terms), (B.5)

the Euler—continuity system becomes equivalent to the stationary Schrédinger equation in the radial

coordinate, with f.g determined by the microscopic breathing parameters through 2. For ¢ > 0:
hzﬂ d’u k hzﬁf(ﬂ—i- 1)
2m* dr? r 2m*r?

u = FEu, u(r) =rR(r), r = ax. (B.5)

Hence the hydrogenic radial solutions R,(r) and probabilities P,(r) = 4712 Ry(r)|? follow di-
rectly, without parameter fitting. The inverse-CDF method is retained only as a numerical valida-
tion of these analytic forms.

Remarks. (i) This identification is the standard Madelung equivalence: a dispersive term (“quan-
tum pressure”) proportional to Vzﬁ/ V/p is dynamically indistinguishable from a microscopic cycle-
averaged stiffening; the coefficient defines heg. (i) On atomic scales the x? piece is small but crucial
for producing the exponential tails of R,.
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B.3 Occupation—time law (distribution directly from dynamics)

For a periodic slow orbit with energy F in the effective central potential

ko, B0+ 1)

V. = — B.6

lr) =~ 4 P CH D), (B.6)

the time—occupation law gives the radial probability (angle-averaged by uniform precession):
Pyy(r) = Nr2Jv.(r)] esi (7)) (B.7)

m*

Normalizing [;° P,¢(r) dr = 1 and applying the EBK quantization condition

7{]),“ dr = mheg(2n, +(+1),

yields the discrete spectrum
m*k? 1
2h2ﬁf n2’

n = —

and reconstructs the known hydrogenic P,(r).

B.4 Small- and large-r behavior and nodes (diagnostics)
From Eqgs.(B.5) or (B.7) it follows that:

e Near r — 0, regularity and the centrifugal barrier give P, (r) ~ r**2 (e.g., 2 for 1s, 4 for
2p).

e For large r, a turning-point/EBK analysis gives Pns(r) ~ r? exp(—2r/(nag)) with ag =

hgﬂ?/ (m.k).
e The polynomial factor exhibits exactly n — ¢ — 1 radial nodes (Laguerre structure).

All three features match the quantum-mechanical forms and are derived from dynamics.

C Radiation and Stability in the Conformal Fabric

C.1 Maxwell theory in a conformally flat metric
Let the physical metric be conformally flat,
ds? = A(n)® (Pdp® —dx?),  A(n) >0, (C.1)

with conformal time 7 and comoving spatial coordinates x. The conformal factor A(n) in this setting
plays the same role as the cycle-averaged Apean(t) introduced in Eq. (4), providing the smooth
background scale against which oscillations occur. In four spacetime dimensions the source—free
Maxwell equations are conformally invariant: if Fj, solves V,F" = 0 and V|,Fg, = 0 in the
metric g, = A?n,,, then the rescaled field Frv — v (indices raised by 7),,,) obeys the flat-space
equations 0, Fr —, Ia F 3y = 01in (1, x). With sources, V,,F*” = p9J"” becomes, after rescaling,

O FM = pg A3 JY, J' = A3, C.2
i

and charge conservation is d,J” = 0. Thus the field equations in (n,x) take the Minkowski form
with a conserved current JV.
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C.2 Poynting flux and conformal scaling

Let T 511\1/1 = %(F R ig“" F O‘ngag) be the electromagnetic stress—energy tensor. In the

conformal metric (C.1) and for any hypersurface with unit normal n, and induced area element
dX,, the radiated power through a large sphere Sg (radius R in xy—coordinates) is

P(n) = / Tty A, u” = A71(1,0) (static observer). (C.3)
Sr
Using the conformal relation and the rescaled (Minkowski) fields E, B defined in (1, x), one finds
P) = A P@). )= [ §-dA (1)

where S = uio E x B is the flat-space Poynting vector in the (1, x) chart. Thus the question of

radiation in the physical metric reduces to whether P is nonzero in the conformal frame. If the

cycle-average (P), = 0, then (P) =0 as well.

C.3 Stationary bound states as standing—wave sources

_ In VBT, a stationary atomic state corresponds to a time-periodic and spatially localized current
J#(n, x) in the conformal frame (e.g. the diametric shuttle for s—states, with uniform motion through
the fabric between turning regions). Decompose the source in temporal Fourier modes:

JMn,x) = Z JE(x) e~ mwen, wp = breathing/beat frequency. (C.5)
nez
The causal (outgoing-wave) solution in flat (7, x) separates into near- and far-field parts. At large
x = R, the radiative field is proportional to the causal time derivatives of the multipole moments
of J¥. For a standing-wave source built from equal-amplitude counter—propagating harmonics (the
constructive mechanism for stationarity), the outgoing and incoming 1/R pieces cancel in the cycle
average:

Frad prad | forad  Rrad Rrad | prad & oo & o & 4
Ered = radpgred pred = gradygrad <S-n>77 = <S+~n>n—i—<S_-n>77—i—<cross>77 = 0. (C.6)
Physically: a stationary bound state cannot feed a net outward radiative flux at infinity in the

conformal frame; its fields are reactive/evanescent (near—field) with zero net energy transport per
cycle. By (C.4), this implies (P) = 0 in the physical metric as well.

Dipole check (selection rule form). In the conformal frame, the leading radiative channel is
2, where d(n) = [ x pd3x. For stationary bound states the

dipole radiation with power Pdip o ‘327‘21
source has definite parity and a fixed azimuthal structure (over a cycle), so the net dipole channel
averages to zero; transitions (e.g. 2p — 1s) occur only when the source acquires the appropriate
oscillatory component at the transition frequency, reproducing the usual selection rules. Hence
(Pdip>n = 0 in stationary states.

C.4 Local criterion via proper acceleration

A complementary local statement uses the covariant Larmor scalar. Let v = dxz*/dt be the
four—velocity and a* = u”V,u* the proper four-acceleration in the physical metric g,, = AQUW.
The radiative power measured in the comoving frame is proportional to the invariant

P x ¢*da,, (C.7)
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so worldlines with a*a, = 0 do not radiate locally.? In the conformal metric (C.1), geodesics satisfy
a* = 0. The VBT construction takes the fabric—frame motion to be uniform between turning
regions (piecewise geodesic in (7, x)), so that a*a, = 0 except where the binding potential reverses
the motion. The global statement (C.6) then guarantees that the cycle-averaged power still vanishes:
the transient local accelerations at turning regions do not produce a net outward 1/R flux when the
full standing—wave source is taken into account.

C.5 Conclusion

Maxwell’s conformal behavior reduces the radiation question to a flat—space calculation in con-
formal coordinates. Stationary bound states correspond to standing—wave sources, which carry no
net Poynting flux through a distant sphere per cycle; by conformal scaling, the physical radiated
power also averages to zero. Equivalently, the covariant Larmor scalar a*a,, vanishes along the uni-
form fabric—frame segments of the motion, and the remaining turning-region contributions cancel
at the level of the far—field 1/R terms. Therefore, stationary VBT orbitals are non-radiating.

D Lagrangian Formulation for Electromagnetism in the Breathing
Vacuum

For completeness, we recall the standard electromagnetic Lagrangian density :
1
LeM = *EFW,F“V — JMA”, (D.1)

where F,, = 0,A, — 0,A, is the field strength tensor and J, is the 4-current density. This
conventional formulation provides the baseline against which VBT modifications may be compared,
without invoking additional assumptions from quantum electrodynamics [36].

A concise action for the transverse degrees of freedom of the vacuum fabric is

1
Sent = / d's & [02(6@)2 —(VEL?|, (D-2)
where ¢? = k,/p, as in Section 8. Introducing the vector potential

A= AatEJ_u <D3)

and defining A, = (¢/c, A), the action becomes

1
Sgyv = ——— [ dix F, F* D.4
EM 4/~LO x Ly, ) ( )

with F,,, = 0,4, — 9, A, and ,ual = A2%p,c?. Varying with respect to A, yields the source-free
Maxwell equations. Coupling to matter is introduced via

Sint = / dz J"A,, (D.5)

which enforces charge conservation 9, J# = 0.

2In flat space this reduces to the Liénard formula; the generalization to curved spacetimes keeps the same scalar
a*a, in the local limit.
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D.1 Charge as a Topological Defect in the Vacuum Fabric

In VBT, electric charge corresponds to a topological winding of an internal U(1) order param-
eter Or(1)(x), not of the global Planck carrier. The carrier ®p(t) remains strictly synchronized
everywhere. A 27 winding in ;) produces quantized flux, consistent with Gauss’s law. Thus
charge is a defect in the vacuum’s internal orientation, while the underlying breathing oscillation is
untouched.

D.2 Remarks
This picture unifies:
e Elastic wave physics of the vacuum fabric with the field theory of electromagnetism.
e Charge conservation with topological invariance of phase winding.

e Gauge symmetry with the freedom to redefine the carrier phase without changing measur-
able fields.

At Planck resolution, both the breathing (longitudinal) and shear (transverse) modes coexist, but
only the shear modes survive as propagating disturbances at low frequency, giving rise to photons.

E Lagrangian Formulation for Gravity

The standard Einstein—Hilbert Lagrangian [4, 41] is

EGR = ﬁ R\/jg + £mattera (El)
m
where R is the Ricci scalar and ¢ the determinant of the metric tensor. In VBT, the same form
can be recovered by interpreting curvature as local suppression of the breathing amplitude Apean,
linking the gravitational action to the Planck-scale substrate.The longitudinal (breathing) degree of
freedom of the vacuum fabric is encoded in the scalar field x(t,x) representing the local fractional
dilation of the metric scale factor Q(¢,x):

Qt,x) =1+ e x(t,x), (E.2)
with € < 1 in the weak-field regime.
A minimal action for y is
_ P 4 |1 2 2
Sgrav = ? d*z g(atX) - (VX) ) (E3)

where p, is the effective vacuum mass density. This is a scalar wave equation with wave speed ¢ for
the longitudinal mode.

E.1 Coupling to Matter

Matter with mass density p,,(x,t) couples to the breathing mode via the interaction term

Sine = —% Az ®y(x, 1) pn (X, 1), (E.4)
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where @, is identified as the mean-field gravitational potential:

2
c
(pg (Xv t) = 5 X(X, t) (E5)
Variation of Sgray + Sint With respect to x yields
1 P
?Btzx — Vi =" (E.6)

v

E.2 Newtonian Limit

In the static, weak-field limit (9;x =~ 0) this reduces to

V20, = 47G ppm, (E.7)
with G fixed by the ratio p,/c%:
4
c
= . E.8
Spn (E.8)

Thus Newton’s law is recovered as the time-averaged limit of the breathing mode dynamics.

E.3 Mass as a Localized Amplitude Defect

In VBT, mass is modeled as a localized suppression of the vacuum breathing amplitude. This
defect shifts the cycle-averaged midpoint Apean downward, sourcing the effective potential ® that
appears in the weak-field metric. The Planck-frequency carrier remains globally synchronized.
What gravitates is not a phase offset but the depth of amplitude suppression. This reproduces the
Gauss-law form V2® = 47Gp while maintaining a universal carrier phase.

E.4 Remarks

This construction places:

Gravity as the longitudinal oscillation mode of the vacuum fabric.

e Mass as a conserved topological phase defect in that mode.
e The Newtonian limit as the static solution of the scalar wave equation.

e GR corrections as higher-order terms when ¢ is not small.

At the Planck scale, transverse (EM) and longitudinal (gravitation) modes are simply orthogonal
oscillations of the same underlying medium.

F Weak—Field Derivation of Gravity from Amplitude Suppression

Starting from the weak-field metric of Eq. 58 reproduces the standard form of General Relativity
[4, 41]. The effective potential ® satisfies Poisson’s equation V2® = 47Gp, where G is the Newtonian
constant [37]. Observable consequences include gravitational redshift, light bending, and radar time
delay, all matching the predictions of GR while being interpreted within VBT as consequences of
suppressed breathing amplitude.

We derive Newtonian acceleration, gravitational redshift, and light bending starting from the
metric ansatz of Eq. (F.1).

ds® = A(z)2Adt* — A(z) 2da?, A(z) = 2@/, (F.1)
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F.1 Christoffel symbols in the weak field

For weak potentials, A ~ 1+ ®/c%. Expanding to first order in ®/c?, the metric components

are

20\ 20
goo=\1+7>73 |, gii=-\1=2 0ij-

This matches the isotropic weak-field form of the Schwarzschild metric.
The nonvanishing Christoffel symbols to first order are

, 1
]._"L 00 ~ +g 81@,
1
02

; 1
Fljk ~ 6—2 (5Jk‘ 8Z(I) — (5,‘]‘ 8k(I) — 5zk 8]q))

I ~ = 99,

F.2 Equation of motion for slow bodies

Pzt (dt)?
— 4+ I — ] =0.
gz Thw <d7’>
Since for slow motion dt/dr ~ 1, we obtain
d?z
dt?

The spatial geodesic equation is

~ — 0@,
i.e. the Newtonian acceleration law.

F.3 Frequency shift

The proper time of a stationary clock satisfies

P
dt = \/goo dt = (1 + 02> dt,

so the frequency ratio between two positions is

Vobs _ 1+ Dops — Pem

)
Vem c?

the gravitational redshift formula.

F.4 Light rays and index of refraction

For null curves (ds? = 0) in the spatially isotropic form, the effective optical metric is
di? = A(x)~tdx>2

This is equivalent to propagation in a medium with refractive index

20 (x)
— A(x) 2% ~1-—
n(x) = A) =
The deflection angle for a light ray grazing a mass M at impact parameter b is
4GM
A = ——
b’

recovering the full general-relativistic result (time scaling alone would give half this value).
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F.5 Summary

2
o/e , We recover:

Starting from a uniform carrier phase and amplitude suppression A(x) = e
e Newtonian acceleration in the weak field;
e Gravitational redshift and time dilation;

e Light bending and Shapiro delay with the correct GR coefficient.

Thus, the VBT interpretation (gravity as amplitude suppression) is mathematically consistent with
classical tests of general relativity.

G Vacuum birefringence

In strong external fields the vacuum acquires effective nonlinearities described by the Heisen-
berg—FEuler Lagrangian,

202

Lup = %(EQ - B2) + 45m4
[

(B2 -B2)’ +7(E-B)’]. (G.1)

For a probe wave propagating perpendicular to a static magnetic field B, the refractive indices
for polarizations parallel /perpendicular to B are

7a [ B\?
n—1= 907r<BC) : (G.2)
4o [ B\?
1= == .
ny 907 <Bc> ) (G 3)
with
M A X 100T G4
B, = —%— ~4. . .
s X (G.4)

The birefringence signal is therefore

3a (B

2
Anqggp =n| —ny = 007 <-Bc> : (G.5)

G.1 VBT expectation.

Within the breathing framework, Maxwell’s equations remain conformally invariant, so the lead-
ing nonlinearity is unchanged. Any VBT correction appears as a fractional modification of the
Heisenberg—Euler coefficients,

Anypr = Anqgep (1 +£), ¢ =0(e%), (G.6)

which vanishes as the breathing amplitude € —0. Vacuum birefringence therefore acts as a null test
for VBT-specific corrections.
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G.2 Laboratory bound.

At B ~2.5T, QED predicts
Anqgep ~ 2.5 x 10723, (G.7)

PVLAS reports
An=(12+17) x 107  (B=25T), (G.8)

consistent with the prediction within sensitivity [38, 51|. This constrains deviations to

€7 (o), 1§l <20 (30). (G.9)

G.3 Astrophysical evidence.

Optical polarimetry of neutron star RX J1856.5-3754 reported a linear polarization degree of
~16, supporting the existence of vacuum birefringence in the strong-field regime [52]. Recent X-
ray polarimetric observations of magnetars by IXPE—including the first measurements from 4U
0142461 and 1E 1841-045—show strong, energy-dependent polarization patterns that are consistent
with QED-induced birefringence and mode conversion effects [33, 34].

G.4 Summary.

VBT predicts the same birefringence signal as QED at leading order. Present laboratory and
astrophysical observations are consistent, while a future laboratory detection of An at the QED
level would immediately constrain any breathing-induced correction £ to < 1.

H Simulation validation

To validate the analytic radial probability densities, we generated synthetic trajectories using the
inverse-CDF method. A uniform random sequence u € [0, 1] was mapped to radii r by inverting the
cumulative distribution F(r) = [ P(r’) dr’ of the target hydrogenic state. By stepping through this
sequence at fixed angular increments we obtain time series r(t) whose histograms can be compared
directly to the analytic distributions. This procedure reproduces the correct weighting by sampling
design and is used purely as a numerical validation tool, not as an independent derivation.

For completeness we present additional checks for the 2s and 2p states that were omitted from
the main text for brevity.
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Figure 18: Validation of the 2s and 2p radial distributions. Histograms of radii r(¢) from
inverse-CDF validation compared with the analytic densities. Both cases show Lj error < 1072,
confirming that the sampling method reproduces the analytic distributions.

Summary. These results demonstrate that the inverse-CDF validation produces trajectories whose
histograms agree with the analytic radial PDFs for the 2s and 2p states. They serve as validation
of the analytic derivation presented in Sec. 4.4, not as an independent assumption.
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