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LECTURE 1

WHAT DOES “MODEL” MEAN?

Modeling is a fundamental and quantitative way to understand complex systems and phenomena.
Simulation is complementary to the traditional approaches of theory and experiment. Together,
they (Modeling/Simulation/optimization) make up an approach that can deal with a wide range of
physical problems and at the same time exploit the power of large-scale computing.

“Modeling is the physicalization of a concept, Simulation its computational realization”

The main goal of this class is to present a collection of mathematical tools for solving problems in
chemical engineering fields.

WHICH MODELING APPROACH IS MORE PREFERABLE?

Modeling inherently involves a compromise between model accuracy and complexity on one hand,
and

9 the cost and effort required to develop the model, on the other hand.
1 make simplifying assumptions that result in an appropriate model..

TYPES OF PROCESS MODEL
Depending on the information (underlying chemistry, physics, and physical properties) and the
level of information, model can be of different types

Empirical Models (example Regression Model/Statistical Model) also known as grey box
Black Box Model (Data Driven Model)

First Principle Models (also known as Mathematical Model and Whitebox)

Reduced model (Linearization) Transfer Function (Control study) also known as grey box

=A =4 =4 =4

EMPIRICAL MODELS
1 Lack of information and model complexity and not economical viable empirical models are
discussed
9 Since this models are developed from data it is good with interpolation not extrapolate
9 Linear Regression: The Least Squares Approach

BLACK Box MODEL
Itis also data driven.



EXAMPLE
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Neural Network
System ldentification tool box
Fuzzy logic

CHARACTERISTICS

1

= =4 =4 =4 =4

Only interested in input output mapping

Underlying physics not known

Not suitable for capturing process dynamics

Computationally less expensive

Unreliable when conditions change, may need tuning

Suitable for steady state processes but not for unsteady process

REDUCED MODEL (LINEARIZATION) TRANSFER FUNCTION (CONTROL STUDY)

1

=A =4 =4 =4

Underlying physics partially known

More reliable than black box one

More computationally expensive than black box one
Can capture process dynamics to some extent and
therefore may be suitable for control studies

F(s)=L[f(n]= |0f' f(t)e St

“ U

where F(s) is the symbol for the
Laplace rmnsform_. L is the Laplace
transform operator, and f{t) is some
function of time, t.

FIRST PRINCIPLE MODEL (MATHEMATICAL MODEL)

1

T
)l
f

Expensive and time consuming butPredict more accurately than other method

Underlying physics known

Reliable prediction of process dynamics

It can predict over wide range. It can extrapolate and interpolate the process behavior more
accurately than other

It consist of mass transfer, heat transfer and other chemical engineering principles (Based
on basic conservation law)

Model equations are equality and inequality constraints and consist of Linear, Nonlinear
and Differential and partial equation

EXAMPLE



First Principle Model (Steady state)
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HYBRID MODELING

* Mass balances (flow rates, salt
compositions)

e Energy Balances (Temperature,

Enthalpies, Heat
exchange areas, ...)

* Pressure Drops
e Physical Property Estimators
Resulting

in 18*"NS+16 nonlinear

algebraic equations with 25"NS

+27 variables. Specifications
7"NS+11

9 The combination of other Modeling techniques
1 Hybrid model provides an opportunity to reduce the nonlinearity of a system (in some

cases).
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WHY 1S MATHEMATICAL MODEL IMPORTANT?
Mathematical models can be useful in all phases of chemical engineering, from research and
development to plant operations, and even in business and economic studies.

Research and development: determining chemical kinetic mechanisms and parameters from
laboratory or pilot-plant reaction data; exploring the effects of different operating conditions for
optimization and control studies; aiding in scale-up calculations.

Design: exploring the sizing and arrangement of processing equipment for dynamic performance;
studying the interactions of various parts of the process, particularly when material recycle or heat
integration is used; evaluating alternative process and control structures and strategies; simulating
start-up, shutdown, and emergency situations and procedures.

Plant operation: troubleshooting control and processing problems; aiding in start-up and operator
training; studying the effects of and the requirements for expansion (bottleneck-removal) projects;
optimizing plant operation. It is usually much cheaper, safer, and faster to conduct the kinds of
studies listed above on a mathematical model than experimentally on an operating unit.

This is not to say that plant tests are not needed. As we will discuss later, they are a vital part of
confirming the validity of the model and of verifying important ideas and recommendations that
evolve from the model studies.

RELATION BETWEEN ENGINEERING PROBLEM AND MATHEMATICAL PROBLEM
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Mathematical model (y=f(x)) is mathematical representation of the chemical process,
equipment and physical property. It include mass, energy and momentum balance.

The term modeling in turn refers to the derivation of appropriate equations that are solved
for a set or system of process variables and parameters. Mathematical Model extracts
information form the chemical process/unit/equipment.

EXAMPLE OF MODEL DEVELOPMENT ENVIRONMENT



Modeling practice
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1 A modern chemical plant consists of interconnected units such as heat exchangers, reactors,
distillation columns, mixers etc. with high degree of integration to achieve energy efficiency.
Design and operation of such complex plants is a challenging problem. Mathematical
modeling and simulation is a cost effective method of designing or understanding behavior
of these chemical plants when compared to study through experiments.

PROCESS MODEL

9 How to build a mathematical model from chemical engineering problem/What is the steps
of Process Model?

1 Background: Contains essential information which is unique to that particular case
study/project

1 Problem Statement: Explain the objectives and to state what is given and what is required.

1 Model Formulation : Breaks the problem down and formulates it mathematically in terms
of governing equations/inequalities and relevant boundary/initial conditions

1 Mathematical/Numerical Solution : A mathematical solution (if this is possible) and/or,
failing that, possible numerical solutions. depends upon the mathematical solver of the
software package reformulate the problem



1 Model Validation: is key to any model solution and could involve solutions using
alternative numerical techniques or the use of the computer, including software packages,
to back up the results obtained in the previous section.

9 Interpretation and Conclusions: interprets the results and draws major conclusions
giving, in some cases, suggestions for further extensions.

1 Computer Algorithms discusses and, in some cases, gives details of any important
algorithms or software which has been used in the solution techniques.

l

As a summary

1 Mathematical modeling is a way to represent the engineering system into mathematical
system.

1 Mathematical model formulate the physical system that are directly related to physical and
chemical quantities.

1 The modeling procedure is an adaptive procedure in which information gained from each
step is used to improve in the next try (Model Validation).

1 Model may be used for predicting the future behavior of system reconstructing the past
behavior of the system (Neural fuzzy model) and understanding better operating conditions
by using control.

1 Mathematical model can handle IPDAE system using the modern flowsheeting packages

LECTURE 2
Mathematical Modelling:

1 Encoding physical behavior as a set of mathematical relations

1 Involves application of fundamental physical laws

1 Consider a subset of the universe as a system of interest - the position of the boundary
separating the system and its surroundings may vary with time

WHAT DOE® BEADY STATE ANDYNAMI®MEANS

In all processes of interest, the operating conditions (e.g., temperature, pressure, composition)
inside a process unit will be varying over time. Steady-state: process variables will not be varying
with time.

WHY DYNAMICBEHAVIOR
9 Study of operability and controllability of continuous processes subject to small
disturbances
9 . Development of start-up and shut-down procedures
9 Study of switching continuous processes from one steady-state to another



1 Analysis of the safety of processes subject to large disturbances
9 Study of the design and operation procedures for intrinsically dynamic processes
(batch/periodic/separation)

FUNDAMENTAL LAWS

CONSERVATION LAWS:

system over time :

rateof ) rateof | ( rateof | ( rateof |
accumulation flow of flow of generation of
of conserved |=| conserved |—| conserved |+| conserved
quantity quantity quantity quantity

~withinsystem |into system) | from system) | withinsystem

CONSERVATION LAWS ARE:
9 Conservation Law: Mass
M Conservation Law: Momentum
1 Conservation Laws: Energy

9 Conservation laws provide a simple and systematic “balance”

With a generation term, conservation laws may be written for any physical quantity

9 The usefulness of a particular law depends on whether or not we possess the necessary
physical knowledge to quantify each term

9 Often, the rate of generation of one quantity is related to the rate of generation (or
consumption) of another - this may affect the quantities to which we can apply a
conservation law

=

A——B
[ rateof rateof |
generation | =| consumption
. of B of A

ASSUMPTIONS IN MODELING
Assumptions should be introduced only when not introducing them results in:

9 Substantial increase in computational complexity (i.e., perfect mixing — CFD)
1 Need to characterize phenomena which are not well understood and/or cannot easily be
guantified



Continuity Equations

[Mass flow ] [mass flow ] [lime rate of change ]

into system out of system of mass inside system

Component Continuity Equations (Component Balances).

[FIGW of moles ofjth ] |:ﬂnw of moles ofjth

component into system component out of system

N rate of formation of moles of jth
component from chemical reactions

time rate of change of moles of jth
component inside system

Energy Equation

Flow of imnternal kinetic. and flow of intemal kinetic, and
potential energy into system | == | potential energy out of system
by convection or diffusion by convection or diffusion
heat added to system by work done by system on
+ | conduction. rachation. and | = |[surroundings (shaft work and
reaction PV work)

I:tﬁne rate of change of mtemal kinetic.

and potential energy mside system

Equations of Motion

Force is equal to mass times acceleration

l d(Mv;) l

EFJI

ge dt 5

where v; = velocity in the i direction, ft/s
F;; = jth force acting in the 7 direction



Transport Equations

Transport laws

Quantity Heat Mass Momentum
Flux 4 N, T
Molecular transport
: JdT aCy, dv
Driving force & — ~4
g 0z 0z or
Law Fourter’s Fick’s Newton's
Property Thermal Diffusivity Viscosity
conductivity
kr Dy #
Overall transport
Driving force AT AC, T AP

Relationship q= hT AT N, = kL AC, e

Equations of State

Mathematical models we need equations that tell us how the physical properties, primarily density and
enthalpy, change with temperature, pressure, and composition.

Liquid density = p, =f[p_ T, xi)
Vapor density = py= fip, 1. 40
Liquid enthalpy =h= f 1, 5y

Vapor enthalpy = H= fp T, 4

Equilibrium
The second law of thermodynamics is the basis for the equations that tell us the conditions of a
system when equilibrium conditions prevail.

Chemical Equilibrium:
NC
2 viu=0

i=1

Phase Equilibrium.



W= a0
where j::, = chemical potential of the jth component i phase I
yj = chemical potential of the jth component in phase II

Chemical Kinetics

k = oe FIRT

where k = specific reaction rate
a = preexponential factor
E = activation energy: shows the temperature dependence of the reaction
rate, ie., the bigger E, the faster the increase in k with increasing tem-
perature (Btu/lb + mol or cal/g - mol)
T = absolute temperature
R = perfect-gas constant = 1.99 Btu/lb- mol °R or 199 cal/g- mol K



1

EXAMPLE
Perfect Mixing Assumption All intensive properties of the stream(s) leaving a perfectly mixed
system are identical to those inside the system.

FORMULATION OF PHYSICOCHEMICAL PROBLEMS
The First step: Drawing a picture of the system is to be studied. physicochemical problem
beforehand, derived from experience or experiment

The Second Step: applicable physical and chemical information, conservation laws, and rate expressions
Determine the ultimate complexity of the final mathematigacription.

The Third step: setting down of finite or differential volume elements, folldwealriting the
conservation laws. The problem boundary condition must be specified.

LECTURE 3

DEGREES OF FREEDOM
that can be specified) on the basis of

s equipment  dimensions, known
2 Brasdom physical properties, etc.

Analysis 1 Determine the number of equations
/' Ne and the number of process
Univ/ 2 Process variables, Nv. Note that time t and
Oiui":;“ Process Modeiling spatial distribution axis is not
= Flowstwet considered to be a process variable
Hysys, PROTI  + (a) FORTRAL 3'96'; because it is neither a process input

! Swngltion + + Progmming nor a process output.
: Peve . (ms'l;;ﬁi?"\ . 7 Calculate the number of degrees of

""" T A freedom, DOF/Nd= Ny-NE.
3. Process 3, Numerical 1 Identify the Neouput Variables that will
Simulation "7 Methods be obtained by solving the process
model.

91 Identify the DOF input variables that
must be specified as either
disturbance variables or manipulated
variables, in order to utilize the DOF
degrees of freedom.

T List all quantities in the model that
are known constants (or parameters



= f= 0. The system is exactly determined (specified) system .
Thus, the set of balance equation has a finite number of
solutions (one solution for linear systems)

* < 0. The system is over-determined (over-specified) by 7
equations. fequations have to be removed for the system to
have a solution.

¢ f> 0. The system is under-determined (under-specified) by £
e?uta_ltions. The set of equation, hence, has infinite number of
solution .

For the following set of equations:

X, +2x,-x, =35 (1)
X, + X, =2 (2)
X, +%x,-2x, =1 (3)

m=6, n=3 and d=6-3=3
So we need to specify 3 more equations or specify 3 variables
Care must be taken when providing extra equations

Example: X, - 2x, =5 (1)
m=2 n=1  d=2l=]
we need 1 extra equation
what about: -2x, +4x, =-10 2 ?
degrees of freedom is satisfied, two variables, two equations

We can not solve the set of equations because equation (2) is not an independent equation. Eqn. (2) is
generated by manipulating Eqn. (1), i.e. by multiplying Eqn. (1) by a factor of (-2).

Remember:
ALL THE EQUATIONS IN THE SET MUST BE INDEPENDENT OF EACH OTHER.
NO EQUATION SHOULD BE THE RESULT OF MANIPULATION OF OTHER
EQUATIONS IN THE SET.




Consider again equations (1-3) above]
;’he diﬁ’erenc;: is: da:l m '° n (=3) Legitimate choices X, X, and x,
ix any 3 (=d) variables !! ac
%+ X; 0d X

What about fixing, x,, x, and x, ? orx, X, and x;

orx, ,x,and x, or X; X, and X,

orx,, X, andx, or X, X, and x

or X, , X, and X, etc.

Westerberg et al. (1979) approach is used to analyze the Degrees of Freedom (DF) of both the
individual units of a process flowsheet and the entire flowsheet. The approach is very simple and
general and allows finding the minimum number of equations needed to completely model either
the individual unit or the entire process flowsheet (Figure 2 and 3). This make logical step to the
identify the no of variables to be specified to design and operation of the individual unit and or of
the entire flowsheet.

m; (kg H,0)
Bypass Mixing point
Basis: 100 kg (L .E‘"“Pm‘" nl) [y
012 ke S/ ke 012keS/ke 08keS/kg LI 02kgSke
igEOy | OBkgHOe 042 kg H,0/ke BkgH,0/ke
v my (kg
M0 keS kg ’

088 ke H,0 kg



Overall process: 2 unknowns (m;.m;) Bypass: 2 unknowns (1.1, )

— 2 balances — 1 independent balance
0DF 1 DF

Evaporator: 3 unknowns (7, m;,m,)  Mixing point: 3 unknowns (m,, m,, ;)

— 2 balances — 2 balances
1 DF 1 DF

Overall S balance: 0.12(100) = 042m,
Overall mass balance: 100 = m; +m;

Mixing pont mass balance: m, +m, = m; 1)
Miximng point S balance: 0.58m, +0.12m, = 042m, o)

Solve (1) and (2) simultaneously
Bypass mass balance: 100 = m, +m,



MODEL SOLUTION
9 Itwould be ideal to be able to solve the model analytically, that is to get closed forms of the
state
9 variables in term of the independent variables.
9 Unfortunately this seldom occurs for chemical processes. why? The reason is that the vast
majority of chemical processes are nonlinear.
9 Solution of process models is usually carried out numerically

VALIDATION
Model verification (validation) is the last and the most important step of model building. Reliability
of the obtained model depends heavily on faithfully passing this test. Implementation of the model
without validation may lead to erroneous and misleading results.

EXAMPLES 2.1 OF MATHEMATICAL MODELS FOR CHEMICAL PROCESSES
Liquid Storage Tank

e .

Our objective is to develop a model for the ::'x_ f\h )
variations of the tank holdup, i.e. volume of I,f'
the tank V /
=
"
LIQUID STORAGE TANK ASSUMPTIONS
9 Perfectly mixed (Lumped) density of
the effluent is the same as that of tank ]
content. ~
¢ Isothermal TN M
F_
s V/
S8 —» Fe
\"-\.\_\__ a

L1QuID STORAGE TANK MODEL
Rate of mass accumulation = Rate of mass in - rate of mass out



Iﬂ|r+.&r — m'|r = pfFf'Ar - pﬂF;Af

m| —m|f

t+At

At

dm d(pV g *‘*
= (ﬁ ) = J()fFf - J[)GF;} F{ ¥ ,"I
drt dt : ol F,

Iim

=pF,=pF,

Under isothermal conditions we assume dV
that the density of the liquid is constant. R Ff - F
o]
dt
dL
A—=F;-F,
dt

LIQUID STORAGE TANK MODEL DEGREE OF FREEDOM
Parameter of constant values: A

Variables which values can be externally fixed (Forced variable): Ff
Remaining variables: L and Fo
Number of equations: 1

Number of remaining variables - Number of equations=2-1=1
FG =L

ExAMPLE 2.3ISOTHERMAL CSTR

ASSUMPTIONS
Our objective is to develop a model for the variation of the volume of the reactor and the
concentration of species A and B. Hetre, a liquid phase chemical reactions taking place:



\x_ _./ h;"n A
v/
s C:{j
A—>B

ASSUMPTIONS

1 Perfectly mixed
M Isothermal
9 The reaction is assumed to be irreversible and of first order.

MODEL:
Component balance

- Flow of moles of A in:
FrCar
-Flow of moles of A out:
FG‘ C;]O
- Rate of accumulation:
T 17
dn _ dVCy)
dt dt

Rate of generation:

-1V

, Where r (moles/m3s) is the rate of reaction.

ISOTHERMAL CSTR: MODEL



d(VC
M:Ff Cap—F, Cy=rV

dt
d(VCy) _,d(Cy) | . dV) ’
dt dt A= Tt T o ta Tt
I/’ d(CA) = Ff ( (TYAf - Cd) o ka‘-lI;

dt

DEGREE OF FREEDOM

« Parameter of constant values: A

» (Forced variable): £-and C,

* Remaining variables: V, fo, and C,

* Number of equations: 2

* The degree of freedom Is

f=3-2=1

The extra relation is obtained by the relation
between the effluent flow /0 and the level in
open loop

Write down the model equations

First step is formulation /visualization

Figore 1.1a Skeich of plug fow madel formulation

Assumptions

1. Draw the picture and determine the assumption: Plug flow,

Means:fluid velocity profileis plug shapedyniform at all radial positions
2. tube is not too long or the temperature difference is not too s@¥stgcal properties of the fluid

will not change much

Second stepis to express this and other assumptions



1. A steadystate solution islesired.

2. The physical properties (p, densi€, specific heatk, thermal conductivityetc.) of the fluid
remain constant.

3. The wall temperature is constant and uniform (i.e., does not changezioxhelirection) at a
valueTw.

4. The inlet temperaturs constant and uniform (does not vary idirection)at a valu€elo, where
To>T

5. The velocity profile is plug shaped or flat, hence it is uniform with respexar r.

6. The fluid is weltmixed (highly turbulent), so the temperature is uniform inrétakal direction.

7. Thermal conduction of heat along the axis is small relative to convection.

Third step is to apply the conservation law and write the differential volume of the element
Rate in- Rate out + Rate of Generation = Rate of Accumulation
No heat generation

Incrementalate of heat removal

AQ = (2wRAz)h|T(z) - T,]

Figure 1.15 Elemental or control volume for plug
flow model.

If we denote, bar over =average betweem(z)andT (z + Az)
= T(z) +T(z+ Az
T(e) = L2+ I )

Heat Element flow balance

vyApC,T(z) = vyApC,T(z + Az) = (2#RAz)W(T - T,) =0

Rate heat flow in Rate heat flow out Rate heat loss through wall

Divide the equation Az and taking limit AzA O

T(z+Az) ~ T _
— vy ApC, T ﬁ, (z)-(21rRh)(T—T,,,)=0




vnApCp%zZ +2wRh[T(z) = T,] = 0

T(z+Az) -T(z)  dT

lim Az

where 420

= 2wRh/(vyApC,)

Put

dT(Z) +A[T(z) - T,] =0



LECTURE 4

Solution of Steady State Process/ Algebraic Equation

Chemical engineers must thoroughly master
its use in the formulation and solution of
chemical processing problems. A flow sheet
material balance shows the flow rates and
compositions of all streams entering and
leaving each item of equipmerithere are
four basic types of problems:

1. Flow sheet material balance models
for continuous processes operating in
the steady state,

2. Mixing and blending material
balances,

3. Flow sheet raterial balances for
nonsteady state processes, either
continuous or batch, and

4. Process data analysis and
reconciliation

By formulation of the problem is meant
determining the appropriate mathematical
description of the system based on the
applicable pmciples of chemistry and
physics. The resulting set of equations of
flowsheetUnit is referred as a mathematical
model of the systenMaterial balance
calculations begin with the characterization

of the individual unit operations by
mathematical models. These are known as

unit models or process blocks.

Unit / Flowsheet

A 4

Stream Vanables, Unit Parameters
Input and Output Variables

|

Number of Independent Equations

A 4

Degrees of Freedom

'

Model Development
Set/System of Equations

v

Engineenng Problem Transformed to Math Problem
Linear, Non-linear Algebraic, Differential Equations

}

Mathematical Solutions

A process unit operation block can now be characterized as follows:
Let Xn= the stream characterization vector for stream n.




LINEAR MODEL

Plant wide or section wide malsalances arearried out at design stage or later during operation
for keepingmaterial audit. These models are typical examples of systems of simultéineaus
algebraic equations

EXAMPLE(SIMPLE MATERIAL BALANCE):
Recovery of acetone from air -acetone mixture is achieved using an absorber and a flash separator
(Figure 2). A model for this system is developed under following conditions

9 All acetone is absorbed in water

1 Air entering the absorber contains no water vapor

1 Air leaving the absorber contains 3 mass % water vapor

The flash separator acts as a single equilibrium stage such that acetone mass fraction in vapor and
liquid leaving the flash separator is related by relation

y = 20.5x

where y mass fraction of the acetone in the vapor stream and x mass fraction of the acetone in the
liquid stream.
Operating conditions of the process are as follows:

9 Airinflow: 600 Ib /hr with 8 mass % acetone

1 Water flow rate: 500 Ib/hr

It is required that the waste water should have acetone content of 3 mass % and we are required to
determine concentration of the acetone in the vapor stream and flow rates of the product streams.



Trealed
Al S
(27 Wp) F]'

AbhSorber

'N‘,-r’ Al
g% Acewne
SOLUTION:

Mass Balance:

The above equation can be represented in abstract form set of linear algebraic equations which
have to be solved simultaneously. The above equation can be represented in abstract form set of
linear algebraic equations

Ax =b where x and b are a (nx1) vectors (i.e. x, b € R") and A is a (nxn) matrix.

Awr : 09242 =09740
Acetone : 008A:=003L+yV
Water : W =003A0+ (1 —y)V +097L
Design requirement : x =003

Equilibrium Relation:

y = 205z
= y=205x003=0615

Substituting for all the known values and rearranging, we have

[ 097 0 0 Ao [ 0.92 % 600 |
0 003 0615 L | =1 008 x600
003 0385 097 v 500




General Matrix Operation

SOLUTION OF AX = B AND FUNDAMENTAL SPACES OF A

a11%1 + a2 + ... + e = b
ag1%) + Goa%a + ... t OgpZy = Do
Am1%1 + Qpa®e + ... t G = b
which can be expressed in vector notation
Ax=Db
ay - . Qg
J’q :
L m1 - - Omn |

Non linear Equation x € R"; b € Rmand A € R™ x Rn. Here m represents number of equations while n
represents number of unknowns.
Three possible situations arise while developing mathematical models:

In these lecture notes, we are interested in the first case, i.e. m = n, particularly when the number of
equations are large.

There are several methods which directly solve equation Prominent among these are such as
Cramer’s rule, Gaussian elimination, Gauss-Jordan method and LU decomposition. Cramer’s rule is
not suitable for numerical computations.

CRAMER’S RULE
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. . |a ain X i
the matrix A 1S [ o l“};the vector X 1S |: 1:| and the vector C is { l].
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EXAMPLE

r+3y—22=5
3x+5y+62=7
20 + 4y + 32 =18

5 3 —2 1 5 -2 1 35
7 5 6 3 7 6 3 5 7
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MATRIX TRANSFORMATION



Matrix A: Full matrix

X X
|: ] X = zero or nonzero element
X X

Matrix L: Lower Triangular Matrix

x O . .
[ :l upper triangle contains only zero elements
X X

Matrix U: Upper Triangular Matrix

X X . .
[O ] lower triangle contains only zero elements
X

Matrix [: Identity Matrix

1 0
[O J diagonal elements are 1, all others are zero
EXAMPLE

%X, +2x, =4 Eq. 1 1 2| % _ 4
- 2%, -3x,=F - Eq.2 2 =3||x, 1

Eq. 1x3 Eq. 2x2

'=1,(3 S =1,(2
- 3x,+6x, =12 Eq.3 , r‘3 r‘(é) 3 lrz( )
4x.-6x,= 2 FEq.4 [ Hx'}:{ }
. 4 -6/{|x, 2



N=n+n
7x,+0x, =14 Eq. 5 5 ol [id
4x,—6x,= 2  Eq. 4 [4 6} [;{‘J—.—[? :I
2—-4x
4x,-6x,= Z i x,:———‘-:
? T 6

SOLUTIONS OF SPARSE LINEAR SYSTEMS
The sparse patterns that frequently occur are

9 Tridiagonal
9 Bond Diagonal with bond width M
91 Block Diagonal

Numerical Solution of Ordinary Differential Equations

ODE CLASSIFICATIONS
1 Order
1 Linearity
9 Boundary or Initial

Cd

Nonlinear
rd P ,'5
3order 4 i + d_"i —kx V:dependent Variable
dax* \dx) x: Independent variable

GENERAL FORM OF LINEAR ODE

.} +b(x )d PRETIS +bﬁ_._[xj%+bﬁ(x}y:R(I)

R(x)=0 = Homogeneous ODE

If b,. b,....b, don’t depend on x and R(x)=0-> autonomous system



THINGS TO REMEMBER,

= To obtain a unique solution for an nth order ODE we need to
specify n values for y or its derivatives at specific value of x =
initial or boundary conditions.

m Initial-value problem: y, dy/dx, ....are given at initial value of x

m Boundary-value problem: some of y, dy/dx, ....are given at initial
value of x and others at the end value of x

[y (+=0), dy/dx(x=1)]

Numerical Solution of Ordinary Differential Equations



