
FORUM REVIEW ARTICLE

Hyperbaric Oxygen, Vasculogenic Stem Cells,
and Wound Healing

Katina M. Fosen1 and Stephen R. Thom2

Abstract

Significance: Oxidative stress is recognized as playing a role in stem cell mobilization from peripheral sites and
also cell function. Recent Advances: This review focuses on the impact of hyperoxia on vasculogenic stem cells and
elements of wound healing. Critical Issues: Components of the wound-healing process in which oxidative stress has
a positive impact on the various cells involved in wound healing are highlighted. A slightly different view of wound-
healing physiology is adopted by departing from the often used notion of sequential stages: hemostatic, inflam-
matory, proliferative, and remodeling and instead organizes the cascade of wound healing as overlapping events or
waves pertaining to reactive oxygen species, lactate, and nitric oxide. This was done because hyperoxia has effects
of a number of cell signaling events that converge to influence cell recruitment/chemotaxis and gene regulation/
protein synthesis responses which mediate wound healing. Future Directions: Our alternative perspective of the
stages of wound healing eases recognition of the multiple sites where oxidative stress has an impact on wound
healing. This aids the focus on mechanistic events and the interplay among various cell types and biochemical
processes. It also highlights the areas where additional research is needed. Antioxid. Redox Signal. 21, 1634–1647.

Introduction

Wound healing after an insult or injury is a complex
process that involves the coordination of multiple

mediators and components. Research continues to expand
our understanding of the wound-healing process, which is
central to normal physiology and also a growing concern in
clinical medicine. For example, more than 6 million indi-
viduals in the United States per year are affected by chronic
wounds (150). Often, these individuals have other medical
disorders, such as diabetes mellitus. As estimated by the
Kaiser Foundation in 2012, those with diabetes and lower-
extremity wounds in the US Medicare program accounted for
$41 billion in cost, which is *1.6% of all Medicare health
care spending. Apart from the costs, wounds that fail to heal
may result in limb amputations and death. Lower-extremity
amputation in those with diabetes is associated with a risk of
mortality of about 20% per year (107, 108, 132).

Attempts to use so-called adjunctive measures to improve
the rate of wound healing have added to our understanding of

wound physiology. One rather novel approach that has pro-
vided an interesting perspective on the role of oxidative stress
in wound healing is hyperbaric oxygen (HBO2). HBO2

therapy is a treatment modality in which a person breathes
100% O2 while exposed to increased atmospheric pressure.
Treatments are carried out in either a monoplace (single
person) or multiplace (typically 2–14 patients) chamber.
Pressures applied while in the chamber are usually 2 to 3
atmospheres absolute (ATA), the sum of the atmospheric
pressure (1 ATA) plus additional pressure equivalent to 1 or 2
atmospheres (1 atmosphere = a pressure of 14.7 pounds per
square inch or 101 kPa). Treatments are usually about 1.5–2 h
long and may be performed once or twice daily.

Results

Physiology overview

During HBO2 treatment, the arterial O2 tension typically
exceeds 2000 mmHg, and levels of 200–400 mmHg occur in
tissues (167). It is well accepted that an increase in the
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production of reactive oxygen species (ROS) occurs during
hyperoxia. While O2 toxicity is a risk, clinical protocols have
maintained the incidence of adverse effects very low (27).
The beneficial aspect to ROS and also reactive nitrogen
species (RNS) is that they serve as signaling molecules in
transduction cascades, or pathways, for a variety of growth
factors, cytokines, and hormones (5, 23, 113, 176). As such,
reactive species can generate either ‘‘positive’’ or ‘‘nega-
tive’’ effects depending on their concentration and intracel-
lular localization. Since exposure to hyperoxia in clinical
HBO2 protocols is rather brief, studies show that antioxidant
defenses are adequate so that biochemical stresses related to
increases in reactive species are reversible (31, 32, 120, 141).

Oxygen and wound healing

Soon after tissue injury, as a part of the repair process,
devitalized tissue is removed, keratinocytes migrate and
proliferate to the wound edge, and granulation tissue, which
is primarily composed of fibroblasts and endothelial cells,
begins to form. Granulation tissue contains excessive neo-
vascular proliferation. This process includes the repair, res-
toration, and regeneration of blood vessels.

Postnatal neovascularization involves two complementary
processes. One is the sprouting of the endothelium from pre-
existing blood vessels (angiogenesis); the second involves
endothelial stem/progenitor cells (SPCs) released from the
bone marrow as well as peripheral tissue sites that home to
foci of ischemia in a process termed vasculogenesis (59, 138,
180). SPCs likely orchestrate vascular repair by differenti-
ating into endothelial cells as well as supporting structures
that give rise to repaired and/or regenerated blood vessels. A
variety of cell surface markers have been used to identify
these cells and since they change as the cells mature and/or
assume different functions, we have chosen the moniker
SPCs versus the term endothelial progenitor cell as used by
some investigators because these cells are defined by a nar-
row range of surface markers and their nature is debated (10,
52, 195).

The notion of redox regulation and varied roles for O2 in
wound healing is commonly discussed and has been outlined
by many in recent years (126, 146, 152). There is also a
burgeoning literature on the role of oxidants in embryonic
and hematopoietic stem cells, which is beyond the scope of
this review (86, 92, 93, 118, 158, 166, 183). HBO2 has effects
on a number of cell types and will influence both angiogen-
esis and vasculogenesis. In this review, we will frame our
discussion around recognized mediators of wound healing to
emphasize that HBO2 merely acts by modifying established
regulatory pathways. The classical view of wound healing
envisages a number of sequential phases (e.g., hemostatic,
inflammatory, proliferative, and remodeling), and this per-
spective has been effective for focusing areas of investigation
for *75 years. We believe that a useful alternative wound-
healing paradigm which eases discussion of HBO2—or more
generally the availability of O2, ROS, and RNS—involves
three overlapping events or ‘‘waves.’’ Biochemical energy is
generated from O2 for the increased energy demands of repair
processes such as cell proliferation, bacterial defense, and
collagen synthesis. The second role of O2 is cell signaling that
is mediated by the generation of reactive species. A conve-
nient division for cell signaling involves roles for ROS, ele-

vations in wound lactate, and also nitric oxide (
�
NO), as all of

them converge to influence cell recruitment/chemotaxis and
gene regulation/protein synthesis responses that mediate
wound healing.

The ROS wave

O2-derived free radicals as well as O2-derived nonradical
species such as H2O2 and hypochlorous acid are generated as
a part of normal metabolism by mitochondria, endoplasmic
reticulum (ER), peroxisomes, various oxidase enzymes, and
phospholipid metabolism. ROS act in conjunction with sev-
eral redox systems involving glutathione, thioredoxin, and
pyridine nucleotides, and they play central roles in coordi-
nating cell signaling and also antioxidant, protective path-
ways (26, 75, 190). The main physiological source of
extracellular H2O2 in wounds is considered a family of
NADPH oxidases, which transport electrons from cytoplas-
mic NADPH to generate superoxide radicals (O2

- �) or H2O2

(15). The so-called Nox (NADPH oxidase) group of five
genetically distinct enzymes generates superoxide, which can
be converted to H2O2 by superoxide dismutase (SOD);
whereas two Duox (dual oxidase) enzymes generate H2O2

without requiring SOD (7). An overview of components in
the ROS wave is shown in Figure 1.

Cell migration/chemotaxis. Acting in a paracrine manner,
H2O2 serves as a chemotactic signal in the first minutes after
wounding. Mechanical or chemical stress triggers a burst of
H2O2 from epithelial cell Duox enzyme activity (124).
Postwound extracellular H2O2 can reach concentrations of
*0.5–50 lM near the wound margin, with a gradient ex-
tending *200 lm. H2O2 diffusion across many cell widths
appears to occur via aquaporin-like channels (17). It would
seem reasonable that there may also be roles for antioxidants
such as catalase and peroxidase in this process, but this has
not been clearly established. SOD activity decreases in some
vascular injury models, and supplementation of SOD either
via adenoviral vector gene transfer or from SPCs recruitment
can improve healing in animal models of diabetes mellitus
(91, 101, 109). Neutrophils exhibit a chemotactic response to
exogenous H2O2 (although the molecular details for this re-
sponse are unknown), and they appear at the wound edge
within 10 min after wounding (82, 124). HBO2 will increase
production of reactive species within neutrophils (primarily
from Nox2, although multiple sources may contribute) and
can improve bacteriocidal efficacy (103, 104, 170). It is un-
clear whether this oxidant source also contributes to cell re-
cruitment.

Platelet aggregation during the early stages postinjury gen-
erate ROS, which are derived from Nox as well as from xan-
thine oxidase (142, 143, 177). Vascular smooth muscle cells
synthesize thrombogenic tissue factor in a Nox-dependent
fashion, which may perpetuate the thrombogenic process
within injured vessels that is initiated by platelets (62). Skin
keratinocytes and fibroblasts also use Nox to generate H2O2,
as do recruited leukocytes. In addition to its well-recognized
antibacterial function, H2O2 increases epithelial cell, smooth
muscle cell, endothelial cell, and monocyte/macrophage
migration (94, 125, 127, 139, 164), and it may increase leu-
kocyte integrin adhesion (100). HBO2 does not alter platelet
function and inhibits neutrophil b2 integrin adhesion at
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pressures of 2.8 ATA or more, beyond those used in wound-
healing protocols (168, 170, 173).

In an in vivo Matrigel wound model, HBO2 increases
Nox-derived H2O2 synthesis, which contributes to SPCs
recruitment as well as to growth factor synthesis (116).
Effects on SPCs and cells that have undergone greater dif-
ferentiation will be outlined in greater detail in subsequent
sections. In an in vitro model, transient DNA oxidative
stress from short-term HBO2 was also shown to improve
endothelial cell tolerance to subsequent oxidant exposure
(187). The sources for H2O2 in wound healing are still not
entirely clear, and overlapping roles may exist. Exogenous
addition of H2O2 can activate Nox (140). Although not
shown for the endothelium, mitochondrial H2O2 can regu-
late Nox activity in smooth muscle cells (via protein kinase
C) and human 293T cells (via phosphoinositide 3 kinase and
Rac1), and activated Nox can mediate mitochondrial ATP-
sensitive potassium channels and thus mitochondrial H2O2

production (29, 90, 140).

Gene regulation/protein synthesis. The interruption of
blood flow associated with acute injuries rapidly causes
wound hypoxia, which contributes to stabilization of hyp-
oxia-inducible factors (HIF) and these transcription factors
activate many genes, resulting in the synthesis of a variety of
proteins required for wound healing (e.g., vascular endothe-
lial growth factor [VEGF], stromal-derived factor 1 [SDF-1],
placental growth factor, angiopoietin 1, angiopoietin 2,
platelet-derived growth factor B, and stem cell factor [SCF])
(148, 149). Early elevations in H2O2 will also stabilize HIF
via decreased ascorbate availability and secondarily by de-
creasing prolyl-hydroxylase activity (130).

Among the proteins synthesized in response to ROS is
thioredoxin, which not only acts in antioxidant pathways, but
also functions as a transcription factor to increase HIF syn-
thesis (193). This pathway is triggered by HBO2 in localized
vasculogenic stem cells, which augments VEGF and SDF-1
synthesis, enhancing neovascularization (115, 116). Sub-
sequent signaling between SDF-1 and its cognate cellular re-
ceptor, CXCR4, also involves ROS (89). Likely a synergistic
process, lactate can also mediate HIF stabilization in endo-
thelial cells by metabolic conversion to pyruvate that inhibits
prolyl hydroxylases (160). In ischemic peripheral wounds,

placement of SDF-1 into the margins will markedly augment
SPCs recruitment associated with HBO2 treatments (48).

ROS (particularly O2
- �) generated by platelets and other

cells early in the wound process modulate activation of cell
surface latent tissue factor (133). Activated tissue factor ac-
tivates thrombin, which contributes to hemostasis and also
activates vascular cell Nox oxidases (thus adding to H2O2

production in the early wound). ROS production modulates
responses of endothelium, lymphoid, and monocytic cells
and also smooth muscle cells by influencing NFkB activation
(111, 114) and H2O2 augments macrophage, keratinocyte,
and fibroblast-mediated VEGF and VEGF-receptor 2 syn-
thesis (11, 25, 55, 113, 144, 151). Ambient pressure hyper-
oxia as well as HBO2 increases VEGF synthesis in soft tissue
wounds as well as in healing bone (43, 155). As mentioned
earlier, enhanced H2O2 production by HBO2 will result in
increases in VEGF and SDF-1 synthesis by SPCs and, as one
might expect, supplementing the local environment with cat-
alase will abrogate these responses (115, 116). HBO2 enhances
placental growth factor production by bone marrow-derived
mesenchymal stem cells through elevations of ROS (156).
H2O2 also increases cellular synthesis of pro-inflammatory
tissue necrosis factor in wounds (57, 58).

Singlet oxygen activates plasminogen, which will then
activate matrix metalloproteinase 1 (MMP1) to reduce fi-
brosis during wound remodeling (56). ROS are also involved
in cell responses to growth factors. For example, a variety of
growth factors influence endothelial cell function by acti-
vating protein kinases such as Erk. The pathways by which
growth factors activate Erk involve elevations in intracellular
ROS, which, in turn, inhibit phosphatase enzymes that im-
pede protein kinase phosphorylation (70). Erk plays a com-
plex role in HBO2-mediated stimulation of SPC-mediated
neovascularization (115, 116). H2O2 as well as other ROS
increases signaling by platelet-derived growth factor (PDGF)
and transforming growth factor (TGF) beta in several cell
types (71). HBO2 was shown to up-regulate PDGF receptors
in experimental wounds (19).

A separate and also critically important role for O2 in
newly synthesized tissue is collagen cross-linking. O2 is a
required co-factor for this process (67), and collagen syn-
thesis by fibroblasts is proportional to local O2 concentration
in the range of 0–200 mmHg (80, 155).

FIG. 1. ROS wave: Summary of wound-
healing events related to reactive oxygen
species (ROS). HIF, hypoxia-inducible fac-
tors; MAP, mitogen-activated protein kinase;
MMP1, matrix metalloproteinase-1; SDF-1,
stromal-derived factor-1; VEGF, vascular en-
dothelial growth factor.
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ROS play an important role in whether stem cells enter
the cell cycle. In embryonic stem cells, p38 inhibition sus-
tains self-renewal; whereas ROS-mediated p38 activation
enhances cell turnover (68, 136). Activity of p38 will also
increase the transcriptional coactivator peroxisome pro-
liferator-activated receptor c coactivator 1a, which plays a
central role in mitochondrial biogenesis that influences stem
cell differentiation (135). ROS also play a role in the stem cell
pluripotency, the ability to differentiate into different cell
lineage types (73, 157). For example, at progressively higher
concentrations of H2O2, cells exhibited greater differentia-
tion into cardiac myocytes (21). Mesenchymal stem cells
transplanted into infarct zones using a rat myocardial in-
farction model exhibit greater engraftment and improved
cardiac function with HBO2 treatment (77, 78). If alternative
protein kinase pathways are activated by ROS, stem cell lin-
eage patterns can be modified (69). Recent studies have shown
HBO2-mediated enhancement of chondrocyte-specific gene
expression and also osteogenesis in differentiating between
human and animal adipose-derived stem cells (a peripheral,
mesenchymal stem cell type) (24, 33, 46, 153). Neuronal dif-
ferentiation of mesenchymal stem cells involves up-regulation
of Nox and increased ROS synthesis, although whether
these changes are cause or effect is unclear (179). Perhaps
further insights into the phenomenon can be gleaned by
observations that HBO2 also promotes neural progenitor
cell neurogenesis ex vivo, possibly by modification of the
Wnt pathway, and they may promote proliferation of en-
dogenous central nervous system stem cells to form neurons
and vascular channels after hypoxic or ischemic insults
(185, 188, 191, 192).

The
�
NO wave

Nitric oxide is synthesized by one of three nitric oxide
synthase (NOS) isoforms present in a large variety of cells.
All enzyme isoforms use O2, the amino acid arginine, and a
variety of cofactors to synthesize

�
NO. NOS activity in-

creases early after wounding and persists at an elevated level
for many days. The primary source of NOS in early wound
healing is macrophages, although many other cells (e.g., fi-
broblasts) contribute to local production (88). Oxygen
availability influences activity of NOS enzymes differently,
in part because they have different Km values for binding O2

and as the active sites and rates of turnover are different,
making them more or less sensitive to oxidation. Reported
Km values for type 1 (nNOS) is 350 lM, type 2 (iNOS) is
135 lM, and type 3 (eNOS) is 23 lM (165). Hence, the rate of
�
NO formation by nNOS will be much more affected by O2

fluctuations over a greater physiological range than eNOS.
Figure 2 summarizes roles for

�
NO in neovascularization.

HBO2 can augment activity all three NOS isoforms. Ac-
tivation of nNOS and also eNOS appears to be mediated
through enhanced binding of heat shock protein 90 (22, 169).
Activation of iNOS, at least in neutrophils, occurs due to an
increase in short filamentous actin synthesis and secondary
iNOS linkage (171). Consequences linked to NOS activation
by HBO2 will be discussed next and in this regard, it is im-
portant to remain cognizant that since exposures are transient,
enzyme activation is likely relatively brief. In neutrophils,
iNOS activity is transient because enzyme association to
filamentous actin ceases due to breakdown of a poly-protein

complex (171). The notion that transient
�
NO synthesis is

important, because while
�
NO is required for wound healing

to occur, too much hinders healing (14, 81).

Cell migration/chemotaxis. MMPs play critical roles in
matrix remodeling and cell migration. ROS and also

�
NO

regulate MMPs at the transcriptional and post-translational
levels (121, 128, 159). For example,

�
NO enhances endo-

thelial cell migration by increasing the local extracellular
concentration of MMP-13. MMP-13 activity is usually con-
strained, because it is bound to membrane caveolae. This
linkage is broken by locally synthesized

�
NO, which in-

creases collagen breakdown (97). Elevated local concentra-
tions of

�
NO synthesized by iNOS will stimulate keratinocyte

migration during re-epithelialization (161). Activating eNOS
in bone marrow stroma secondarily nitrosylates MMP-9,
which releases the stem cell active cytokine, soluble Kit li-
gand (SCF) (60). This agent shifts SPCs from a quiescent to
the proliferative niche, and stimulates their mobilization to
the peripheral blood (2, 3, 60, 61, 119, 137). By directly
activating eNOS, HBO2 mobilized bone marrow SPCs in
both animal models and humans (48, 54, 172).

Gene regulation/protein synthesis. Nitric oxide plays a
central role in synthesizing VEGF (45), cytokines, and
growth factors (6, 145, 182). Synthesis of

�
NO by eNOS

(versus other isoforms) plays a predominant role in VEGF-
mediated angiogenesis (47), possibly by stabilizing HIF-1
(35, 149). Many down-stream effects of VEGF are also
stimulated via

�
NO (9, 131). In addition to its local effects

within the wound, VEGF gets into the circulation and even-
tually the bone marrow, where it activates stem cell mobili-
zation via NOS activation, which as described earlier, causes
S-nitrosylation and activation of MMP-9, release of soluble
Kit ligand, and SPCs mobilization (2, 3).

The lactate wave

Wounding impairs blood flow due to damaged vessels
along with local consumption of O2 by the varied Nox iso-
forms, which rapidly establishes hypoxia. An immediate
consequence is anaerobic metabolism by local wound cells,
which generates lactate. This is only likely transient, and
oxygenation improves with any restoration of blood flow.
Wound margin lactate concentrations remain elevated,
however, because of endothelial cells and recruited leuko-
cytes that preferentially rely on glycolysis, even in an aerobic
environment (18, 51, 122). Thus, hyperoxia does not reduce
wound lactate concentration (66, 123). In fact, a study of
HBO2 metabolic effects in an ex vivo blood vessel model
suggests that in the hours after hyperoxia (but not during
oxygen exposure), lactate levels increase (186). When ex-
amining this report, as with all studies of HBO2, readers need
to be sensitive to the differences between ex vivo and in vivo
studies. Tissue/cell oxygenation with just normobaric hy-
peroxia in an ex vivo setting equals or exceeds that achieved
in vivo during hyperoxia. Thus, both normobaric and hy-
perbaric hyperoxia increased lactate levels in this ex vivo
tissue model (186). The mechanism for the response was not
identified and there are several possibilities. For example,
elevated ROS as well as

�
NO can impede tricarboxylic acid

(TCA) cycle metabolism and mitochondrial oxidative
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phosphorylation (12, 181, 184). A more complex process
could be via augmentation of HIF levels, because HIF can
suppress metabolism through the TCA cycle and also up-
regulate expression of lactate dehydrogenase (LDH) (in fact,
this model also reported elevated LDH in the tissue medium,
while suggesting there was no oxidative stress-mediated
enzyme –‘‘leakage’’) (63, 79). In a situation where actively
metabolizing tissues are no longer under the influence of
hyperoxia, the higher than normal NADH could lead to a
reverse LDH effect, catalyzing conversion of pyruvate and
NADH to lactate and NAD + synthesis. Whatever the
mechanism(s), there are numerous consequences to lactate
elevations and some are synergistic with HBO2. Figure 3
shows an overview of effects.

Cell migration/chemotaxis. Lactate is not itself a chemo-
tactic stimulus but it can influence cell migration secondarily.
Lactate stimulates hyaluronic acid synthesis (44, 162). Hya-
luronic acid accumulation in the peri-wound extracellular
matrix causes expansion of tissue, enabling easy cell move-
ment into damaged tissues and recruitment of new fibroblasts
that adhere to matrix via the CD44 receptor.

Gene regulation/protein synthesis. Lactate combined
with normobaric O2 stimulates angiogenesis (65). Lactate
chelates iron in the ER and radicals generated by the con-
current presence of O2

- � and H2O2 via Fenton reaction (while
confined to the ER) generates hydroxyl radical (

�
OH) that

reduces HIF prolyl hydroxylase activity (4, 98, 99). Similar
impairment of prolyl hydroxylase and increased HIF binding
to DNA occurs with the glycolytic intermediates pyruvate
and oxaloacetate, in addition to lactate (98, 160). Lactate
modifies the gene expression pattern of mesenchymal stem
cells to one more conducive to wound healing versus apo-
ptosis (194). The pro-oxidant action of lactate improves the
function of vasculogenic stem cells recruited from bone
marrow to peripheral sites as a consequence of HBO2 (117).
Lactate via elevated ROS production will increase cell con-
tent of HIF factors (HIF-1 and HIF-2), resulting in elevated
synthesis of VEGF and SDF-1, which then augment local
neovascularization as well as recruit additional cells to the
healing complex.

The metabolism of lactate by LDH increases intracellular
concentration of NADH at the expense of the NAD pool. In
addition to feeding reducing equivalents for ROS as men-
tioned earlier, the altered NAD/NADH ratio reduces the cell

content of polyADP-ribose (178). Although unclear whether
entirely mediated by an altered oxidation/reduction set point,
lactate stimulates collagen mRNA abundance and also col-
lagen promoter activity by fibroblasts (49, 50). In endothe-
lium, lactate-mediated reduction of poly-adenyl ribosylation
of VEGF improves VEGF angiogenic potency (85).

Discussion: Efficacy of HBO2

The outline described earlier highlights the multiple sites
where ROS, lactate, and

�
NO can influence wound healing,

with special emphasis on SPCs. We believe this categorization
has merit to examine concurrent processes in wound healing
and lends itself to highlighting sites where HBO2 has effects.
In one regard, this approach may be too simplistic however,
because tissues contain a variety of cell types and HBO2 may
influence each in different ways. Figure 4 is an attempt to
highlight many of these events. HBO2 increases synthesis of
many growth factors, although the biochemical mechanisms
have not been elucidated in detail. Synthesis of VEGF has been
shown to be increased in experimental wounds by HBO2 (41,
154). HBO2 also stimulates synthesis of basic fibroblast
growth factor and TGF (1 by human dermal fibroblasts (74),
angiopoietin-2 by human umbilical vein endothelial cells (95),
and as previously mentioned, it up-regulates PDGF receptor in
experimental wounds (19).

HBO2 appears to be a reliable way to mobilize SPCs in
humans (102, 172, 174). Animal data indicate that the spe-
cific target which initiates this process is NOS-3 in the stro-
mal cell compartment of the bone marrow with subsequent
liberation of SCF (54, 172). With regard to this process, in is
important to stress that contrary to many of the traditional
agents which increase SPCs, HBO2 does not concomitantly
elevate the circulating leukocyte count, which may be
thrombogenic (102, 134). Newly mobilized SPCs appear to
have greater content of HIF-1, HIF-2, and thioredoxin, which
in the murine model exhibit improved neovascularization
(115, 116, 174). Subsequent to HBO2 treatments of diabetic
patients, most wound margin HIFs and thioredoxin appear to
be derived from localized SPCs (174). This suggests that
SPCs may play an important role in supplying critical factors
during wound healing in diabetic patients.

The influence that HBO2 has on HIF isoform expression
appears to vary based on chronology (e.g., looking early or
late after wounding or an ischemic insult). One recent model
showing accelerated wound healing by HBO2 reported lower

FIG. 2. �NO wave: Summary of wound-
healing events related to elevated synthe-
sis of nitric oxide (�NO). NOS, nitric oxide
synthase.
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HIF-1 levels at wound margins with reduced inflammation
and fewer apoptotic cells (189). In contrast, higher levels of
HIF-1 have been linked to elevated VEGF in wounds in re-
sponse to hyperoxia (64, 154).

Chronic wounds are said to have stalled in the inflammatory-
healing phase, but this characterization does little to address
specific flaws that vary depending on the underlying patho-
physiology (87). We think this adds to the merit of viewing
wound healing as ‘‘waves’’ of ROS, lactate, and

�
NO pro-

duction. HBO2 in current practice is used to treat refractory
diabetic wounds and delayed radiation injuries. The patho-
physiology of radiation injury is obviously different than

diabetic wounds but the varied tissue abnormalities have
been likened to a chronic wound (30). Common elements
shared by both disorders include depletion of epithelial and
stromal cells, chronic inflammation, fibrosis, an imbalance or
abnormalities in extracellular matrix components and re-
modeling processes, and impaired keratinocyte functions (20,
30, 40, 110, 163, 175). Diabetic wound healing also is im-
paired by deceased growth factor production, lower

�
NO

production due to low insulin levels, eNOS phosphorylation,
and higher levels of asymmetric dimethylarginine and im-
paired SPCs mobilization; whereas in postradiation tissues,
there appears to be an imbalance between factors mediating

FIG. 4. Summary of stem
cell and peripheral wound
site events impacted by
HBO2. Images in lower left
are confocal microscope im-
ages similar to those reported
in reference (116). They
demonstrate vasculogenesis in
a Matrigel implant placed in a
mouse that was exposed to
HBO2. They show CD34 +
SPCs (green) and Nile red
beads (red) injected via the
heart to demonstrate func-
tional blood vessels. The
overlay between CD34 + cells
and beads is shown in yellow.
Trx-S2, oxidized thioredoxin;
Trx-SH2, reduced thioredoxin.
To see this illustration in col-
or, the reader is referred to the
web version of this article at
www.liebertpub.com/ars

FIG. 3. Lactate wave: Summary of
wound-healing events related to elevated
lactate concentrations in the region of a
wound. LDH, lactate dehydrogenase; NAD,
nicotine adenine nucleotide; NADH, nicotine
adenine nucleotide, reduced; NOX,
NAD(P)H oxidase; TCA, tricarboxylic acid.
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fibrosis and those promoting normal tissue healing (20, 30,
37, 147, 175).

The benefit of HBO2 for radiation injury has been shown in
randomized trials and is supported by independent evidence-
based reviews (16, 28, 112). With regard to use of HBO2 as a
component to refractory diabetic wound management, the
most recent meta-analysis involved eight trials and pooled
data from three showed an increase in the rate of ulcer healing
(odds ratio 5.20, 95% confidence interval [CI] 1.25–21.66;
p = 0.02) with HBOT at 6 weeks, although benefit did not
persist at 1 year follow up (84). Another analysis concluded
that adjunctive use of HBO2 as a component to diabetic
wound care improves healing with an odds ratio of 11.64
(95% CI 3.457–39.196) (53). This analysis was based on
clinical trials conducted through 2007 (1, 13, 34, 38, 39, 42,
72, 76, 129). Another meta-analysis concluded that only four
patients needed to be treated with HBO2 to prevent one
amputation (83). Since this publication, two additional
groups have reported benefits to use of HBO2; one was a
double-blinded randomized trial (36, 96). Controlled trials
continue to demonstrate that HBO2 improves outcome but
there is room for further investigation, as will be emphasized
later. The double-blinded trial was a single-center study that
enrolled individuals with diabetic foot ulcers. Individuals
were randomized to receive either HBO2 (100% oxygen, 2.5
ATA for 85 min 5 days per week for 8 weeks) or control
(room air, 2.5 ATA for 85 min 5 days per week for 8 weeks)
and standardized wound care. The outcome was a healed
wound by 12 months after the commencement of therapy. A
total of 94 individuals with wounds present for more than 3
months were evaluated. In the intention-to-treat analysis,
complete healing of the index ulcer was achieved in 37 pa-
tients at 1 year of follow up: 25 out of 48 (52%) in the HBO2

group and 12 out of 42 (29%) in the placebo group ( p = 0.03).
In a sub-analysis of those patients completing > 35 HBO2

sessions, healing of the index ulcer occurred in 23 out of 38
(61%) in the HBO2 group and 10 out of 37 (27%) in the
placebo group ( p = 0.009).

It is important to state that for both diabetic wounds and
radiation injuries, HBO2 is used in conjunction with standard
surgical management. Randomized trials show clinical benefit
with HBO2 when attention is paid to potential confounding
issues and quality of baseline care. When used by itself or if
used only in the postoperative period, however, HBO2 is
likely to have no benefit (8, 105). In randomized trials, cli-
nicians are constrained to follow a rigorous wound care plan
that may be as important as is HBO2 for improved outcomes.
The optimal timing for intervention with HBO2 in relation to
more standard forms of therapy, as well as the most appro-
priate endpoints to be used for evaluating outcomes remains
elusive. This can be seen in a ‘‘real world’’ comparative
effectiveness study involving records review of 6, 259 indi-
viduals with foot wounds related to diabetes with adequate
lower limb arterial perfusion (106). Individuals receiving
HBO2 were less likely to heal their foot ulcer (propensity
score odds ratio 0.68 [95% CI: 0.63–0.73]) and more likely to
have an amputation (odds ratio 2.37 [95% CI: 1.84–3.04]).
However, utilization and how HBO2 was coordinated with
other interventions was uncertain. The mean number of
treatments was 29 but with a broad range (25th%–75th%: 15–
48). If the minimum number of treatments was taken as eight
and only this population was studied, the impact of HBO2

was less clear with regard to amputation (odds ratio 2.03
[95% CI: 1.49–2.77]) and with regard to a healed wound
(odds ratio 0.73 [95% CI: 0.66–0.81]). These data indicate
that basic science and insight into HBO2 is improving,
whereas there is still more to learn regarding the coordination
of HBO2 with other treatments and there remains a need for
further clinical research.

Innovation

This review highlights the components of wound healing
where oxidative stress has a positive impact on the various
cells involved in wound healing. It departs from the notion of
sequential wound-healing stages by organizing the cascade of
wound healing as overlapping events or waves pertaining to
reactive oxygen species, lactate, and nitric oxide. This was
done because hyperoxia has effects of a number of cell sig-
naling events that converge to influence cell recruitment/che-
motaxis and gene regulation/protein synthesis responses which
mediate wound healing. This aids the focus on mechanistic
events and the interplay among various cell types and bio-
chemical processes.
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Abbreviations Used

ATA¼ atmospheres absolute
Duox¼ dual oxidase

ER¼ endoplasmic reticulum
HBO2¼ hyperbaric oxygen

HIF¼ hypoxia-inducible factor
LDH¼ lactate dehydrogenase

MMP¼matrix metalloproteinase
NAD¼ nicotine adenine nucleotide

NADH¼ nicotine adenine nucleotide¼ reduced
NOS¼ nitric oxide synthase
Nox¼NADPH oxidase

PDGF¼ platelet-derived growth factor

RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species
SCF¼ stem cell factor

SDF-1¼ stromal-derived factor-1
SOD¼ superoxide dismutase
SPCs¼ stem/progenitor cells

TCA cycle¼ tricarboxylic acid cycle
TGF¼ transforming growth factor

TGF-b¼ transforming growth factor-beta
Trx¼ thioredoxin

TrxR¼ thioredoxin reductase
VEGF¼ vascular endothelial growth factor
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