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LECTURE 1 

WHAT DOES “MODEL” MEAN? 
Modeling is a fundamental and quantitative way to understand complex systems and phenomena. 

Simulation is complementary to the traditional approaches of theory and experiment. Together, 

they (Modeling/Simulation/optimization) make up an approach that can deal with a wide range of 

physical problems and at the same time exploit the power of large-scale computing. 

“Modeling is the physicalization of a concept, Simulation its computational realization” 

The main goal of this class is to present a collection of mathematical tools for solving problems in 

chemical engineering fields. 

 

 

WHICH MODELING APPROACH IS MORE PREFERABLE? 
Modeling inherently involves a compromise between model accuracy and complexity on one hand, 

and 

¶ the cost and effort required to develop the model, on the other hand. 

¶ make simplifying assumptions that result in an appropriate model.. 

TYPES OF PROCESS MODEL 
Depending on the information (underlying chemistry, physics, and physical properties) and the 

level of information, model can be of different types 

¶ Empirical Models (example Regression Model/Statistical Model) also known as grey box 

¶ Black Box Model (Data Driven Model) 

¶ First Principle Models (also known as Mathematical Model and Whitebox) 

¶ Reduced model (Linearization) Transfer Function (Control study) also known as grey box 

EMPIRICAL MODELS 
¶ Lack of information and model complexity and not economical viable empirical models are 

discussed 

¶ Since this models are developed from data it is good with interpolation not extrapolate 

¶ Linear Regression: The Least Squares Approach 

BLACK BOX MODEL 
It is also data driven.  



EXAMPLE 
¶ Neural Network 

¶ System Identification tool box 

¶ Fuzzy logic 

CHARACTERISTICS 
¶ Only interested in input output mapping 

¶ Underlying physics not known 

¶ Not suitable for capturing process dynamics 

¶ Computationally less expensive 

¶ Unreliable when conditions change, may need tuning 

¶ Suitable for steady state processes but not for unsteady process 

REDUCED MODEL (LINEARIZATION) TRANSFER FUNCTION (CONTROL STUDY) 
¶ Underlying physics partially known 

¶ More reliable than black box one 

¶ More computationally expensive than black box one 

¶ Can capture process dynamics to some extent and 

¶ therefore may be suitable for control studies 

 

FIRST PRINCIPLE MODEL (MATHEMATICAL MODEL) 
¶ Expensive and time consuming butPredict more accurately than other method 

¶ Underlying physics known 

¶ Reliable prediction of process dynamics 

¶ It can predict over wide range. It can extrapolate and interpolate the process behavior more 

accurately than other 

¶ It consist of mass transfer, heat transfer and other chemical engineering principles (Based 

on basic conservation law) 

¶ Model equations are equality and inequality constraints and consist of Linear, Nonlinear 

and Differential and partial equation 

EXAMPLE 



 

HYBRID MODELING 
¶ The combination of other Modeling techniques 

¶ Hybrid model provides an opportunity to reduce the nonlinearity of a system (in some 

cases). 

 



 

WHY IS MATHEMATICAL MODEL IMPORTANT? 
Mathematical models can be useful in all phases of chemical engineering, from research and 

development to plant operations, and even in business and economic studies. 

 Research and development:  determining chemical kinetic mechanisms and parameters from 

laboratory or pilot-plant reaction data; exploring the effects of different operating conditions for 

optimization and control studies; aiding in scale-up calculations. 

 Design: exploring the sizing and arrangement of processing equipment for dynamic performance; 

studying the interactions of various parts of the process, particularly when material recycle or heat 

integration is used; evaluating alternative process and control structures and strategies; simulating 

start-up, shutdown, and emergency situations and procedures. 

Plant operation:  troubleshooting control and processing problems; aiding in start-up and operator 

training; studying the effects of and the requirements for expansion (bottleneck-removal) projects; 

optimizing plant operation. It is usually much cheaper, safer, and faster to conduct the kinds of 

studies listed above on a mathematical model than experimentally on an operating unit.  

This is not to say that plant tests are not needed. As we will discuss later, they are a vital part of 

confirming the validity of the model and of verifying important ideas and recommendations that 

evolve from the model studies. 

RELATION BETWEEN ENGINEERING PROBLEM AND MATHEMATICAL PROBLEM 

¶  



¶  
¶ Mathematical model (y=f(x)) is mathematical representation of the chemical process, 

equipment and physical property. It include mass, energy and momentum balance. 

¶ The term modeling in turn refers to the derivation of appropriate equations that are solved 

for a set or system of process variables and parameters. Mathematical Model extracts 

information form the chemical process/unit/equipment. 

¶  

¶ EXAMPLE OF MODEL DEVELOPMENT ENVIRONMENT 



¶  
¶ A modern chemical plant consists of interconnected units such as heat exchangers, reactors, 

distillation columns, mixers etc. with high degree of integration to achieve energy efficiency. 
Design and operation of such complex plants is a challenging problem. Mathematical 
modeling and simulation is a cost effective method of designing or understanding behavior 
of these chemical plants when compared to study through experiments. 
 

PROCESS MODEL  
¶ How to build a mathematical model from chemical engineering problem/What is the steps 

of Process Model? 

¶ Background:  Contains essential information which is unique to that particular case 

study/project 

¶ Problem Statement:  Explain the objectives and to state what is given and what is required. 

¶ Model Formulation : Breaks the problem down and formulates it mathematically in terms 

of governing equations/inequalities and relevant boundary/initial conditions 

¶ Mathematical/Numerical Solution : A mathematical solution (if this is possible) and/or, 

failing that, possible numerical solutions. depends upon the mathematical solver of the 

software package reformulate the problem 



¶ Model Validation:  is key to any model solution and could involve solutions using 

alternative numerical techniques or the use of the computer, including software packages, 

to back up the results obtained in the previous section. 

¶ Interpretation and Conclusions:  interprets the results and draws major conclusions 

giving, in some cases, suggestions for further extensions. 

¶ Computer Algorithms discusses and, in some cases, gives details of any important 

algorithms or software which has been used in the solution techniques. 

¶  
As a summary 

¶ Mathematical modeling is a way to represent the engineering system into mathematical 

system. 

¶ Mathematical model formulate the physical system that are directly related to physical and 

chemical quantities. 

¶ The modeling procedure is an adaptive procedure in which information gained from each 

step is used to improve in the next try (Model Validation). 

¶ Model may be used for predicting the future behavior of system reconstructing the past 

behavior of the system (Neural fuzzy model) and understanding better operating conditions 

by using control. 

¶ Mathematical model can handle IPDAE system using the modern flowsheeting packages 

 

 

LECTURE 2 
Mathematical Modelling:  

¶ Encoding physical behavior as a set of mathematical relations 

¶ Involves application of fundamental physical laws 

¶ Consider a subset of the universe as a system of interest – the position of the boundary 

separating the system and its surroundings may vary with time 

WHAT DOES Ȱ3TEADY STATE AND DYNAMICȱ MEANS? 
In all processes of interest, the operating conditions (e.g., temperature, pressure, composition) 

inside a process unit will be varying over time. Steady-state: process variables will not be varying 

with time.  

WHY DYNAMIC BEHAVIOR? 
¶ Study of operability and controllability of continuous processes subject to small 

disturbances 

¶ . Development of start-up and shut-down procedures 

¶ Study of switching continuous processes from one steady-state to another 



¶ Analysis of the safety of processes subject to large disturbances 

¶ Study of the design and operation procedures for intrinsically dynamic processes 

(batch/periodic/separation) 

FUNDAMENTAL LAWS 

CONSERVATION LAWS: 
Conservation laws describe the variation of the amount of Á ȰÃÏÎÓÅÒÖÅÄ ÑÕÁÎÔÉÔÙȱ within the 

system over time : 

 

CONSERVATION LAWS ARE: 
¶ Conservation Law: Mass 

¶ Conservation Law: Momentum 

¶ Conservation Laws: Energy 

 

¶ Conservation laws provide a simple and systematic “balance” 

¶ With a generation term, conservation laws may be written for any physical quantity 

¶ The usefulness of a particular law depends on whether or not we possess the necessary 

physical knowledge to quantify each term 

¶ Often, the rate of generation of one quantity is related to the rate of generation (or 

consumption) of another – this may affect the quantities to which we can apply a 

conservation law 

 

ASSUMPTIONS IN MODELING 
Assumptions should be introduced only when not introducing them results in: 

¶ Substantial increase in computational complexity (i.e., perfect mixing → CFD) 

¶ Need to characterize phenomena which are not well understood and/or cannot easily be 

quantified 



Continuity Equations 

 

Component Continuity Equations (Component Balances). 

 

Energy Equation 

 

Equations of Motion 

Force is equal to mass times acceleration 

 

 



Transport Equations 

 

 

Equations of State 

Mathematical models we need equations that tell us how the physical properties, primarily density and 

enthalpy, change with temperature, pressure, and composition. 

 
 

Equilibrium  

The second law of thermodynamics is the basis for the equations that tell us the conditions of a 

system when equilibrium conditions prevail. 

Chemical Equilibrium:  

 

Phase Equilibrium. 



 

Chemical Kinetics 

 

 

 

  



¶  

EXAMPLE  
Perfect Mixing Assumption All intensive properties of the stream(s) leaving a perfectly mixed 

system are identical to those inside the system. 

FORMULATION OF PHYSICOCHEMICAL PROBLEMS 
The First step: Drawing a picture of the system is to be studied. physicochemical problem 

beforehand, derived from experience or experiment 

The Second Step: applicable physical and chemical information, conservation laws, and rate expressions. 

Determine the ultimate complexity of the final mathematical description. 

The Third step: setting down of finite or differential volume elements, followed by writing the 

conservation laws. The problem boundary condition must be specified. 

 

 

 

LECTURE 3 

DEGREES OF FREEDOM 

 

 

¶ List all quantities in the model that 

are known constants (or parameters 

that can be specified) on the basis of 

equipment dimensions, known 

physical properties, etc. 

¶ Determine the number of equations 

NE and the number of process 

variables, NV. Note that time t and 

spatial distribution axis is not 

considered to be a process variable 

because it is neither a process input 

nor a process output. 

¶ Calculate the number of degrees of 

freedom, DOF/Nd= NV-NE. 

¶ Identify the NEoutput variables that will 

be obtained by solving the process 

model. 

¶ Identify the DOF input variables that 

must be specified as either 

disturbance variables or manipulated 

variables, in order to utilize the DOF 

degrees of freedom. 

 



 

 



 

Westerberg et al. (1979) approach is used to analyze the Degrees of Freedom (DF) of both the 

individual units of a process flowsheet and the entire flowsheet. The approach is very simple and 

general and allows finding the minimum number of equations needed to completely model either 

the individual unit or the entire process flowsheet (Figure 2 and 3). This make logical step to the 

identify the no of variables to be specified to design and operation of the individual unit and or of 

the entire flowsheet. 

 



 

  



 

 
 

MODEL SOLUTION 
¶ It would be ideal to be able to solve the model analytically, that is to get closed forms of the 

state 

¶ variables in term of the independent variables. 

¶ Unfortunately this seldom occurs for chemical processes. why? The reason is that the vast 

majority of chemical processes are nonlinear. 

¶ Solution of process models is usually carried out numerically 

VALIDATION 
Model verification (validation) is the last and the most important step of model building. Reliability 

of the obtained model depends heavily on faithfully passing this test. Implementation of the model 

without validation may lead to erroneous and misleading results. 

 

EXAMPLES 2.1  OF MATHEMATICAL MODELS FOR CHEMICAL PROCESSES 
Liquid Storage Tank 

Our objective is to develop a model for the 

variations of the tank holdup, i.e. volume of 

the tank 

 

LIQUID STORAGE TANK ASSUMPTIONS 
¶ Perfectly mixed (Lumped) density of 

the effluent is the same as that of tank 

content. 

¶ Isothermal 

 

LIQUID STORAGE TANK MODEL 
Rate of mass accumulation = Rate of mass in - rate of mass out 



 

Under isothermal conditions we assume 

that the density of the liquid is constant.  

 

LIQUID STORAGE TANK MODEL DEGREE OF FREEDOM 
Parameter of constant values: A 

Variables which values can be externally fixed (Forced variable): Ff 

Remaining variables: L and Fo 

Number of equations: 1 

Number of remaining variables – Number of equations = 2 – 1 = 1 

 

EXAMPLE 2.3ISOTHERMAL CSTR 

ASSUMPTIONS 
Our objective is to develop a model for the variation of the volume of the reactor and the 

concentration of species A and B. Hetre, a liquid phase chemical reactions taking place: 



          

ASSUMPTIONS:  

¶ Perfectly mixed 

¶ Isothermal 

¶ The reaction is assumed to be irreversible and of first order. 

MODEL: 
Component balance 

– Flow of moles of A in: 

  

-Flow of moles of A out: 

  

– Rate of accumulation: 

 

Rate of generation: 

, where r (moles/m3s) is the rate of reaction. 

ISOTHERMAL CSTR: MODEL 



 

DEGREE OF FREEDOM 

 

 

Write down the model equations 

First step  is formulation /visualization 

 

Assumptions 

1. Draw the picture and determine the assumption: Plug flow, 

Means: fluid velocity profile is plug shaped, uniform at all radial positions 
2. tube is not too long or the temperature difference is not too severe, physical properties of the fluid 

will not change much 

 

Second step is to express this and other assumptions 
 



1. A steady-state solution is desired. 

2. The physical properties (p, density; Cp, specific heat; k, thermal conductivity, etc.) of the fluid 

remain constant. 

3. The wall temperature is constant and uniform (i.e., does not change in the z ox r direction) at a 

value Tw. 

4. The inlet temperature is constant and uniform (does not vary in r direction) at a value T0, where 

T0 > T 

5. The velocity profile is plug shaped or flat, hence it is uniform with respect to z or r. 

6. The fluid is well-mixed (highly turbulent), so the temperature is uniform in the radial direction. 

7. Thermal conduction of heat along the axis is small relative to convection. 

Third step  is to apply the conservation law  and write the differential volume of the element 

Rate in - Rate out + Rate of Generation = Rate of Accumulation 

No heat generation 

Incremental rate of heat removal 

  

 

 

If we denote, bar over T =average between T(z) and T (z + Az) 

 

Heat Element flow balance 

 

Divide the equation Δz and taking limit  ΔzĄ0 

 



  

where  

Put  ,   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

LECTURE 4 

Solution of Steady State Process/ Algebraic Equation 

Chemical engineers must thoroughly master 

its use in the formulation and solution of 

chemical processing problems. A flow sheet 

material balance shows the flow rates and 

compositions of all streams entering and 

leaving each item of equipment...There are 

four basic types of problems: 

1. Flow sheet material balance models 

for continuous processes operating in 

the steady state, 

2. Mixing and blending material 

balances, 

3. Flow sheet material balances for 

non-steady state processes, either 

continuous or batch, and 

4. Process data analysis and 

reconciliation 
 
By formulation of the problem is meant 

determining the appropriate mathematical 

description of the system based on the 

applicable principles of chemistry and 

physics. The resulting set of equations of 

flowsheet/Unit is referred as a mathematical 

model of the system. Material balance 
calculations begin with the characterization 
of the individual unit operations by 
mathematical models. These are known as 
unit models or process blocks. 

 
 
 

 

 
A process unit operation block can now be characterized as follows: 

Let Xn = the stream characterization vector for stream n. 



 
 
 
 
 
 

LINEAR MODEL 
Plant wide or section wide mass balances are carried out at design stage or later during operation 

for keeping material audit. These models are typical examples of systems of simultaneous linear 

algebraic equations 
 
 

EXAMPLE(SIMPLE MATERIAL BALANCE): 
Recovery of acetone from air -acetone mixture is achieved using an absorber and a flash separator 
(Figure 2). A model for this system is developed under following conditions 
¶ All acetone is absorbed in water 
¶ Air entering the absorber contains no water vapor 
¶ Air leaving the absorber contains 3 mass % water vapor 

 
The flash separator acts as a single equilibrium stage such that acetone mass fraction in vapor and 
liquid leaving the flash separator is related by relation 

 
where y mass fraction of the acetone in the vapor stream and x mass fraction of the acetone in the 
liquid stream. 
Operating conditions of the process are as follows: 
¶ Air in flow: 600 lb /hr with 8 mass % acetone 
¶ Water flow rate: 500 lb/hr 

 
It is required that the waste water should have acetone content of 3 mass % and we are required to 
determine concentration of the acetone in the vapor stream and flow rates of the product streams. 



 
 

SOLUTION: 
Mass Balance: 
 
 
The above equation can be represented in abstract form set of linear algebraic equations which 
have to be solved simultaneously. The above equation can be represented in abstract form set of 
linear algebraic equations 
Ax = b where x and b are a (n×1) vectors (i.e. x, b ∈ Rn) and A is a (n×n) matrix. 

 
Equilibrium Relation: 

 
Substituting for all the known values and rearranging, we have 

 
 



 
General Matrix Operation 
 

SOLUTION OF AX = B AND FUNDAMENTAL SPACES OF A 

 
which can be expressed in vector notation 

Ax = b 

 
 
 

Non linear Equation x ∈ Rn; b ∈ Rm and A ∈ Rm × Rn. Here m represents number of equations while n 
represents number of unknowns. 
Three possible situations arise while developing mathematical models: 

In these lecture notes, we are interested in the first case , i.e. m = n, particularly when the number of 

equations are large. 

There are several methods which directly solve equation Prominent among these are such as 

Cramer’s rule, Gaussian elimination, Gauss-Jordan method and LU decomposition. Cramer’s rule is 

not suitable for numerical computations. 

CRAMER’S RULE 

   



 

   

EXAMPLE 

 

 

 

 

MATRIX TRANSFORMATION 
 



 

EXAMPLE 

 

 



  

SOLUTIONS OF SPARSE LINEAR SYSTEMS 
The sparse patterns that frequently occur are 

¶ Tridiagonal 

¶ Bond Diagonal with bond width M 

¶ Block Diagonal 

 

 

Numerical Solution of Ordinary Differential Equations 

ODE CLASSIFICATIONS 
¶ Order 

¶ Linearity 

¶ Boundary or Initial 

 

GENERAL FORM OF LINEAR ODE 

 

 

 



THINGS TO REMEMBER, 

 

Numerical Solution of Ordinary Differential Equations 


