

Phlebotomy Study Guide

Responsibilities & Ethics

1. What are the primary responsibilities of a phlebotomist?
2. How should a phlebotomist interact with patients?
3. Why is accurate patient identification crucial in phlebotomy?
4. What are the consequences of misidentifying a patient?
5. What are some ethical considerations a phlebotomist must follow?
6. What role does a phlebotomist play in quality assurance?
7. How should a phlebotomist handle unresolved problems with specimen collection?
8. What is HIPAA, and how does it apply to phlebotomy?
9. What are the legal requirements for obtaining patient consent?
10. What should a phlebotomist do if a patient refuses to have their blood drawn?

Infection Control & Safety

1. What is the Chain of Infection, and what are its six links?
2. How can each link in the Chain of Infection be broken?
3. What are standard precautions in infection control?
4. What are the different modes of transmission for infectious diseases?
5. What is the difference between contact, droplet, and airborne precautions?
6. Why is hand hygiene important in phlebotomy?
7. What is the correct sequence for donning and doffing PPE?
8. What are needlestick injuries, and how can they be prevented?
9. What does the Needlestick Safety and Prevention Act require employers to do?
10. What should a phlebotomist do in case of accidental exposure to bloodborne pathogens?

Bloodborne Pathogens & Immunization

1. What are common bloodborne pathogens that phlebotomists may be exposed to?
2. How can bloodborne pathogens be transmitted?
3. What immunizations are recommended for healthcare workers?
4. Why is the Hepatitis B vaccine important for phlebotomists?
5. What are the symptoms of an HIV infection?
6. What does OSHA require in terms of bloodborne pathogen training?
7. How can a phlebotomist protect themselves from exposure to bloodborne diseases?
8. What is reverse isolation, and when is it used?
9. What PPE should be used when handling bloodborne pathogens?
10. How should biohazardous waste be properly disposed of?

Anatomy & Physiology

1. What are the major body systems relevant to phlebotomy?
2. What are the main functions of the circulatory system?
3. What is the function of veins, arteries, and capillaries?

4. What are the common venipuncture sites?
5. Why is it important to know body planes and positions in phlebotomy?
6. What is the difference between plasma and serum?
7. How does the heart circulate blood through the body?
8. What is the function of hemoglobin?
9. What are the different types of white blood cells and their functions?
10. What conditions affect the circulatory system and may impact venipuncture?

Specimen Collection & Handling

1. What is the correct procedure for labeling blood specimens?
2. Why is patient identification verification necessary before specimen collection?
3. What are the steps of a standard venipuncture procedure?
4. What is the purpose of using different colored blood collection tubes?
5. What is the order of draw, and why is it important?
6. How should blood specimens be transported to the laboratory?
7. What factors can affect the integrity of a blood specimen?
8. What are common causes of hemolysis in blood samples?
9. What steps should be taken if a specimen is rejected by the laboratory?
10. What is the difference between venipuncture and capillary puncture?

Venipuncture Techniques & Equipment

1. What equipment is needed for a venipuncture procedure?
2. How should a tourniquet be applied and for how long?
3. What are common complications of venipuncture?
4. What should be done if a patient faints during blood collection?
5. How should a phlebotomist handle a patient with difficult veins?
6. What are common errors that can occur during venipuncture?
7. How should blood be drawn from pediatric patients?
8. What special considerations should be taken for geriatric patients?
9. What needle gauges are commonly used in phlebotomy, and for what purposes?
10. What are the differences between a syringe draw and a vacutainer draw?

Laboratory Procedures & Testing

1. What is the purpose of the Clinical Laboratory Standards Institute (CLSI)?
2. What is CLIA, and how does it regulate laboratory testing?
3. What is the role of the CDC in laboratory safety?
4. How does the Joint Commission impact phlebotomy procedures?
5. What is the significance of National Patient Safety Goals in phlebotomy?
6. How do reference ranges vary based on patient factors?
7. What tests require fasting specimens?
8. How should a phlebotomist collect a blood culture sample?
9. What are the requirements for a glucose tolerance test?
10. How can a phlebotomist minimize contamination of blood samples?

Patient Interaction & Special Procedures

1. How should a phlebotomist explain the procedure to a patient?
2. What is informed consent, and why is it important in phlebotomy?
3. How should a phlebotomist handle a patient with needle phobia?
4. What is therapeutic phlebotomy, and when is it used?
5. What is the proper procedure for collecting a timed specimen?
6. How is a blood smear prepared correctly?
7. What special considerations are needed for arterial blood draws?
8. How should a blood specimen be handled for coagulation studies?
9. What is the difference between a STAT and a routine blood draw?
10. How should a phlebotomist handle a verbally aggressive patient?

Workplace Safety & Emergency Situations

1. What are the main components of an exposure control plan?
2. How can slips, trips, and falls be prevented in the workplace?
3. What should be done in case of a chemical spill in the lab?
4. How should hazardous waste be handled?
5. What is the correct response to an accidental needlestick injury?
6. What is the importance of safety data sheets (SDS) in the lab?
7. How does a phlebotomist respond to an emergency situation during a draw?
8. What is the protocol for handling a fire in the lab?
9. How should a phlebotomist handle an aggressive or violent patient?
10. What measures should be taken to reduce stress and fatigue for phlebotomists?

Professional Development & Continuing Education

1. What certifications are available for phlebotomists?
2. How often should phlebotomy certification be renewed?
3. What are some career advancement opportunities for phlebotomists?
4. Why is continuing education important in phlebotomy?
5. How can a phlebotomist stay up to date with industry changes?
6. What professional organizations exist for phlebotomists?
7. What are some best practices for maintaining professionalism in phlebotomy?
8. How can a phlebotomist improve their communication skills?
9. What are common ethical dilemmas faced by phlebotomists?
10. How can phlebotomists advocate for patient safety in their workplace?

Phlebotomy Study Guide – Answer Key

Responsibilities & Ethics

1. Collect, label, and transport blood specimens accurately and safely.
2. Treat patients with respect, empathy, and professionalism at all times.
3. Ensures results correspond to the correct patient for safety and accuracy.
4. It can result in misdiagnosis, mistreatment, or legal issues.
5. Follow confidentiality, informed consent, and professional conduct standards.
6. Ensures specimens meet testing standards and protocols.
7. Report issues to a supervisor or laboratory manager immediately.
8. HIPAA protects patient information; phlebotomists must maintain privacy.
9. Consent must be voluntary, informed, and documented as required by law.
10. Respect the refusal, document it, and notify the supervisor or provider.

Infection Control & Safety

1. A process showing how infections spread; includes six links: pathogen, reservoir, portal of exit, mode of transmission, portal of entry, and susceptible host.
2. By practicing hand hygiene, using PPE, and maintaining aseptic technique.
3. Guidelines to prevent transmission of infectious agents for all patients.
4. Contact, droplet, airborne, vector-borne, and common vehicle transmission.
5. Contact involves touch, droplet through coughs/sneezes, airborne via particles.
6. It prevents cross-contamination and infection transmission.
7. Donning: gown, mask, goggles, gloves. Doffing: gloves, goggles, gown, mask.
8. Injuries from contaminated needles; prevented with safety devices and care.
9. Requires employers to use safer devices and maintain a sharps injury log.
10. Wash the area, report immediately, and follow exposure control procedures.

Bloodborne Pathogens & Immunization

1. Hepatitis B, Hepatitis C, and HIV.
2. Through contact with infected blood or body fluids.
3. Hepatitis B, influenza, MMR, varicella, and Tdap vaccines.
4. Prevents infection from a common occupational hazard in phlebotomy.
5. Early symptoms include flu-like illness and swollen lymph nodes.
6. Requires annual training on prevention and exposure control.
7. Use PPE, avoid recapping needles, and practice hand hygiene.
8. Protects immunocompromised patients from outside infections.
9. Gloves, gowns, face shields, and masks as appropriate.
10. Place in red biohazard containers for sharps or infectious waste.

Anatomy & Physiology

1. Circulatory, lymphatic, muscular, skeletal, and nervous systems.
2. To transport oxygen, nutrients, and remove waste from the body.
3. Arteries carry blood away, veins return it, and capillaries exchange gases.
4. Median cubital, cephalic, and basilic veins of the antecubital area.
5. To locate proper veins and ensure safe patient positioning.
6. Plasma contains clotting factors; serum does not.
7. The heart pumps oxygenated blood through arteries and returns via veins.
8. Carries oxygen in red blood cells to body tissues.
9. Neutrophils fight bacteria; lymphocytes fight viruses; monocytes clean debris.
10. Conditions like anemia, clotting disorders, or vascular disease affect draws.

Specimen Collection & Handling

1. Label with patient name, date, time, and collector's initials at bedside.
2. Prevents mix-ups and ensures accurate test results.
3. Identify patient, apply tourniquet, select vein, clean site, insert needle, fill tubes, release tourniquet, withdraw needle, and apply pressure.
4. Different additives for different test types (e.g., EDTA, citrate).
5. Yellow, light blue, red, green, lavender, gray; prevents cross-contamination.
6. Keep at proper temperature and deliver promptly to lab.
7. Hemolysis, temperature, or delayed transport can alter results.
8. Using too small a needle or shaking tubes can cause hemolysis.
9. Document reason, recollect if needed, and follow lab policy.
10. Venipuncture uses a vein; capillary puncture uses a finger or heel.

Venipuncture Techniques & Equipment

1. Needles, tubes, tourniquet, alcohol pads, gauze, bandages, and gloves.
2. 3–4 inches above site; no longer than 1 minute to prevent hemoconcentration.
3. Hematoma, fainting, nerve injury, or infection.
4. Stop procedure, lower head, apply cold compress, and monitor patient.
5. Use smaller needles, warm compress, or butterfly method.
6. Improper ID, wrong order of draw, or poor technique.
7. Use smaller needles and collect minimum blood volume.
8. Use gentle handling; veins may collapse or bruise easily.
9. 21–23 gauge for venipuncture; 25 gauge for small or pediatric veins.
10. Syringe uses manual pressure; vacutainer uses vacuum tubes.

Laboratory Procedures & Testing

1. Sets standards for specimen collection and lab procedures.
2. CLIA regulates laboratory testing quality and accuracy.
3. CDC provides infection control and biosafety guidelines.

4. Ensures compliance and improves patient safety standards.
5. Helps reduce medical errors and improve lab communication.
6. They differ by age, sex, and health status.
7. Glucose, lipid, and triglyceride tests require fasting.
8. Use aseptic technique and collect before antibiotics are given.
9. Fasting, timed draws, and multiple samples are required.
10. Avoid touching site after cleaning and ensure correct order of draw.

Patient Interaction & Special Procedures

1. Explain the purpose, steps, and duration in simple terms.
2. Patient understands procedure and voluntarily agrees to it.
3. Calmly reassure, use distraction, or allow patient to lie down.
4. Therapeutic removal of blood for conditions like hemochromatosis.
5. Collect specimens at exact times as ordered for accuracy.
6. Spread a drop of blood evenly across a slide and allow to air dry.
7. Performed by trained personnel using arterial sites and sterile technique.
8. Keep sample at room temperature and avoid agitation.
9. STAT means urgent; routine follows normal lab turnaround.
10. Stay calm, maintain distance, and seek assistance if necessary.

Workplace Safety & Emergency Situations

1. Outlines procedures for preventing and responding to exposures.
2. Keep floors clear, clean spills immediately, and use proper footwear.
3. Evacuate, wear PPE, and use proper absorbent materials.
4. Label, store, and dispose of waste in designated biohazard containers.
5. Wash, report, and seek medical evaluation immediately.
6. Contain safety information for chemicals and emergency response.
7. Stop the draw, call for help, and follow facility emergency protocol.

8. Use RACE: Rescue, Alarm, Contain, Extinguish.
9. Ensure safety, call security, and document the incident.
10. Take regular breaks, hydrate, and maintain proper posture.

Professional Development & Continuing Education

1. Certified Phlebotomy Technician (CPT) or National Certified Phlebotomy Technician (NCPT).
2. Usually every 2 years, depending on the certifying agency.
3. Lead technician, lab assistant, medical assistant, or supervisor roles.
4. Maintains skills, updates knowledge, and ensures safe practice.
5. Attend workshops, webinars, and review updated standards.
6. Organizations like ASCP, NHA, and AMT.
7. Be punctual, respectful, and maintain confidentiality.
8. Practice active listening and clear explanations.
9. Patient refusal, privacy breaches, or incorrect labeling dilemmas.
10. Report safety concerns and follow proper procedures consistently.