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Abstract

We prove that polynomial calculus (and hence also Nullstellensatz) requires linear degree
to refute that sparse random regular graphs as well as sparse Erdős-Rényi random graphs are
3-colourable. Using the known relation between size and degree for polynomial calculus proofs,
this implies strongly exponential lower bounds on proof size.
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1 Introduction

Determining the chromatic number of a graph 𝐺, i.e., how many colours are needed for the vertices
of 𝐺 if no two vertices connected by an edge should have the same colour, is one of the classic
21 problems shown NP-complete in the seminal work of Karp [Kar72]. This graph colouring problem,
as it is also referred to, has been extensively studied since then, but there are still major gaps in our
understanding.

The best known approximation algorithm computes a graph colouring within at most a factor
O
(
𝑛(log log 𝑛)2/(log 𝑛)3

)
of the chromatic number [Hal93], and it is known that approximating the

chromatic number to within a factor 𝑛1−� is NP-hard [Zuc07]. Even under the promise that the
graph is 3-colourable, the most parsimonious algorithm with guaranteed polynomial running time
needs O

(
𝑛0.19996) colours [KT17]. This is very far from the lower bounds that are known—it is

NP-hard to (2𝑘 − 1)-colour a 𝑘-colourable graph [BBKO21], but the question of whether colouring a
3-colourable graph with 6 colours in NP-hard remains open [KO22]. It is widely believed that any
algorithm for graph colouring has to run in exponential time in the worst case, and the currently
fastest algorithm for 3-colouring has time complexity O

(
1.3289𝑛

)
[BE05]. A survey on various

algorithms and techniques for so-called exact algorithms is [Hus15].
Graph colouring instances of practical interest might not exhibit such exponential-time behaviour,

however, and in such a context it is relevant to study algorithms without worst-case guarantees
and examine how they perform in practice. To understand such algorithms from a computational
complexity viewpoint, it is natural to investigate bounded models of computation that are strong
enough to describe the reasoning performed by the algorithms and prove unconditional lower
bounds for these models.

1.1 Previous Work

Focusing on random graphs, McDiarmid [McD84] developed a method for determining 𝑘-coloura-
bility that captures a range of algorithmic approaches. Beame et al. [BCMM05] showed that this
method could in turn be simulated by the resolution proof system, and established average-case
exponential lower bounds for resolution proofs of non-colourability for random graph instances
sampled so as not to be 𝑘-colourable with exceedingly high probability.

Different algebraic approaches for 𝑘-colourability have been considered in [AT92, Lov94, Mat74,
Mat04]. Bayer [Bay82] seems to have been the first to use Hilbert’s Nullstellensatz to attack
graph colouring. Informally, the idea is to write the problem as a set of polynomial equations
{𝑝𝑖(𝑥1 , . . . , 𝑥𝑛) = 0 | 𝑖 ∈ [𝑚]} in such a way that legal colourings correspond to common roots for
these polynomials, and then show that there are other polynomials 𝑞1 , . . . , 𝑞𝑚 such that

∑𝑚
𝑖=1 𝑞𝑖𝑝𝑖 = 1.

This latter equality is referred to as a Nullstellensatz certificate of non-colourability, and the degree
of this certificate is the largest degree of any polynomial 𝑞𝑖𝑝𝑖 in the sum. Later papers based on
Nullstellensatz and Gröbner bases such as [DL95, Mnu01, HW08] culminated in an award-winning
sequence of works [DLMM08, DLMO09, DLMM11, DMP+15] with surprisingly good performance.

For quite some time, no strong lower bounds were known for these algebraic methods or the
corresponding proof systems Nullstellensatz [BIK+94] and polynomial calculus [CEI96, ABRW02]. On
the contrary, the authors of [DLMO09] reported that essentially all benchmarks they studied turned
out to have Nullstellensatz certificates of small constant degree. The degree lower bounds 𝑘 + 1
for 𝑘 colours in [DMP+15] remained the best known until optimal, linear, degree lower bounds for
polynomial calculus were established in [LN17] using a reduction from lower bounds for so-called
functional pigeonhole principle formulas [MN15]. A more general reduction framework in [AO19]
yielded optimal degree lower bounds also for Sherali-Adams [SA90] and sums-of-squares [Las01, Par00],
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as well as weakly exponential size lower bounds for Frege proofs [CR79, Rec75] of bounded depth.
The lower bounds discussed in the last paragraph are not quite satisfactory, however, in that

it is not clear how much they actually tell us about the graph colouring problem, as opposed to
the hardness of the problems being reduced from. It seems both natural and desirable to establish
optimal average-case lower bounds for random graphs, just as for resolution in [BCMM05], but
this goal has remained elusive for almost two decades, as pointed out, e.g., in [LN17, Lau18, BN21].
The strongest result in this direction seems to be the recent logarithmic degree lower bound in
sums-of-squares for Erdős-Rényi graphs with edge probability 1/2 and 𝑘 = 𝑛1/2+� colours [KM21].
Since this result is for a problem encoding using inequalities, it is not clear whether this has any
implications for Nullstellensatz or polynomial calculus over the reals, and for other fields nothing
has been known for the latter two proof systems—not even logarithmic lower bounds.

1.2 Our Contribution

In this work, we establish optimal linear degree lower bounds and exponential size lower bounds
for polynomial calculus proofs of non-colourability of random graphs.

Theorem 1.1 (informal). For any 𝑑 ≥ 6, polynomial calculus (and hence also Nullstellensatz) requires
linear degree to refute that random 𝑑-regular graphs G𝑛,𝑑, as well as Erdős-Rényi random graphs G

(
𝑛, 𝑑/𝑛

)
,

are 3-colourable. These degree lower bounds hold over any field, and also imply exponential lower bounds on
proof size.

We prove our lower bound for the standard encoding in proof complexity, where variables 𝑥𝑣,𝑖
indicate whether vertex 𝑣 is coloured with colour 𝑖 or not. It should be pointed out, however,
that just as the results in [LN17], our degree lower bounds apply to the 𝑘-colourability encoding
introduced in [Bay82] and used in computational algebra papers such as [DLMM08, DLMO09,
DLMM11, DMP+15], where a primitive 𝑘th root of unity is adjoined to the field and different
colours of a vertex 𝑣 are encoded by a variable 𝑥𝑣 taking different powers of this root of unity.

Our lower bound proofs crucially use a new idea for proving degree lower bounds for colouring
graphs with large girth [RT22]. After translating this proof from the root-of-unity encoding to the
Boolean indicator variable encoding, and replacing the proof in terms of girth with a strengthened
argument using carefully chosen properties of random graphs, we obtain a surprisingly clean and
simple solution to the long-standing open problem of showing average-case polynomial calculus
degree lower bounds for graph colouring.

1.3 Discussion of Proof Techniques

In most works on algebraic and semialgebraic proof systems such as Nullstellensatz, polynomial
calculus, Sherali-Adams and sums-of-squares, the focus has been on proving upper and lower
bounds on the degree of proofs. Even when proof size is the measure of interest, almost all size
lower bounds have been established via degree lower bounds combined with general results saying
that for all of the above proof systems except Nullstellensatz strong enough lower bounds on degree
imply lower bounds on size [IPS99, AH19].

At a high level the techniques for proving degree lower bounds for the different proof systems
have a similar flavour. For the static proof systems, i.e., Nullstellensatz, Sherali-Adams and sums-of-
squares, it is enough to show that the dual is feasible and thus rule out low-degree proofs. In more
detail, for Nullstellensatz, one constructs a design [Bus98], which is a linear functional mapping
low degree monomials to the underlying field, satisfying that it maps 1 to a non-zero element and
low degree monomials multiplied by any polynomial 𝑝𝑖 in the problem encoding to 0. If such a
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functional can be found, it is clear that there cannot exist any low-degree Nullstellensatz certificate∑𝑚
𝑖=1 𝑞𝑖𝑝𝑖 = 1 of unsatisfiability, as the design would map the left hand side of the equation to 0

but the right hand side to a non-zero element of the field. For sums-of-squares, the analogous
functional furthermore has to map squares of low-degree polynomials to non-negative numbers.
Such a pseudo-expectation can be viewed as a fake random distribution over satisfying assignments
to the problem, which is indistinguishable from a true distribution for an adversary using only
low-degree polynomials.

Polynomial calculus is different from these proof systems in that it does not present the certificate
of unsatisfiability as a static object, but instead, given a set of polynomials 𝒫, dynamically derives
new polynomials in the ideal generated by 𝒫. The derivation ends when it reaches the polynomial 1,
i.e., the multiplicative identity in the field, showing that there is no solution. Since all polynomials
derived lie in the ideal of 𝒫, reducing them modulo this ideal always yields the polynomial 0. To
prove degree lower bounds one designs a pseudo-reduction operator or 𝑅-operator [Raz98], which maps
all low-degree polynomials derived from 𝒫 to 0 but sends 1 to 1, and which is indistinguishable
from a true ideal reduction operator if one is limited to reasoning with low-degree polynomials.
This means that for a bounded-degree adversary it seems like the set of input polynomials are
consistent.

Following the method in [AR03], a pseudo-reduction operator 𝑅 can be constructed by defining
it on low-degree monomials and extending to low-degree polynomials by linearity. For every
monomial 𝑚, we identify a set of related input polynomials 𝑆(𝑚), let ⟨𝑆(𝑚)⟩ be the ideal generated by
these polynomials, and define 𝑅(𝑚) = 𝑅⟨𝑆(𝑚)⟩(𝑚) to be the reduction of 𝑚 modulo the ideal ⟨𝑆(𝑚)⟩.
Intuitively, we think of 𝑆(𝑚) as the (satisfiable) subset of polynomials that might possibly have been
used in a low-degree derivation of 𝑚, but since the constant monomial 1 is not derivable in low
degree it gets an empty associated set of polynomials, meaning that 𝑅(1) = 𝑅⟨𝑆(1)⟩(1) = 1. In order
for 𝑅 to look like a real reduction operator, we need to show that for polynomials 𝑝 and 𝑝′ of not
too high degree it holds that 𝑅(𝑝 + 𝑝′) = 𝑅(𝑝) + 𝑅(𝑝′) and 𝑅(𝑝 · 𝑅(𝑝′)) = 𝑅(𝑝 · 𝑝′). The first equality
is immediate since 𝑅 is defined to be a linear operator, but the second equality is not so clear. Since
the polynomials 𝑝 and 𝑝′ will be reduced modulo different ideals—in fact, this will be the case even
for different monomials within the same polynomial—a priori there is no reason why 𝑅 should
behave nicely with respect to multiplication.

Proving that an 𝑅-operator behaves like a true reduction operator for low-degree polynomials
is typically the most challenging technical step in the lower bound proof. Very roughly, the
proof method in [AR03] goes as follows. Suppose that 𝑚 and 𝑚′ are monomials with associated
polynomial sets 𝑆(𝑚) and 𝑆(𝑚′), respectively. Using expansion properties of the constraint-variable
incidence graph for the input polynomials, we argue that the true reduction operator will not change
if we reduce both monomials modulo the larger ideal ⟨𝑆(𝑚) ∪ 𝑆(𝑚′)⟩ generated by the union of their
associated sets of polynomials. This implies that we have 𝑅(𝑚′) = 𝑅⟨𝑆(𝑚′)⟩(𝑚′) = 𝑅⟨𝑆(𝑚)∪𝑆(𝑚′)⟩(𝑚′)
and 𝑅(𝑚 · 𝑚′) = 𝑅⟨𝑆(𝑚)∪𝑆(𝑚′)⟩(𝑚 · 𝑚′) and if so it is clear that 𝑅(𝑚 · 𝑅(𝑚′)) = 𝑅(𝑚 · 𝑚′) holds, just
like for reduction modulo an actual ideal. To prove this is a delicate balancing act, though, since the
ideals will need to be large enough to guarantee non-trivial reduction, but at the same time small
enough so that different ideals can be “patched together” with only local adjustments.

All previous attempts to apply this lower bound strategy to the graph colouring problem have
failed. For other polynomial calculus lower bounds it has been possible to limit the interaction
between different polynomials in the input. For graph colouring, however, applying the reduction
operator intuitively corresponds to partial colourings of subsets of vertices, and it has not been
known how to avoid that locally assigned colours propagate new colouring constraints through the
rest of the graph. In technical language, what is needed is a way to order the vertices in the graph
so that there will be no long ordered paths of vertices along which colouring constraints can spread.
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It has seemed far from obvious how to construct such an ordering, or even whether it should exist,
and due to this technical problem it has not been possible to join local ideal reduction operators
into a globally consistent 𝑅-operator.

This technical problem was addressed in a recent paper [RT22] by an ingenious, and in hindsight
very simple, idea. The main insight is to consider a proper colouring of the graph with 𝜒 colours,
and then order the vertices in each colour class consecutively. In this way, order-decreasing paths
are of length at most 𝜒 and one can guarantee some form of locality. Once this order is in place, the
final challenge is to ensure that small cycles do not interfere when “patching together” reductions.
In [RT22] this was avoided precisely by ensuring that the graph should have high girth, which
resulted in a degree lower bound linear in the girth of the graph. In terms of graph size, this cannot
give better than logarithmic lower bounds, however, since the girth is at most logarithmic in the
number of vertices for any graph of chromatic number larger than 3 [Bol78].

In our work, we use the same ordering as in [RT22], but instead of girth use the fact that random
graphs are locally very sparse. Once the necessary technical concepts are in place, the proof becomes
quite simple and elegant, which we view as an extra strength of our result.

1.4 Outline of This Paper

The rest of this paper is organized as follows. In Section 2 we present some preliminaries. In
Section 3 we introduce our techniques and provide a proof overview. In Section 4 we prove a linear
polynomial calculus degree lower bound for 4-colourability on random regular graphs, which
serves as a blueprint for our stronger results. In Section 5 and Section 6 we improve the lower bound
to hold for 3-colourability on random regular graphs and the Erdős-Rényi graph, respectively. We
conclude with some final remarks and open problems in Section 7.

2 Preliminaries

We briefly review the necessary preliminaries from proof complexity, algebra and graph theory. We
use standard asymptotic notation, and all logarithms in this paper have base 2.

2.1 Proof Complexity

Polynomial calculus (PC) [CEI96] is a proof system that uses algebraic reasoning to deduce that a set 𝒫
of polynomials over a field F involving the variables 𝑥1 , . . . , 𝑥𝑛 is infeasible, i.e., that the polynomials
in 𝒫 have no common root. To prove that 𝒫 is infeasible, polynomial calculus interprets 𝒫 as a set
of generators of an ideal and then derives new polynomials in this ideal through two derivation
rules:

Linear combination:
𝑝 𝑞

𝑎𝑝 + 𝑏𝑞
, 𝑎, 𝑏 ∈ F (2.1a)

Multiplication:
𝑝

𝑥𝑝
, 𝑥 any variable (2.1b)

A polynomial calculus derivation 𝜋 of a polynomial 𝑝 from 𝒫 is a sequence (𝑝1 , . . . , 𝑝𝜏) such that
𝑝𝜏 = 𝑝 and each polynomial 𝑝𝑖 is either in 𝒫 or obtained by applying one of the derivation rules
(2.1a)-(2.1b) to polynomials in 𝒫 or polynomials 𝑝 𝑗 with 𝑗 < 𝑖. A polynomial calculus refutation of
𝒫 is a derivation of the constant polynomial 1 from 𝒫, which is then a proof that 𝒫 is infeasible.
Often we are interested in systems of polynomial equations with Boolean variables, in which case
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we also add the Boolean axioms {𝑥2
1 − 𝑥1 , . . . , 𝑥

2
𝑛 − 𝑥𝑛} to 𝒫. It is a standard fact that polynomial

calculus is sound and complete when the Boolean axioms are present.
The most common complexity measures associated to a polynomial calculus refutation are its

size and its degree. Let 𝑝 be a polynomial expanded into a linear combination of distinct monomials.
The size of 𝑝 is the number of monomials in 𝑝, and the degree of 𝑝 is the maximal degree of a
monomial in 𝑝. The size of a polynomial calculus refutation 𝜋 is the sum of the sizes of the
polynomials in 𝜋, and the degree of 𝜋 is the maximal degree of a polynomial in 𝜋. We follow the
convention of not counting applications of the Boolean axioms toward degree or size by tacitly
working over F[𝑥1 , . . . , 𝑥𝑛]/⟨𝑥2

1 − 𝑥1 , . . . , 𝑥
2
𝑛 − 𝑥𝑛⟩, which only strengthens any lower bound on

either measure. The size and degree measures in polynomial calculus are tightly related through
the size-degree relation [IPS99], which states that if 𝒫 consists of polynomials with constant degree
and 𝐷 is the minimal degree of any polynomial calculus refutation of 𝒫 ∪ {𝑥2

1 − 𝑥1 , . . . , 𝑥
2
𝑛 − 𝑥𝑛},

then any refutation of 𝒫 ∪ {𝑥2
1 − 𝑥1 , . . . , 𝑥

2
𝑛 − 𝑥𝑛} must have size exp

(
Ω
(
𝐷2/𝑛

) )
.

The size-degree relation also applies to the stronger proof system polynomial calculus resolution
(PCR) [ABRW02], which is defined analogously but where for each variable 𝑥𝑖 appearing in 𝒫 we
also introduce a formal negation �̄�𝑖 enforced by adding the equations 𝑥𝑖 + �̄�𝑖 − 1 = 0 to 𝒫. It is not
hard to see that polynomial calculus and polynomial calculus resolution are equivalent with respect
to degree, so to prove a lower bound on polynomial calculus resolution size it suffices to prove a
lower bound on polynomial calculus degree. Finally, we remark that a polynomial calculus degree
lower bound also applies to the weaker Nullstellensatz proof system mentioned in Section 1.1 and
Section 1.2.

2.2 Algebra Background

The following material is standard and can be found in, e.g., [MN15]. Let F be a field and let
F[𝑥1 , . . . , 𝑥𝑛] be the polynomial ring over F in 𝑛 variables. For all our purposes it will suffice to
work in the linear space F[𝑥1 , . . . , 𝑥𝑛]/⟨𝑥2

1 − 𝑥1 , . . . , 𝑥
2
𝑛 − 𝑥𝑛⟩ of multilinear polynomials, which we

do from now on. A term is a monomial multiplied by an element of F. A total ordering ≺ on the
monomials of F[𝑥1 , . . . , 𝑥𝑛] is admissible if

1. If Deg(𝑚1) < Deg(𝑚2), then 𝑚1 ≺ 𝑚2.

2. For any monomials 𝑚1 , 𝑚2 and 𝑚 such that 𝑚1 ≺ 𝑚2 and 𝑚 does not share any variables with
either 𝑚1 or 𝑚2, it holds that 𝑚𝑚1 ≺ 𝑚𝑚2.

We identify the order of a term with the order of its corresponding monomial. The leading
term of a polynomial 𝑝 =

∑
𝑖 𝑡𝑖 is the largest term in 𝑝 according to ≺. For an ideal 𝐼 over

F[𝑥1 , . . . , 𝑥𝑛]/⟨𝑥2
1 − 𝑥1 , . . . , 𝑥

2
𝑛 − 𝑥𝑛⟩, a term 𝑡 is reducible modulo 𝐼 if it is the leading term of a

polynomial 𝑞 in 𝐼. Otherwise, 𝑡 is irreducible modulo 𝐼.
A standard fact which is important for our purposes is that for any ideal 𝐼, any polynomial 𝑝

in F[𝑥1 , . . . , 𝑥𝑛]/⟨𝑥2
1 − 𝑥1 , . . . , 𝑥

2
𝑛 − 𝑥𝑛⟩ can be uniquely written as 𝑝 = 𝑞 + 𝑟, where 𝑞 ∈ 𝐼 and 𝑟 is a

linear combination of irreducible terms modulo 𝐼. We call 𝑟 the reduction of 𝑝 modulo 𝐼. The reduction
operator 𝑅𝐼 is the operator that takes 𝑝 = 𝑞 + 𝑟 to 𝑟. Another standard fact we use is that if 𝐼1 and 𝐼2
are ideals such that 𝐼1 ⊆ 𝐼2, then 𝑅𝐼2(𝑝𝑞) = 𝑅𝐼2(𝑝𝑅𝐼1(𝑞)).

2.3 Graph Theory

All graphs 𝐺 = (𝑉, 𝐸) considered in this paper are finite, undirected and simple. Given 𝑈,𝑊 ⊆ 𝑉 ,
the set of edges between vertices in 𝑈 is denoted by 𝐸(𝑈), the neighbourhood of 𝑈 in 𝑊 is denoted
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by 𝑁𝑊 (𝑈), the set of edges with one endpoint in 𝑈 and the other in 𝑊 is denoted by 𝐸(𝑈,𝑊),
and the induced subgraph of 𝐺 on 𝑈 is denoted by 𝐺[𝑈]. A simple path of length ℓ is a tuple of
distinct vertices (𝑣1 , . . . , 𝑣ℓ+1) where (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for all 𝑖. A simple cycle is a simple path, except
that 𝑣1 = 𝑣ℓ+1. A 𝑘-colouring of 𝐺 is a mapping 𝜒 : 𝑉 → [𝑘] such that for each edge (𝑢, 𝑣) in 𝐸 it
holds that 𝜒(𝑢) ≠ 𝜒(𝑣). The chromatic number 𝜒(𝐺) is the smallest 𝑘 such that a colouring exists for
𝐺. We say that 𝐺 is 𝑘-colourable if 𝜒(𝐺) ≤ 𝑘.

We will consider two widely studied random graph models. One is the Erdős-Rényi random
graph G(𝑛, 𝑝) on 𝑛 vertices where each edge appears independently with probability 𝑝. The other
is the random 𝑑-regular graph G𝑛,𝑑 which is a graph selected uniformly at random from the set of
𝑑-regular graphs with 𝑛 vertices. Here a graph is 𝑑-regular if all of its vertices have degree 𝑑, which
is possible if and only if 𝑑 < 𝑛 and 𝑑𝑛 is even. For a fixed random graph model G = {G𝑛}∞𝑛=1, we
say a graph property 𝑃 holds asymptotically almost surely if lim𝑛→∞ Pr𝐺∼G𝑛 [𝐺 has property 𝑃] = 1.

The graph property that underpins our lower bounds is sparsity: a graph 𝐺 is (ℓ , �)-sparse if for
every set 𝑈 ⊆ 𝑉 of size at most ℓ , it holds that |𝐸(𝑈)| ≤ (1 + �)|𝑈 |. For 𝑑-regular graphs, it is not
hard to see that sparseness is equivalent to the more familiar notion of expansion; 𝐺 is (ℓ , �)-sparse
if and only if 𝐺 is an (ℓ , 𝑑 − 2(1 + �))-expander, where 𝐺 is an (ℓ , 𝛾)-expander if for every subset
𝑈 ⊆ 𝑉 of size at most ℓ it holds that |𝐸(𝑈, 𝐺 \𝑈)| ≥ 𝛾 |𝑈 |. The following lemma is folklore, see,
e.g., [Raz17, Lemma 4.15]. For the precise version that we state below, we provide a proof in the
Appendix.

Lemma 2.1 (Sparsity lemma). Let 𝐺 = (𝑉, 𝐸) ∼ G, whereG isG𝑛,𝑑 orG(𝑛, 𝑑/𝑛). For every integer 𝑑 ≥ 3
and every � > 0 such that 1+� ≤ 0.9𝑑, it holds asymptotically almost surely that 𝐺 is (𝑑−30(1+�)/�𝑛, �)-sparse.

We frequently use that large subsets of sparse graphs are 3-colourable, stated in the next lemma.

Lemma 2.2. Let 𝐺 = (𝑉, 𝐸) be a graph that is (ℓ , �)-sparse where � < 1/2. Then for every 𝑈 ⊆ 𝑉 of size at
most ℓ , 𝐺[𝑈] is 3-colourable.

Proof. The proof is by induction on |𝑈 |. For the base case, certainly a graph consisting of one vertex
is 3-colourable. For the induction step, suppose the claim holds for sets of size at most 𝑠 − 1 and
consider a set 𝑈 of size 𝑠 ≤ ℓ . The average vertex degree in 𝐺[𝑈] is 2|𝐸(𝑈)|/𝑠, which is at most
2(1 + �) < 3 by the sparsity condition. Therefore, since graph degrees are integral there exists a
vertex 𝑣 in 𝑈 with degree at most 2 in 𝐺[𝑈]. Now consider the set 𝑈 \ {𝑣}, which is 3-colourable by
the inductive hypothesis. We 3-colour 𝑈 \ {𝑣} and add 𝑣 back in. Since the degree of 𝑣 in 𝑈 is at
most 2 there is at least one colour available for 𝑣, so we can extend the 3-colouring to 𝑈 . □

Finally, we need a rather loose bound on the chromatic number of G(𝑛, 𝑑/𝑛) and G𝑛,𝑑.

Lemma 2.3 ([KPGW10, AN05]). For 𝐺 ∼ G where G is G(𝑛, 𝑑/𝑛) or G𝑛,𝑑, asymptotically almost surely
the following hold: 𝜒(𝐺) ≤ 2𝑑/log 𝑑; if 𝑑 ≥ 10, then 𝜒(𝐺) ≥ 5; and if 𝑑 ≥ 6, then 𝜒(𝐺) ≥ 4.

2.4 Graph Colouring and Polynomial Calculus

We study the polynomial calculus degree required to refute the system Col(𝐺, 𝑘) of polynomials
𝑘∑

𝑖=1
𝑥𝑣,𝑖 − 1, 𝑣 ∈ 𝑉(𝐺) [Every vertex is assigned a colour] (2.2a)

𝑥𝑢,𝑖𝑥𝑣,𝑖 , (𝑢, 𝑣) ∈ 𝐸(𝐺) [No two adjacent vertices get the same colour] (2.2b)
𝑥𝑣,𝑖𝑥𝑣,𝑖′ , 𝑣 ∈ 𝑉(𝐺), 𝑖 ≠ 𝑖′ [No vertex gets more than one colour] (2.2c)

𝑥2
𝑣,𝑖 − 𝑥𝑣,𝑖 , 𝑣 ∈ 𝑉(𝐺), 𝑖 ∈ [𝑘] [Boolean axioms] (2.2d)
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that states that a graph 𝐺 is 𝑘-colourable. We refer to (2.2a)-(2.2d) as the 𝑘-colourability axioms on 𝐺.
It is known [LN17, Proposition 2.2] that a polynomial calculus degree lower bound for Col(𝐺, 𝑘)
also applies to Bayer’s formulation [Bay82] of 𝑘-colourability, also known as the roots-of-unity encoding.
This encoding has received considerable attention in computational algebra [DLMM08, DLMO09,
DLMM11, DMP+15, RT22].

To prove degree lower bounds for Col(𝐺, 𝑘), we use a lemma from [Raz98].

Lemma 2.4 ([Raz98]). Let 𝒫 be a set of polynomials in F[𝑥1 , . . . , 𝑥𝑛]/⟨𝑥2
1 − 𝑥1 , . . . , 𝑥

2
𝑛 − 𝑥𝑛⟩ with no

common root. Suppose there exists an F-linear operator 𝑅 such that

1. 𝑅(1) = 1.

2. 𝑅(𝑝) = 0, for each 𝑝 in 𝒫.

3. For every term 𝑡 of degree at most 𝐷 − 1 and every variable 𝑥, it holds that 𝑅(𝑥𝑡) = 𝑅(𝑥𝑅(𝑡)).

Then every polynomial calculus refutation of 𝒫 requires degree at least 𝐷.

We call a linear operator satisfying items 1-3 in Lemma 2.4 an 𝑅-operator.

3 Techniques and Proof Overview

In this section we introduce the technical tools needed for our lower bounds and provide a proof
overview.

3.1 Closure and Ordering by Colouring

For our 𝑅-operator, we need an admissible ordering on monomials, which will come from a linear
ordering on the vertices of the underlying graph to be specified later. For now, assume 𝐺 = (𝑉, 𝐸) is
a graph with a linear ordering ≺ on 𝑉 . An increasing (decreasing) path in 𝐺 is a path (𝑣1 , . . . , 𝑣𝜏) such
that 𝑣𝑖 ≺ 𝑣𝑖+1 (𝑣𝑖 ≻ 𝑣𝑖+1) for all 𝑖 in [𝜏 − 1]. For 𝑢, 𝑣 in 𝑉 , we say that 𝑢 is a descendant of 𝑣 if there
exists a decreasing path from 𝑣 to 𝑢. A subset 𝑈 of 𝑉 is downward-closed in 𝐺 if it holds that for
every vertex 𝑢 in 𝑈 , all descendants of 𝑢 are also in 𝑈 . Let 𝐷𝑈 denote the set of vertices 𝑣 such
that 𝑣 is a descendant of some vertex 𝑢 in 𝑈 . The descendant graph of 𝑈 , denoted by Desc(𝑈), is
𝐺[𝑈 ∪ 𝐷𝑈]. (Note that the descendant graph of any vertex set is downward-closed.) A 𝑏-hop with
respect to 𝑈 is a simple path or simple cycle of length 𝑏 ≥ 2 whose endpoints are in 𝑈 and whose
other vertices are in 𝑉 \𝑈 .

Remark 3.1. Let us give some examples of the properties of 𝐺 when there are no 𝑏-hops in 𝐺 with
respect to 𝑈 . To start with, if there are no 2-hops with respect to 𝑈 , then every vertex in 𝑁𝑉\𝑈 (𝑈)
has a unique neighbour in 𝑈 , and if there are no 3-hops with respect to 𝑈 , then 𝑁𝑉\𝑈 (𝑈) is an
independent set. In general, the absence of 𝑏-hops with respect to 𝑈 for more values of 𝑏 will
imply similar properties for sets of vertices with small distance to 𝑈 . Jumping ahead a bit, our
lower bounds rely on such properties implied by the absence of {2, 3}-hops for 4-colouring and
{2, 3, 4, 5}-hops (as well as the absence of some additional small shapes) for 3-colouring.

The point of the next definition is to construct a set with no {2, 3}-hops that contains a given
subset 𝑈 ⊆ 𝑉 and is downward-closed.

Definition 3.2 (Closure [RT22]). Let 𝐺 = (𝑉, 𝐸) be a graph and let 𝑈 ⊆ 𝑉 . Set 𝐻0 = Desc(𝑈).
While there exists a 2-hop or 3-hop, say 𝑄, with respect to 𝑉(𝐻𝑖), set 𝐻𝑖+1 = Desc(𝑉(𝐻𝑖) ∪𝑉(𝑄));
otherwise, stop and set 𝐻𝑖 = 𝐻end. The closure of 𝑈 , denoted by Cl(𝑈), is defined to be 𝐻end.
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We will need the properties of the closure collected in the next lemma.

Lemma 3.3. Let 𝑈 ⊆ 𝑈′ ⊆ 𝑉 . Then the following properties of the closure hold.

1. (Well-definedness) Let (𝐻0 , . . . , 𝐻end) and (𝐻′
0 , . . . , 𝐻

′
end) be two sequences of the construction in

Definition 3.2 starting from 𝑈 . Then 𝐻end = 𝐻′
end.

2. (Monotonicity) 𝑈 ⊆ Cl(𝑈) and Cl(𝑈) ⊆ Cl(𝑈′).

3. (Idempotence) Cl(Cl(𝑈)) = Cl(𝑈).

Proof. First of all, we remark that if 𝑃 is a {2, 3}-hop with respect to 𝑈 , then either 𝑉(𝑃) ⊆ 𝑈′ or 𝑃
contains at least one shorter hop with respect to 𝑈′.

For item 1, we show by induction on 𝑖 that 𝑉(𝐻𝑖) is contained in 𝑉(𝐻′
end). The base case 𝑖 = 0

is immediate since 𝑉(𝐻0) = 𝑉(𝐻′
0) and 𝑉(𝐻′

0) ⊆ 𝑉(𝐻′
end) by construction. For the induction step,

suppose that 𝑉(𝐻𝑖−1) ⊆ 𝑉(𝐻′
end). If there is no 2-hop or 3-hop with respect to 𝑉(𝐻𝑖−1) we are

done, so let 𝑉(𝑄𝑖) be the hop added to 𝑉(𝐻𝑖−1) in the 𝑖th round. By the remark above, either
𝑉(𝑄𝑖) ⊆ 𝑉(𝐻′

end), in which case we are also done, or 𝑄 contains another hop with respect to𝑉(𝐻′
end),

but this contradicts that the sequence stops at 𝐻′
end. It follows by induction that 𝑉(𝐻end) ⊆ 𝑉(𝐻′

end).
By symmetry it also holds that 𝑉(𝐻′

end) ⊆ 𝑉(𝐻end), and thus 𝐻end = 𝐻′
end.

For item 2, 𝑈 ⊆ Cl(𝑈) by definition. The fact that Cl(𝑈) ⊆ Cl(𝑈′) can be proved in the same
way as item 1.

Item 3 follows by definition since there are no 2-hops or 3-hops in 𝐺 with respect to Cl(𝑈). □

The linear ordering on 𝑉 that we use is the following, which is crucial both in [RT22] and in our
arguments.

Definition 3.4 (𝜒-ordering). Let 𝐺 = (𝑉, 𝐸) be a graph, and let 𝜒 : 𝑉 → [𝑐] be a colouring of 𝐺. A
𝜒-ordering on 𝑉 is a linear ordering ≺ on 𝑉 such that 𝑢 ≺ 𝑣 whenever 𝜒(𝑢) < 𝜒(𝑣).

A 𝜒-ordering yields an admissible ordering on monomials in the variables {𝑥𝑣,𝑖}𝑣∈𝑉(𝐺),𝑖∈[𝑘] of
Col(𝐺, 𝑘) as follows. First, order the variables in any way which satisfies that 𝑥𝑢,𝑖 ≺ 𝑥𝑣,𝑗 whenever
𝑢 ≺ 𝑣, for all 𝑖 and 𝑗. Then, order the monomials first by degree and then lexicographically
according to this variable ordering.

We conclude with two basic facts that are frequently used in the rest of the paper.

Observation 3.5. If 𝐺 is 𝜒-ordered by a colouring 𝜒 : 𝑉 → [𝑐], the length of any decreasing or increasing
path in 𝐺 is bounded by 𝑐 − 1. If, moreover, 𝐺 has maximum degree 𝑑, then for any 𝑈 ⊆ 𝑉 it holds that
|Desc(𝑈)| ≤ 𝑐𝑑𝑐−1 |𝑈 |.

3.2 Proof Overview

Recall from Section 1.2 that we define an 𝑅-operator on monomials 𝑚 as reduction modulo 𝐼𝑚 ,
where 𝐼𝑚 is an ideal generated by a set of axioms that are “highly relevant” to 𝑚. The goal is
to satisfy properties 1-3 in Lemma 2.4, which typically requires two technical lemmas with this
approach. We call the first of these the size lemma, which says that 𝐼𝑚 is not too large (under some
semantic measure) compared to the degree of 𝑚. We call the other the reduction lemma, which says
that for every ideal 𝐼 that contains 𝐼𝑚 and is not too large under the same measure, it holds that
𝑅𝐼𝑚 (𝑚) = 𝑅𝐼(𝑚). Proving these lemmas is the technical bulk of the lower bound proof.

In [RT22], the notions of closure and 𝜒-ordering are used to define 𝐼𝑚 for each monomial 𝑚,
and both the size lemma and reduction lemma are proved using locally tree-like properties of the
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underlying graph. For our lower bound for 4-colouring on random regular graphs (Theorem 4.1),
we use the same closure construction as in [RT22] but we can not prove the size lemma and reduction
lemma in the same way. Instead, we use sparsity properties of random regular graphs. For the
improvement to 3-colouring on random regular graphs (Theorem 5.1), we need to strengthen the
closure construction (Definition 5.2) and use a more refined argument based on graph contraction in
the proof of the reduction lemma (Lemma 5.4). Finally, to establish the analogous lower bound for
Erdős-Rényi random graphs (Theorem 6.1), the presence of vertices with high degree requires us to
use a different closure (Definition 6.3). Proving the size lemma on the Erdős-Rényi graph requires
additional concentration properties of random graphs (for which in particular we need to use more
than the usual Chernoff-Hoeffding bounds) together with a labelling argument (Claim 6.5).

4 Lower Bounds for 4-colourability on Random Regular Graphs

In this section we prove Theorem 4.1. In Section 5 we improve the result to 𝑘 ≥ 3, but the proof of
Theorem 4.1 already contains the main steps and is more intuitive. Therefore, we present a full
proof here and describe the necessary technical changes in Section 5.

Theorem 4.1. Let 𝐺 be a graph sampled from G𝑛,𝑑. Then, for any 𝑘 ≥ 4, asymptotically almost surely every
polynomial calculus refutation of Col(𝐺, 𝑘) requires degree 2−O(𝑑) · 𝑛.

For constant 𝑑, Theorem 4.1 together with the size-degree relation mentioned in Section 2.1
implies polynomial calculus size lower bounds for Col(𝐺, 𝑘) of the form expΩ

(
𝑛
)
. The constant

term in the exponent in Theorem 4.1 can be taken to be 350.
We prove Theorem 4.1 by a series of lemmas. We write F(𝐺, 𝑘) for F[𝑥𝑣,𝑖 | 𝑣 ∈ 𝑉(𝐺), 𝑖 ∈ [𝑘]]

modulo the Boolean axioms on the variables. In what follows, all monomials are assumed to be
in F(𝐺, 𝑘), so in particular they are multilinear. For a subset 𝑈 ⊆ 𝑉 , we define 𝐼𝑈 to be the ideal
generated by the polynomials in Col(𝐺[𝑈], 𝑘).

Definition 4.2 (Monomial closure). Let 𝑚 be a monomial, and let 𝑈𝑚 ⊆ 𝑉 be the set of vertices
mentioned by variables in 𝑚. The closure of 𝑚, denoted by Cl(𝑚), is defined to be Cl(𝑈𝑚).

Fix a 𝜒-ordering and an admissible ordering induced by 𝜒 on monomials. We define 𝑅 as
𝑅(𝑚) = 𝑅𝐼Cl(𝑚)(𝑚), extended linearly to arbitrary polynomials in F(𝐺, 𝑘). To verify items 1-3 in
Lemma 2.4 we need some facts about the closure of a monomial 𝑚. The first such fact is that
the closure is not too large compared to the degree of 𝑚 if the closure is taken with respect to a
𝜒-ordering on 𝐺 when 𝐺 is sparse.

Lemma 4.3 (Size lemma). Let 𝐺 = (𝑉, 𝐸) be a graph on 𝑛 vertices with maximal degree 𝑑 and chromatic
number 𝑐 ≥ 4, and suppose 𝐺 is (ℓ , �)-sparse with � = 1/(4𝑐). Moreover, suppose 𝐺 is 𝜒-ordered by
𝜒 : 𝑉 → [𝑐]. Let 𝑈 ⊆ 𝑉 have size 𝐷 ≤ ℓ/20𝑐. Then it holds that |Cl(𝑈)| ≤ 20𝑐𝑑𝑐𝐷.

Proof. Let (𝐻0 = Desc(𝑈), 𝐻1 , . . . , 𝐻end = Cl(𝑈)) be a sequence that defines Cl(𝑈) through the
iterative process in Definition 3.2. For each 𝐻𝑖 we will define a set 𝑆𝑖 ⊆ 𝑉 such that 𝐻𝑖 = Desc(𝑆𝑖).
We will then use the fact that 𝐺 is sparse to argue that the subgraph of 𝐺 induced by 𝑆𝑖 becomes
too dense to exist in 𝐺 after a bounded number of rounds. We use this fact to argue that 𝐻end is the
descendant graph of a set that is not too large, from where the result follows by Observation 3.5.

We set 𝑆0 = 𝑈 . Let 𝑄𝑖 be the hop added to 𝐻𝑖−1 at round 𝑖, and let 𝑢, 𝑣 denote the endpoints of
𝑄𝑖 (possibly, 𝑢 = 𝑣). Define 𝑆𝑖 from 𝑆𝑖−1 as follows: Let 𝑃𝑢 and 𝑃𝑣 be two shortest decreasing paths
from 𝑆𝑖−1 to 𝑢 and 𝑣 respectively, and set 𝑆𝑖 = 𝑆𝑖−1 ∪𝑉(𝑃𝑢 ∪ 𝑃𝑣 ∪𝑄𝑖).
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Claim 4.4. 𝑆𝑖 is well-defined.

Proof. We need to show that for every vertex 𝑣 in 𝐻𝑖 , there exists a decreasing path from 𝑆𝑖 to 𝑣.
The proof of this fact is by induction, where the base case 𝑖 = 1 follows by the definition of 𝐻0 and
𝑆0. For the induction step, suppose the claim holds for 𝑖 − 1. By definition, the vertices in 𝐻𝑖 which
are not in 𝐻𝑖−1 are descendants of a vertex in 𝑄𝑖 , and all vertices of 𝑄𝑖 are contained in 𝑆𝑖 . □

Claim 4.5. The number of vertices in 𝑆𝑖 \ 𝑆𝑖−1 is at most 2𝑐 + |𝑉(𝑄𝑖)| − 4, and |𝐸(𝑆𝑖)| ≥ |𝐸(𝑆𝑖−1)| +
|𝑆𝑖 \ 𝑆𝑖−1 | + 1.

Proof. By Observation 3.5, 𝑃𝑢 and 𝑃𝑣 contain at most 𝑐 vertices each. Denote the graph 𝑃𝑢 ∪ 𝑃𝑣 ∪𝑄𝑖

by 𝐹. Note that 𝐹 is connected and 3 ≤ |𝑉(𝐹)| ≤ 2𝑐 + |𝑉(𝑄𝑖)| − 2. Moreover, the endpoints of 𝐹 are
contained in 𝑆𝑖−1 and all other vertices in 𝐹 are outside of 𝑆𝑖−1. By our choice of 𝑃𝑢 and 𝑃𝑣 there are
two cases, depending on whether the endpoints of 𝐹 are distinct or not.

Case 1: If |𝑉(𝐹)∩𝑆𝑖−1 | = 2, the number of vertices in 𝑆𝑖 \𝑆𝑖−𝑖 is |𝑉(𝐹)|−2, while |𝐸(𝐹)| ≥ |𝑉(𝐹)|−1
since 𝐹 is connected.

Case 2: If |𝑉(𝐹) ∩ 𝑆𝑖−1 | = 1, 𝐹 contains a cycle. In this case |𝑆𝑖 \ 𝑆𝑖−𝑖 | = |𝑉(𝐹)| − 1 while
|𝐸(𝐹)| ≥ |𝑉(𝐹)|. Moreover, in this case |𝑉(𝐹)| ≤ 2𝑐 + |𝑉(𝑄𝑖)| − 3.

In both cases, |𝑆𝑖 \ 𝑆𝑖−𝑖 | ≤ 2𝑐 + |𝑉(𝑄𝑖)| − 4 and |𝐸(𝑆𝑖)| ≥ |𝐸(𝑆𝑖−1)| + |𝑆𝑖 \ 𝑆𝑖−1 | + 1, and the claim
follows. □

Now we can prove our upper bound on 𝑖. By Claim 4.5 it follows that

|𝐸(𝑆4𝐷+1)|
|𝑆4𝐷+1 |

=
|𝐸(𝑈)| +∑4𝐷

𝑖=1 |𝐸(𝑆𝑖+1) \ 𝐸(𝑆𝑖)|
|𝑈 | +∑4𝐷

𝑖=1 |𝑆𝑖+1 \ 𝑆𝑖 |
≥

|𝐸(𝑈)| +∑4𝐷
𝑖=1 (|𝑆𝑖+1 \ 𝑆𝑖 | + 1)

|𝑈 | +∑4𝐷
𝑖=1 |𝑆𝑖+1 \ 𝑆𝑖 |

> 1 + 1
4𝑐 , (4.1)

which contradicts that 𝐺 is (ℓ , 1/(4𝑐))-sparse since |𝑆4𝐷+1 | < 15𝑐𝐷 < ℓ . Therefore, the number of
rounds in the construction of Cl(𝑈) is bounded by 4𝐷.

At round 𝑖 in the construction, 𝐻i is the descendant graph of 𝑈 ∪⋃
𝑗≤𝑖 𝑉(𝑄𝑖). In every round 𝑖,

the hop 𝑄𝑖 added to 𝑉(𝐻𝑖−1) contains at most 2 vertices not already in 𝐻𝑖 , so a rather loose upper
bound on |𝑈 ∪⋃

𝑗≤𝑖 𝑉(𝑄𝑖)| in the last round, where 𝑖 ≤ 4𝐷 as we showed, is 20𝐷. (We want this
bound to be loose in order for the same estimate to apply for a modified closure which we define in
Section 5.) With this estimate in place, it follows from Observation 3.5 that |Cl(𝑈)| ≤ 20𝑐𝑑𝑐𝐷, as
desired.

□

The next lemma informally states that there is no difference between reducing a monomial 𝑚
modulo 𝐼Cl(𝑚) and reducing modulo a slightly larger ideal.

Lemma 4.6 (Reduction lemma). Let 𝐺 = (𝑉, 𝐸) be a graph on 𝑛 vertices with chromatic number 𝑐 ≥ 4,
and suppose 𝐺 is (ℓ , �)-sparse with � = 1/(4𝑐). Let 𝑚 be a monomial with closure Cl(𝑚). Then, for any
𝑈 ⊆ 𝑉 such that |𝑈 | ≤ ℓ and Cl(𝑚) ⊆ 𝑈 , it holds that 𝑚 is reducible modulo 𝐼𝑈 if and only if 𝑚 is reducible
modulo 𝐼Cl(𝑚).

Proof. One direction is immediate. For the other, we want to prove that if 𝑚 is the leading term of a
polynomial in 𝐼𝑈 , it is also the leading term of a polynomial in 𝐼Cl(𝑚). For brevity, we write Cl(𝑚)
for Cl(𝑚) from now on. The generators of 𝐼𝑈 are the 𝑘-colourability axioms restricted to 𝑈 . We
partition these axioms into three sets: 𝐴1 is the axioms on 𝐽; 𝐴2 is the axioms on 𝑈 \ (𝐽 ∪ 𝑁𝑈\𝐽(𝐽));
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and 𝐴3 contains the rest, which is the union of the edge axioms on 𝐸(𝐽 ∪ 𝑁𝑈\𝐽(𝐽), 𝑈 \ 𝐽) and the
vertex axioms on 𝑁𝑈\𝐽(𝐽). Consider a polynomial 𝑓 in 𝐼𝑈 with leading term 𝑚. Then we can write

𝑓 =
∑
𝑎1∈𝐴1

𝑎1𝑝𝑎 +
∑
𝑎2∈𝐴2

𝑎2𝑝𝑎2 +
∑
𝑎3∈𝐴3

𝑎3𝑝𝑎3 , (4.2)

where each 𝑝𝑎1 , 𝑝𝑎2 , 𝑝𝑎3 is some polynomial in F(𝐺, 𝑘). Note that 𝐺 is (ℓ , 1/(4𝑐))-sparse and |𝑈 \𝐽 | ≤ ℓ ,
so it follows by Lemma 2.2 that 𝑈 \ 𝐽 is 3-colourable. Take any 3-colouring witnessing this fact and
assign it to the variables in 𝑈 \ (𝐽 ∪ 𝑁𝑈\𝐽(𝐽)). This results in a 3-colouring of 𝑈 \ (𝐽 ∪ 𝑁𝑈\𝐽(𝐽)) for
which at most 2 colours are used for the neighbours in 𝑈 of any vertex in 𝑁𝑈\𝐽(𝐽), since we started
with a colouring of 𝑈 \ 𝐽. Write 𝜌 for the corresponding assignment to the variables. We have that

𝑓↾𝜌 =
∑
𝑎∈𝐴1

𝑎 · 𝑝𝑎↾𝜌 +
∑
𝑎′′∈𝐴3

𝑎′′↾𝜌 · 𝑝𝑎′′↾𝜌 , (4.3)

where the middle term in (4.2) has disappeared since we assigned a 3-colouring to 𝑈 \ (𝐽 ∪𝑁𝑈\𝐽(𝐽)),
and moreover all of the axioms in 𝐴1 are untouched. Note that 𝑚 is still the leading term of 𝑓↾𝜌
since we did not assign any of its variables and the order of any other terms in 𝑓 can only decrease
after a restriction.

What remains is to transform 𝑓↾𝜌 into a polynomial in 𝐼𝐽 while retaining 𝑚 as its leading term.
Note that there are no 3-hops with respect to 𝐽 by definition, so the vertices in 𝑁𝑈\𝐽(𝐽) form an
independent set in 𝑈 . Hence, we can write the axioms 𝑎′′ in 𝐴3 before applying 𝜌 as

𝑘∑
𝑖=1

𝑥𝑣,𝑖 − 1 , 𝑣 ∈ 𝑁𝑈\𝐽(𝐽) (4.4a)

𝑥𝑢,𝑖𝑥𝑣,𝑖 , 𝑖 ∈ [𝑘], (𝑢, 𝑣) ∈ 𝐸(𝐽 , 𝑁𝑈\𝐽(𝐽)) (4.4b)
𝑥𝑢,𝑖𝑥𝑣,𝑖 , 𝑖 ∈ [𝑘], (𝑢, 𝑣) ∈ 𝐸

(
𝑈 \ (𝐽 ∪ 𝑁𝑈\𝐽(𝐽)), 𝑁𝑈\𝐽(𝐽)

)
(4.4c)

𝑥𝑣,𝑖𝑥𝑣,𝑖′ , 𝑣 ∈ 𝑁𝑈\𝐽(𝐽) , 𝑖 ≠ 𝑖′ (4.4d)

After applying 𝜌, at most two colours are made unavailable to each 𝑣 in 𝑁𝑈\𝐽(𝐽) since we started
with a 3-colouring to 𝑈 \ 𝐽. For simplicity, suppose exactly two colours are made unavailable for
each 𝑣 in 𝑁𝑈\𝐽(𝐽) (the argument is easily extended to the other cases). Fix one such 𝑣, and suppose
without loss of generality that the unavailable colours for 𝑣 are 1 and 2. Then further set 𝑥𝑣,1 and
𝑥𝑣,2 to 0, which makes the axioms in (4.4c) that mention 𝑣 vanish. Since there are no 2-hops with
respect to 𝐽, there is a unique 𝑢 in 𝐽 for each 𝑣 in 𝑁𝑈\𝐽(𝐽) \ 𝐽 in (4.4b). Therefore, after applying the
restrictions, the axioms that mention 𝑣 become

𝑘∑
𝑖=3

𝑥𝑣,𝑖 − 1; 𝑥𝑢,𝑖𝑥𝑣,𝑖 , 𝑖 ∈ [3, 𝑘], {𝑢} = 𝑁𝐽({𝑣}); 𝑥𝑣,𝑖𝑥𝑣,𝑖′ , 𝑖 ≠ 𝑖′ and 𝑖 , 𝑖′ ≠ {1, 2}. (4.5)

We now apply the degree-1 substitution

𝑥𝑣,3 ↦→ 𝑥𝑢,4; 𝑥𝑣,4 ↦→
∑

1≤𝑖≤𝑘,𝑖≠4
𝑥𝑢,𝑖 ; 𝑥𝑣,𝑖 ↦→ 0 , 𝑖 > 4 (4.6)

to 𝑓 that turns each axiom in (4.5) into a linear combination of the axioms in 𝐽. (Note that it is here
we use that 𝑘 ≥ 4 so that at least 2 colours are still available for 𝑣.) To see this, note that the axioms
in (4.4a) on 𝑣 turn into the vertex axioms on 𝑢, and the axioms (4.4b) and (4.4c) on 𝑣 turn into sums

11
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of the corresponding axioms on 𝑢. Therefore, applying the analogous procedure in turn for all 𝑣 in
𝑁𝑈\𝐽(𝐽) turns 𝑓↾𝜌 into a polynomial 𝑓 ∗ in 𝐼𝐽 .

It remains to argue that 𝑚 is the leading term of 𝑓 ∗. To see this, we note that since 𝐽 is
downward-closed, it must be the case that 𝑢 ≺ 𝑣 in the ordering on 𝐺, and so each monomial in 𝑓

affected by the substitution decreases in the induced order on F(𝐺, 𝑘). Therefore, since 𝑚 was the
leading term before the substitution and no variable in 𝑚 was substituted, it follows that 𝑚 is the
leading term of 𝑓 ∗. □

Proof of Theorem 4.1. We assume that 𝐺 has the following two properties, which hold asymptotically
almost surely: 𝜒(𝐺) ≤ 2𝑑/log 𝑑 (Lemma 2.3) and 𝐺 is (2−300𝑑𝑛, 1/(4𝜒(𝐺)))-sparse (Lemma 2.1). Let
𝜒 : 𝑉 → [𝑐] be a colouring of 𝐺, where 𝑐 is the chromatic number of 𝐺, and 𝜒-order 𝐺 according to
this colouring. Recall that 𝑅(𝑚) = 𝑅𝐼Cl(𝑚) . Fix a parameter 𝐷 = 2−300𝑑𝑛/(20𝑐𝑑𝑐). We need to verify
that items 1-3 in Lemma 2.4 hold for 𝑅 with this choice of 𝐷.

That 𝑅(1) = 1 is for free since the closure of a constant polynomial is empty by definition. To
show that 𝑅(𝑝) = 0 for each 𝑝 in the axioms, let 𝑚𝑝 be the product of the variables mentioned by 𝑝.
Note that Deg(𝑚𝑝) ≤ 𝑘, so by Lemma 4.3 we have that |Cl(𝑚𝑝)| ≤ 20𝑐2𝑑𝑐𝑘 < ℓ . Therefore, for each
axiom 𝑝 =

∑
𝑗 𝑏 𝑗𝑚 𝑗 we have the sequence of equalities

𝑅(𝑝) =
∑
𝑗

𝑏 𝑗𝑅(𝑚 𝑗) (4.7a)

=
∑
𝑗

𝑏 𝑗𝑅𝐼Cl(𝑚𝑗 )
(𝑚 𝑗) [By definition] (4.7b)

=
∑
𝑗

𝑏 𝑗𝑅𝐼Cl(𝑚𝑝 )(𝑚 𝑗) [By Lemma 3.3 and Lemma 4.6] (4.7c)

= 𝑅𝐼Cl(𝑚𝑝 )

(∑
𝑗

𝑏 𝑗𝑚 𝑗

)
[By the linearity of 𝑅] (4.7d)

= 𝑅𝐼Cl(𝑚𝑝 )(𝑝) [By definition] (4.7e)

= 0 ,

where the last line follows since 𝑝 is an element of 𝐼Cl(𝑚𝑝).
Finally, we need to show that for every term 𝑡 of degree at most 𝐷 − 1 and every variable 𝑥, it

holds that 𝑅(𝑥𝑡) = 𝑅(𝑥𝑅(𝑡)). This follows by a similar sequence of equalities as above, with one
subtle step that we record as a separate claim.

Claim 4.7. If 𝑡 is a term of degree at most 𝐷 − 1, it holds that∑
𝑡′∈𝑅(𝑡)

𝑅𝐼Cl(𝑥𝑡′)(𝑥𝑡′) =
∑

𝑡′∈𝑅(𝑡)
𝑅𝐼Cl(𝑥𝑡)(𝑥𝑡′) (4.8)

Proof. Our choice of 𝐷 and Lemma 4.3 together imply that |Cl(𝑥𝑡)| ≤ 20𝑐𝑑𝑐𝐷 < ℓ . Therefore, if we
can show that also Cl(𝑥𝑡′) ⊆ Cl(𝑥𝑡) for each term 𝑡′ in 𝑅(𝑡), we can apply Lemma 4.6, from where
the claim follows immediately. To this end, consider a term 𝑡′ in 𝑅(𝑡). Note that 𝑈𝑡′ ⊆ Cl(𝑡) and
that 𝑈𝑥𝑡′ = 𝑈𝑥 ∪𝑈𝑡′. Clearly 𝑈𝑥 ⊆ Cl(𝑥𝑡), and by monotonicity of the closure, also Cl(𝑡) ⊆ Cl(𝑥𝑡).
Therefore, 𝑈𝑥 ∪𝑈𝑡′ ⊆ Cl(𝑥𝑡). Again by monotonicity, Cl(𝑥𝑡′) = Cl(𝑈𝑥 ∪𝑈𝑡′) ⊆ Cl(Cl(𝑥𝑡)). Finally,
by idempotence of the closure it holds that Cl(Cl(𝑥𝑡)) = Cl(𝑥𝑡). The claim follows. □
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The sequence of equalities

𝑅(𝑥𝑅(𝑡)) =
∑

𝑡′∈𝑅(𝑡)
𝑅(𝑥𝑡′) (4.9a)

=
∑

𝑡′∈𝑅(𝑡)
𝑅𝐼Cl(𝑥𝑡′)(𝑥𝑡′) [By definition] (4.9b)

=
∑

𝑡′∈𝑅(𝑡)
𝑅𝐼Cl(𝑥𝑡)(𝑥𝑡′) [By Claim 4.7] (4.9c)

= 𝑅𝐼Cl(𝑥𝑡)

( ∑
𝑡′∈𝑅(𝑡)

𝑥𝑡′
)

[By the linearity of 𝑅] (4.9d)

= 𝑅𝐼Cl(𝑥𝑡)(𝑥𝑅𝐼Cl(𝑡)(𝑡)) [By the definition of 𝑡′] (4.9e)
= 𝑅𝐼Cl(𝑥𝑡)(𝑥𝑡) [Since 𝑅𝐼2(𝑥𝑅𝐼1(𝑡)) = 𝑅𝐼2(𝑥𝑡) if 𝐼1 ⊆ 𝐼2] (4.9f)
= 𝑅(𝑥𝑡),

together with our parameter choice 𝐷 = 2−300𝑑𝑛/(20𝑐𝑑𝑐) > 2−350𝑑𝑛 concludes the proof. □

5 Improvement to 3-colourability

In this section we improve our lower bound for 4-colourability (Theorem 4.1) to a lower bound for
3-colourability.

Theorem 5.1. Let 𝐺 = (𝑉, 𝐸) be a graph sampled from G𝑛,𝑑. Then, for any 𝑘 ≥ 3, asymptotically almost
surely every polynomial calculus refutation of Col(𝐺, 𝑘) requires degree 2−O(𝑑 log 𝑑) · 𝑛.

As in Section 4, if we set 𝑑 to be any constant, our results imply polynomial calculus size
lower bounds for refuting Col(𝐺, 𝑘) of the form expΩ

(
𝑛
)
. The constant term in the exponent in

Theorem 5.1 can be again be taken to be 350.
Asymptotically almost surely, 𝜒(𝐺) ≤ 2𝑑/log 𝑑 (Lemma 2.3) and 𝐺 is (2−300𝑑 log 𝑑𝑛, 1/(4(𝑑 + 1)))-

sparse (Lemma 2.1). We prove Theorem 5.1 assuming these properties. We need to apply Lemma 2.2
in a more refined way in Lemma 4.6. This is enabled by a slightly extended notion of closure which
in addition to the usual 𝑏-hops also involves 𝑏-lassos, which is a 𝑏-hop where the first and last edges
coincide.

Definition 5.2 (Strong closure). Let 𝐺 = (𝑉, 𝐸) be a graph and let 𝑈 ⊆ 𝑉 . Let 𝐻1 be the descendant
graph of 𝑈 . While there exists a 𝑏-hop for 𝑏 = 2, 3, 4, 5, a 5-lasso, or a 6-lasso, say 𝑄, with respect to
𝐻𝑖 , define 𝐻𝑖+1 = Desc(𝑉(𝐻𝑖) ∪ 𝑉(𝑄)). If there are no 𝑏-hops or {5, 6}-lassos with respect to 𝐻𝑖 ,
stop and set 𝐻𝑖 = 𝐻end. The strong closure of 𝑈 , denoted by Cl∗(𝑈), is defined to be 𝐻end.

It should be noted that the arguments in this section can be made to work while only including
{2, 3, 4}-hops and 5-lassos in the strong closure. The additional hops and lassos that we include
make the arguments cleaner and does not worsen the lower bound in any significant way.

Using the same remark as in the proof of Lemma 3.3, which holds also when including {5, 6}-
lassos, it is not hard to check that the strong closure is well-defined and has the properties in
Lemma 3.3. It suffices to prove the analogues of the size lemma and reduction lemma for the strong
closure; they are Lemma 5.3 and Lemma 5.4 respectively. The rest of the proof is entirely analogous
to the proof of Theorem 4.1.

13
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Lemma 5.3 (Size lemma). Let 𝐺 = (𝑉, 𝐸) be a graph on 𝑛 vertices with maximum degree 𝑑 and chromatic
number 𝑐, and suppose 𝐺 is (ℓ , �′)-sparse, where �′ = 1/4(𝑑 + 1). Moreover, suppose 𝐺 is 𝜒-ordered by
𝜒 : 𝑉 → [𝑐]. Let 𝑈 ⊆ 𝑉 have size 𝐷 ≤ ℓ/20𝑑. Then it holds that |Cl∗(𝑈)| ≤ 20𝑐𝑑𝑐+1𝐷.

Proof sketch. The proof of Lemma 4.3 can be applied almost verbatim; the only differences are that �
is now 1/4(𝑑+ 1) which is at most 1/(4𝑐) in any graph (we need this change for (5.2) below) and that
the number of vertices added to 𝑆𝑖 each round is now at most 2𝑐 + 2 instead of 2𝑐. Our estimates in
Lemma 4.3 are loose enough to make the proof go through with the same parameters with these
changes. □

Lemma 5.4 (Reduction lemma). Let 𝐺 = (𝑉, 𝐸) be a graph on 𝑛 vertices with maximal degree 𝑑 and
chromatic number 𝑐, and suppose 𝐺 is (ℓ , �′)-sparse, where �′ = 1/4(𝑑 + 1). Let 𝑚 be a monomial with
strong closure Cl∗(𝑚). Then, for any 𝑈 ⊆ 𝑉 such that |𝑈 | ≤ ℓ and Cl∗(𝑚) ⊆ 𝑈 , it holds that 𝑚 is reducible
modulo 𝐼𝑈 if and only if 𝑚 is reducible modulo 𝐼Cl∗(𝑚).

Proof. As in the proof of Lemma 4.6, write 𝐽 for Cl∗(𝑚) for brevity. Let {𝑣1 , . . . , 𝑣𝑡} denote the vertices
in 𝑁𝑈\𝐽(𝐽) and write 𝐴 for 𝑈 \ (𝐽 ∪ 𝑁𝑈\𝐽(𝐽)). Our goal is to colour 𝐺[𝐴] so that the neighbourhood
of each 𝑣𝑖 in 𝑁𝑈\𝐽(𝐽) is coloured with one colour instead of two as in Lemma 4.3, which makes the
substitution argument in the proof of Lemma 4.3 go through for 𝑘 ≥ 3 instead of 𝑘 ≥ 4. To this end,
write 𝑀𝑖 for 𝑁𝑈\𝐽(𝑣𝑖) \ 𝐽, for 𝑖 in [𝑡]. For 𝑖 in [𝑡], write 𝐵𝑖 for {𝑣𝑖} ∪ 𝑀𝑖 , which is then a star in 𝑈

with center 𝑣𝑖 .
Note the following property of the strong closure: since there are no {3, 4, 5}-hops or 5-lassos

with respect to 𝐽, 𝐵1 , . . . , 𝐵𝑡 are mutually disjoint and the union of 𝑀1 , . . . , 𝑀𝑡 is an independent
set in 𝐺. Moreover, since there are no 6-lassos with respect to 𝐽, any two vertices in the same set 𝑀𝑖

have no common neighbor in 𝐺 except 𝑣𝑖 . Let 𝐺′ be the graph obtained from 𝐺[𝐴] by contracting
each 𝐵𝑖 to a single vertex. By the above properties, 𝐺′ has no self-loops nor multi-edges. To 3-colour
𝐺[𝐴] so that the neighbourhood of each 𝑣𝑖 has the same colour, it suffices to 3-colour 𝐺′ since
we can then expand 𝐺′ back to 𝐺[𝐴] and use the same colour for all vertices in 𝑀𝑖 , again by the
above. To see that 𝐺′ is 3-colourable it suffices to show that 𝐺′ is (|𝐺′ |, 𝛿)-sparse for some 𝛿 < 1/2
by Lemma 2.2. To this end, fix any 𝑇′ ⊆ 𝑉(𝐺′). We estimate |𝐸[𝑇′]| in terms of |𝐸[𝑇]|, where 𝑇 is
the preimage of 𝑇′ in the contraction. Suppose the number of 𝐵𝑖’s in 𝑇 is 𝑗. Then 𝑗 ≤ |𝑇′ |. Write 𝑠

for
∑𝑗

𝑖=1(|𝐵𝑖 | − 1). Then we have that

𝑠 ≤ (𝑑 − 1)𝑗 ≤ (𝑑 − 1)|𝑇′ |, (5.1)

and moreover, |𝑇 | = |𝑇′ | + 𝑠 and |𝐸(𝑇)| = |𝐸(𝑇′)| + 𝑠. The latter is due to the fact that the only edges
in 𝑇 that are contracted are those inside a star 𝐵𝑖 in 𝑇, and there are no edges between different 𝐵𝑖 ’s.
Since 𝐺 is (ℓ , 1/4(𝑑 + 1))-sparse and |𝑇 | ≤ ℓ by assumption, it follows that

|𝐸(𝑇′)| ≤ (1 + 1
4(𝑑 + 1) )|𝑇

′ | + 𝑠

4(𝑑 + 1) ≤ (1 + 1
4(𝑑 + 1) )|𝑇

′ | + (𝑑 − 1)|𝑇′ |
4(𝑑 + 1) < (1 + 1

4 )|𝑇
′ |, (5.2)

so 𝐺′ is (|𝐺′ |, 1/4)-sparse. Hence we can 3-colour 𝐺[𝐴] in the desired way. Now we note that the
absence of {2, 3}-hops allows us to apply the substitution argument in Lemma 4.6, but with 𝑘 ≥ 3
instead of 𝑘 ≥ 4 using our improved colouring. The lemma follows. □

6 Lower Bounds for 3-colourability on the Erdős-Rényi Graph

In this section we prove Theorem 6.1.

14



6 Lower Bounds for 3-colourability on the Erdős-Rényi Graph

Theorem 6.1. Let 𝐺 = (𝑉, 𝐸) be a graph sampled from G(𝑛, 𝑑/𝑛). Then, for any 𝑘 ≥ 3, asymptotically
almost surely every polynomial calculus refutation of Col(𝐺, 𝑘) requires degree 2−𝑑O(1) · 𝑛.

As in previous sections, Theorem 6.1 implies polynomial calculus size lower bounds for Col(𝐺, 𝑘)
of the form expΩ

(
𝑛
)

when 𝑑 is constant. The constant factor in the double exponent can be taken
to be 1000.

We modify the argument in Section 5 to work for G(𝑛, 𝑑/𝑛). The steps are the same as before,
but now there are vertices with superconstant degree so we cannot use the trivial descendant graph
size bound in Observation 3.5. The solution is to contain all vertices with superconstant degree in
a single “bad” set, include this set in the closure of every monomial, and reduce modulo this set
instead. To this end, given 𝐺 we fix some additional parameters:

𝑝 = 𝑑/𝑛; [The edge probability in G(𝑛, 𝑑/𝑛)] (6.1a)
𝐵 = 𝑑801; [(𝐵 + 1)𝑑 is the degree threshold for the bad set] (6.1b)
𝑊 = {𝑣 ∈ 𝑉(𝐺) | deg(𝑣) ≥ (𝐵 + 1)𝑑}; [The bad set] (6.1c)
� = 1/(4𝐵𝑑); [Sparsity parameter] (6.1d)
𝛼 = 𝑑−40/�; [Sparsity parameter] (6.1e)
𝛽 = 𝐵−𝐵𝑑/4; [We prove a 𝛽𝑛 degree lower bound] (6.1f)

We need one more graph property that holds asymptotically almost surely.

Lemma 6.2. For 𝐺 = (𝑉, 𝐸) ∼ G(𝑛, 𝑝), asymptotically almost surely the following properties hold.

1. For every 𝑆 ⊆ 𝑉 , if 𝛽𝑛 ≤ |𝑆 | ≤ 100𝛽𝑛 then |𝐸(𝑆,𝑉 \ 𝑆)| ≤ 𝐵𝑑 |𝑆 |. In particular, |𝑁𝑉\𝑆(𝑆)| ≤ 𝐵𝑑 |𝑆 |.

2. |𝑊 | ≤ 𝛽𝑛.

Proof. Let 𝒜 denote the event in item 1. Note that |𝐸(𝑆,𝑉 \ 𝑆)| is a sum of |𝑆 | · |𝑉 \ 𝑆 | independently
and identically distributed binary random variables, each with expectation 𝑝 = 𝑑/𝑛. By the union
bound and Bennett’s inequality [Ben62] (which improves Chernoff-Hoeffding in our case by a factor
of log 𝐵 in the exponent) it follows that

Pr[¬𝒜] ≤
⌈100𝛽𝑛⌉∑
𝑖=⌈𝛽𝑛⌉

(
𝑛

𝑖

)
exp

(
−
(𝐵 log 𝐵)𝑖(𝑛 − 𝑖)𝑑

2𝑛

)
(6.2a)

< 100𝛽𝑛 exp
(
𝛽

2𝑛
(
log 1

𝛽
− (𝐵 log 𝐵)(1 − 100𝛽)𝑑

))
(6.2b)

< 100𝛽𝑛 exp
(
−
𝛽𝑛𝑑𝐵

100 log 𝐵

)
(6.2c)

< exp (−Ω𝑑(𝑛)) , (6.2d)

which approaches 0 as 𝑛 → ∞. For item 2, let ℬ denote the event “𝐺 is (𝛼𝑛, �)-sparse”. Then the
event 𝒜∧ℬ also holds asymptotically almost surely, so item 2 follows if we prove that it is logically
implied by 𝒜 ∧ ℬ, or equivalently that ¬(item 2) ∧ ℬ implies ¬𝒜. To this end, suppose |𝑊 | > 𝛽𝑛.
Consider a subset 𝑇 ⊆ 𝑊 of size ⌈𝛽𝑛⌉ < 𝛼𝑛. By the definition of 𝑇 and by ℬ, it holds that

|𝐸(𝑇,𝑉 \ 𝑇)| ≥ (𝐵 + 1)𝑑 |𝑇 | − 2(1 + �)|𝑇 | > 𝐵𝑑 |𝑇 |, (6.3)

which implies ¬𝒜. □
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As before we can assume that 𝜒(𝐺) ≤ 2𝑑/log 𝑑 and 𝐺 is (𝛼𝑛, �)-sparse. From now on, we also
assume items 1 and 2 in Lemma 6.2 hold for 𝐺 and write 𝑐 for 𝜒(𝐺) for brevity. Given these
properties, fix a set 𝑇 that contains 𝑊 and has size ⌈𝛽𝑛⌉.

Definition 6.3 (Relative closure). Let 𝑈 ⊆ 𝑉 have size at most 𝛽𝑛. The relative closure of 𝑈 with
respect to 𝑇 is the strong closure of 𝑈 ∪ 𝑇, and is denoted by Cl∗𝑇(𝑈).

Of course, the properties in Lemma 3.3 hold for the relative closure as well since they hold for
the strong closure, so most of the arguments in the previous sections go through for this closure
with minor modifications. The point that needs a new argument is the size lemma for the relative
closure, where we now have to drop the maximum degree assumption on 𝐺 and hence cannot use
the trivial descendant graph size bound from Observation 3.5.

Lemma 6.4 (Size lemma). For any 𝑈 ⊆ 𝑉 of size at most 𝛽𝑛, it holds that |Cl∗𝑇(𝑈)| ≤ (2𝐵𝑑)𝑐+1𝑐 · 100𝛽𝑛.

We remark that with these parameters, for every 𝑈 such |𝑈 | ≤ 𝛽𝑛, we have that |Cl∗𝑇(𝑈)| ≤
(2𝐵𝑑)𝑐+1𝑐 · 100𝛽𝑛 < 2−(𝐵𝑑/5) log 𝐵𝑛 < 𝛼𝑛, where the last two inequalities follow from the parameter
choice, which gives 2−(𝐵𝑑/5) log 𝐵 < 2−160𝐵𝑑 log 𝑑 = 𝛼, and from the assumption that 𝑐 ≤ 2𝑑/log 𝑑,
respectively.

Proof of Lemma 6.4. Most of the proof of Lemma 4.3 goes through, but there are three differences:
First, as in Section 5 we include larger hops in the closure, but as we remarked there the estimates
are loose enough to accommodate this change. Second, we have changed the sparseness parameters
to (𝛼𝑛, �)-sparse, but since we assume 𝑐 ≤ 2𝑑/log 𝑑 we have that 1/(4𝑐) > �, so the calculation (4.1)
still applies. Third, it still holds that if |𝑈 ∪ 𝑇 | ≤ 2𝛽𝑛 < 𝛼𝑛, then the number of rounds in the
construction of Cl∗𝑇(𝑈) is at most 4|𝑈 ∪ 𝑇 |. Therefore Cl∗𝑇(𝑈) is the descendant graph of a set 𝐴
such that |𝐴| ≤ 20|𝑈 ∪ 𝑇 |. What is needed to finish the proof is an analogue of Observation 3.5,
which is the content of the next claim.

Claim 6.5. For every set 𝐴 such that 𝐴 contains 𝑇 and |𝐴| ≤ 100𝛽𝑛, it holds that Desc(𝐴) ≤
(2𝐵𝑑)𝑐+1𝑐 |𝐴|.

Proof. Let us label the vertices in Desc(𝐴) as follows: If 𝑣 ∈ 𝐴∪𝑁𝐺\𝐴(𝐴), label 𝑣 by itself; otherwise
𝑣 is in Desc(𝐴) \ (𝐴 ∪ 𝑁𝐺\𝐴(𝐴)). Then by definition there must be a vertex 𝑢 ∈ 𝑁𝐺\𝐴(𝐴) and a
decreasing path from 𝑢 to 𝑣 such that the path does not intersect 𝐴 (nor 𝑇 since 𝑇 ⊆ 𝐴). In this case,
label 𝑣 by the decreasing path 𝑃𝑢𝑣 . Note that 𝑃𝑢𝑣 has length at most 𝑐−1, and moreover every vertex
on 𝑃𝑢,𝑣 has degree at most (𝐵+ 1)𝑑. The number of such paths is then at most |𝑁(𝐴)| · 𝑐((𝐵+ 1)𝑑)𝑐−1.
Clearly every vertex in Desc(𝐴) gets a unique label, and the total number of labels is at most

|𝐴| + |𝑁𝐺\𝐴(𝐴)| + |𝑁𝐺\𝐴(𝐴)| · 𝑐((𝐵 + 1)𝑑)𝑐−1 < (2𝐵𝑑)𝑐+1𝑐 |𝐴|, (6.4)

where we have used that |𝑁𝐺\𝐴(𝐴)| ≤ 𝐵𝑑 |𝐴| by item 1 of Lemma 6.2. □

Using Claim 6.5 instead of Observation 3.5 in the proof of Lemma 4.3 yields the size lemma for
the relative closure . □

Next, we need to establish the reduction lemma as in Section 5.

Lemma 6.6 (Reduction lemma). Let 𝐺 be as above. Let 𝑚 be a monomial with closure Cl∗𝑇(𝑚). Then, for
any 𝑈 ⊆ 𝑉 such that |𝑈 | ≤ 𝛽𝑛 and Cl∗𝑇(𝑚) ⊆ 𝑈 , it holds that 𝑚 is reducible modulo 𝐼𝑈 if and only if 𝑚 is
reducible modulo 𝐼Cl∗𝑇 (𝑚).
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Proof sketch. The proof is essentially analogous to the proof of Lemma 5.4. Our sparseness parameters
are now (𝛼𝑛, �). We do not have a maximum degree assumption on 𝐺, but note that by definition
the maximal degree of any vertex in 𝐺 \Cl∗𝑇(𝑚) is (𝐵+ 1)𝑑, so we can bound the star sizes by (𝐵+ 1)𝑑
and carry out the analogue of (5.1). By our parameter choice, �(𝐵 + 1)𝑑 < 1/2 so the analogue of
(5.2) also holds. Once this is done, the rest of the proof is the same as for Lemma 5.4 once we note
that Cl∗𝑇(𝑚) ≤ 𝛼𝑛 for any 𝑚 with degree at most 𝛽𝑛. □

Proof of Theorem 6.1. As described above, we can run the proof of Theorem 5.1 using Lemma 6.4 and
Lemma 6.6 for all monomials of degree at most 𝛽𝑛 using the𝑅-operator defined by𝑅(𝑚) = 𝑅Cl∗𝑇 (𝑚)(𝑚).
With this 𝑅-operator it is no longer immediate that 𝑅(1) = 1, but this follows from the fact that 𝑇 is
3-colourable by Lemma 2.2, so the 3-colouring axioms on 𝑇 are satisfiable and in particular 1 is
irreducible modulo 𝐼𝑇 . Items 2 and 3 in Lemma 2.4 go through unchanged. □

7 Concluding Remarks

In this paper, we show that polynomial calculus requires linear degree to refute that a sparse
random regular graph or Erdős-Rényi graph is 3-colourable, which is optimal up to constant factors.
This implies exponential size lower bounds for the same problem by the well-known size-degree
relation for polynomial calculus [IPS99].

It would be interesting to investigate whether our techniques can be applied to lower bounds for
colouring principles in other proof systems, where the most obvious candidates are sums-of-squares
and Sherali-Adams. On a similar note, the closure operation defined in [RT22] and extended in
this work, are not per se connected to colouring and it is therefore conceivable that it could find
applications in a wider context than colouring.

Our degree lower bounds are of the form 𝑛/ 𝑓 (𝑑), where 𝑑 is either degree or average degree
depending on the random graph model. In previous works, 𝑓 can be taken to be polynomial in 𝑑

[BCMM05, LN17], but in our results 𝑓 is exponential in 𝑑. It is not immediately clear, however, what
the correct dependency on 𝑑 should be. There are randomized algorithms based on semidefinite
programming that with high probability can distinguish between 3-colourable graphs and (log2 𝑛)-
regular random graphs [KMS94]. While the precise dependency on 𝑑 is immaterial in our setting of
sparse random graphs, it would be interesting to know if this can be improved.

A Appendix

In this section we prove a quantitative version of the folklore result in Lemma 4.15 in [Raz17], which
we previously call the Sparsity lemma. We make no claim of originality.

Theorem A.1 (Sparsity lemma). If 𝐺 = (𝑉, 𝐸) ∼ G, where G is G𝑛,𝑑 or G(𝑛, 𝑑/𝑛) and 𝑑 ≥ 3, then for
every � > 0 such that 1 + � ≤ 0.9𝑑, it holds asymptotically almost surely that 𝐺 is (𝑑−30(1+�)/�𝑛, �)-sparse.

Proof. First, we prove the theorem for G𝑛,𝑑. We sample 𝐺 from G𝑛,𝑑 in the configuration model. In
this model, for each vertex 𝑣 of 𝐺 there is a cell 𝐶𝑣 with 𝑑 elements 𝑐𝑣1 , . . . , 𝑐

𝑣
𝑑
. We sample 𝐺 from

G𝑛,𝑑 by sampling a perfect matching of ⊔𝑣𝐶𝑣 (note that this requires that 𝑑𝑛 is even) repeatedly
until we get a sample where no vertices in the same cell are matched to each other and no two
cells have more than one edge between them, which we call a good sample. Then, we collapse the
cells into vertices while retaining matched edges. The resulting graph is the sample 𝐺 ∼ G𝑛,𝑑. It is
straightforward to verify that the probability that a sample is good is 1 − o𝑛(1).
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We want to prove that 𝐺 is (𝑑−30(1+�)/�𝑛, �)-sparse except with probability o𝑛(1). To this end, fix
� > 0, and let 𝛼 be a constant smaller than 1/2𝑑 (for technical reasons), to be determined later. Let
𝒜 denote the event “𝐺 is (𝛼𝑛, �)-sparse”. By the union bound,

Pr[¬𝒜] ≤
∑

𝑈⊂𝑉,|𝑈 |≤𝛼𝑛
Pr[|𝐸(𝐺[𝑈])| ≥ (1 + �)|𝑈 |] (A.1)

and by symmetry, Pr[|𝐸(𝐺[𝑈])| ≥ (1 + �)|𝑈 |] depends only on |𝑈 |.
Fix a set 𝑈 of size 𝑠 ≤ 𝛼𝑛 and let 𝑆𝑑𝑠,𝑞 denote a sum of 𝑑𝑠 independently and identically

distributed Bernoulli random variables with head probability 𝑞 := 𝑠/(𝑛 − 𝑠). We want to upper
bound Pr[|𝐸(𝐺[𝑈])| ≥ (1 + �)|𝑈 |] by Pr[𝑆𝑑𝑠,𝑞 ≥ (1 + �)𝑠]. For this, we think of the elements in the
cells as being matched one at a time in the configuration model. At each step, 𝑑𝑠 is an upper bound
on the number of elements in the cell of a vertex in 𝑈 that is available to match to, and 𝑑(𝑛 − 𝑠) is a
lower bound on the total number of available elements to match to. Since at least one element of a
cell in 𝑆 is matched at each step, there are at most 𝑑𝑠 steps in total. An edge appears in 𝑈 if and
only if an element in a cell in 𝑈 is matched to another element in a cell in 𝑈 , and at each step this
happens with probability bounded by 𝑑𝑠/𝑑(𝑛 − 𝑠) = 𝑞, so indeed

Pr[|𝐸(𝐺[𝑈])| ≥ (1 + �)|𝑈 |] ≤ Pr[𝑆𝑑𝑠,𝑞 ≥ (1 + �)𝑠]. (A.2)

For 𝑎, 𝑏 in (0, 1), the KL divergence of 𝑎 and 𝑏 is 𝐷 (𝑎 ∥ 𝑏) = 𝑎 log 𝑎
𝑏
+ (1 − 𝑎) log 1−𝑎

1−𝑏 . By the Chernoff
bound,

Pr[𝑆𝑑𝑠,𝑞 ≥ (1 + �)𝑠] ≤ 2−𝐷( 1+�
𝑑

∥ 𝑞)𝑑𝑠 . (A.3)
Denote (1 + �)/𝑑 by 𝑝, and let 𝐻 be the binary entropy function. Then

𝐷 (𝑝 ∥ 𝑞) = −𝐻(𝑝) + 𝑝 log 1
𝑞
+ (1 − 𝑝) log 1

1 − 𝑞
≥ −𝐻(𝑝) + 𝑝 log 1

𝑞
. (A.4)

We estimate the RHS of (A.4). First, note that

𝐻(𝑝) = 𝑝 log 1
𝑝
+ (1 − 𝑝) log 1

1 − 𝑝
< 𝑝 log 𝑑 + log 1

1 − 𝑝
,

and by the elementary inequality ln(1/(1 − 𝑦)) ≤ 𝑦/(1 − 𝑦), we have that log 1
1−𝑝 ≤ 1

ln 2
𝑝

1−𝑝 which is
at most 15𝑝 since 1/ln 2 < 1.5 and 𝑝 = (1 + �)/𝑑 ≤ 0.9. Hence

𝐻(𝑝) < 𝑝
(
log 𝑑 + 15

)
< 15𝑝 log 𝑑. (A.5)

As for the last term in (A.4),

𝑝 log 1
𝑞
=

𝑝

𝑞

(
𝐻(𝑞) − (1 − 𝑞) log 1

1 − 𝑞

)
,

by the same elementary inequality, we have that log 1
1−𝑞 ≤ 1

ln 2
𝑞

1−𝑞 which is at most 2𝑞, as again
1/ln 2 < 1.5 and 𝑞 = 𝑠/(𝑛 − 𝑠) ≤ 𝛼/(1 − 𝛼) < 1/(2𝑑 − 1) ≤ 1/5. Therefore,

𝑝 log 1
𝑞
>

𝑝

𝑞
𝐻(𝑞) − 2𝑝(1 − 𝑞). (A.6)

Gathering terms in (A.4), (A.5), (A.6), we arrive at the bound

𝐷 (𝑝 ∥ 𝑞) 𝑑𝑠 >
(
−15𝑝 log 𝑑 +

𝑝

𝑞
𝐻(𝑞) − 2𝑝(1 − 𝑞)

)
𝑑𝑠 >

(
𝑝

𝑞
𝐻(𝑞) − 20𝑝 log 𝑑

)
𝑑𝑠. (A.7)
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By plugging in 𝑝 = (1 + �)/𝑑 and 𝑞 = 𝑠/(𝑛 − 𝑠), it becomes

𝐷 (𝑝 ∥ 𝑞) 𝑑𝑠 > (1 + �)
(
(𝑛 − 𝑠)𝐻

( 𝑠

𝑛 − 𝑠

)
− 20𝑠 log 𝑑

)
> (1 + �)

(
(1 − 𝛼)𝐻( 𝑠

𝑛
) − 20𝑠

𝑛
log 𝑑

)
𝑛 (A.8)

where the last step is because 𝑠/𝑛 ≤ 𝛼 and 𝐻(𝑠/(𝑛 − 𝑠)) > 𝐻(𝑠/𝑛) whenever 1/2 > 𝑠/(𝑛 − 𝑠). Now
we impose the condition 𝛼 ≤ 0.1�(1 + �), which implies that (1 + �)(1 − 𝛼) ≥ 1 + 0.9�. Hence

(1 + �)
(
(1 − 𝛼)𝐻

( 𝑠
𝑛

)
− 20𝑠

𝑛
log 𝑑

)
𝑛 ≥

(
(1 + 0.9�)𝐻

( 𝑠
𝑛

)
− 20(1 + �)𝑠

𝑛
log 𝑑

)
𝑛. (A.9)

Altogether, we have that

Pr[¬𝒜] ≤
∑

𝑈⊂𝑉,|𝑈 |≤𝛼𝑛
Pr[|𝐸(𝐺[𝑈])| ≥ (1 + �)|𝑈 |] (A.10a)

≤
𝛼𝑛∑
𝑠=1

(
𝑛

𝑠

)
2−𝐷( 1+�

𝑑
∥ 𝑠
𝑛−𝑠 )𝑑𝑠 (A.10b)

≤
𝛼𝑛∑
𝑠=1

(
𝑛

𝑠

)
2−

(
(1+0.9�)𝐻( 𝑠

𝑛 )− 20(1+�)𝑠
𝑛 log 𝑑

)
𝑛
, (A.10c)

and from the estimate
(𝑛
𝑠

)
≤ 2𝑛𝐻(𝑠/𝑛) it follows that(

𝑛

𝑠

)
2−

(
(1+0.9�)𝐻( 𝑠

𝑛 )− 20(1+�)𝑠
𝑛 𝑑 log 𝑑

)
𝑛 ≤ 2−

(
0.9�𝐻( 𝑠

𝑛 )− 20(1+�)𝑠
𝑛 log 𝑑

)
𝑛
. (A.11)

We want to set 𝛼 so that 20(1+�)𝑠
𝑛 log 𝑑 < 0.8�𝐻

(
𝑠
𝑛

)
. For this, note that 𝐻

(
𝑠
𝑛

)
> 𝑠

𝑛 log 𝑛
𝑠 , so

0.8�𝐻
( 𝑠
𝑛

)
− 20(1 + �)𝑠

𝑛
log 𝑑 > 0.8� 𝑠

𝑛
log 𝑛

𝑠
− 20(1 + �)𝑠

𝑛
log 𝑑

≥ 𝑠

𝑛

(
0.8� log 1

𝛼
− 20(1 + �) log 𝑑

)
(A.12)

and thus choosing 𝛼 = 𝑑−30(1+�)/� ensures that (A.12) is positive. Whenever 𝑑 ≥ 3, clearly also
𝑑−30(1+�)/� ≤ 0.1�(1 + �) as required. With this choice of 𝛼 it follows that

Pr[¬𝒜] <
𝛼𝑛∑
𝑠=1

2−0.1�𝑛𝐻( 𝑠
𝑛 ) , (A.13)

and what is needed to finish the proof is a simple analysis of the growth rate of the terms. The first
term is 2−0.1�𝑛𝐻(1/𝑛) < 2−0.1� log 𝑛 = 𝑛−0.1�, and 𝐻(𝑠/𝑛 + 1/𝑛) > 𝐻(𝑠/𝑛) + 1/𝑛 when say 𝑠+1

𝑛 < 1
3 , so

Pr[¬𝒜] ≤
𝛼𝑛∑
𝑠=1

(
2−0.1�

)𝑛𝐻( 𝑠
𝑛 )

<
𝛼𝑛∑
𝑠=1

(
2−0.1�

) log 𝑛+𝑠−1
<

𝑛−0.1�

1 − 2−0.1� = o𝑛(1), (A.14)

which concludes the proof when 𝐺 ∼ G𝑛,𝑑.
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Next, we turn to the case where 𝐺 ∼ G(𝑛, 𝑑/𝑛). For a subset 𝑈 ⊆ 𝑉 of size 𝑠 ≤ 𝛼𝑛, the random
variable 𝐸(𝐺[𝑈]) is a sum of 𝑠(𝑠 − 1)/2 Bernoulli random variables with head probability 𝑑/𝑛.
Therefore, by the Chernoff bound

Pr[|𝐸(𝐺[𝑈])| ≥ (1 + �)|𝑈 |] = Pr[𝑆 𝑠(𝑠−1)
2 , 𝑑𝑛

≥ (1 + �)𝑠] ≤ 2−𝐷
(

2(1+�)
𝑠−1 ∥ 𝑑

𝑛

)
𝑠(𝑠−1)

2 . (A.15)

The KL divergence in the exponent is undefined when 𝑠 − 1 ≤ 2(1+ �), but we can treat it separately:
for any subset 𝑈′ of size 𝑠′, if |𝐸(𝐺[𝑈′])| ≥ (1 + �)𝑠′ then |𝐸(𝐺[𝑈′])| ≥ 𝑠′ + 1, and

Pr[|𝐸(𝐺[𝑈′])| ≥ 𝑠′ + 1] ≤
( 𝑠′(𝑠′−1)

2
𝑠′ + 1

) (
𝑑

𝑛

) 𝑠′+1
≤ O𝑑

(
1

𝑛𝑠′+1

)
(A.16)

so the sum of the failure probabilities over all 𝑈′ such that |𝑈′ | − 1 ≤ 2(1 + �) < 3𝑑 is at most∑
𝑠′<3𝑑

(𝑛
𝑠′
)
O𝑑(1/𝑛𝑠′+1) = O𝑑(1/𝑛). Henceforth, we assume 𝑠 − 1 > 2(1 + �). By definition,

𝐷

(
2(1 + �)
𝑠 − 1 ∥ 𝑑

𝑛

)
=

2(1 + �)
𝑠 − 1 log 2𝑛(1 + �)

𝑑(𝑠 − 1) +
(
1 − 2(1 + �)

𝑠 − 1

)
log

1 − 𝑑
𝑛

1 − 2(1+�)
𝑠−1

(A.17)

where the second term is nonnegative if 𝑑/𝑛 ≥ 2(1 + �)/(𝑠 − 1), ensured by letting 𝛼 < 2/𝑑. Now by
(A.15), (A.17),

Pr[𝑆𝑠(𝑠−1)/2,𝑑/𝑛 ≥ (1 + �)𝑠] ≤ 2−(1+�)
(
log 𝑛

𝑠−1+log 2(1+�)
𝑑

)
𝑠
. (A.18)

Consequently,

Pr[¬𝒜] ≤
𝛼𝑛∑
𝑠=1

(
𝑛

𝑠

)
Pr[𝑆𝑠(𝑠−1)/2,𝑑/𝑛 ≥ (1 + �)𝑠] (A.19a)

≤ O𝑑(1/𝑛) +
𝛼𝑛∑

𝑠=⌈2(1+�)+1⌉

(
𝑛

𝑠

)
2−(1+�)

(
log 𝑛

𝑠 +log 2(1+�)
𝑑

)
𝑠
. (A.19b)

Now instead of using an entropy estimate, Stirling’s approximation
(𝑛
𝑠

)
≤ (𝑒𝑛/𝑠)𝑠 = 2𝑠(log (𝑛/𝑠)+log 𝑒)

suffices for us, whereby (
𝑛

𝑠

)
2−(1+�)

(
log 𝑛

𝑠 +log 2(1+�)
𝑑

)
𝑠
< 2−𝑠(� log 𝑛

𝑠 −2(1+�) log 𝑑). (A.20)

We choose 𝛼 so that for all 𝑠 ≤ 𝛼𝑛, 0.9� log(𝑛/𝑠) > 2(1 + �) log 𝑑, and it is clear that 𝛼 = 𝑑−30(1+�)/�

suffices. Then (A.20) is upper bounded by 2−0.1�𝑠 log (𝑛/𝑠), and we only need to analyze the growth
rate of these terms. The first one is bounded by 𝑛−0.1�, and

(𝑠 + 1) log 𝑛

𝑠 + 1 − 𝑠 log 𝑛

𝑠
= log

[ 𝑛

𝑠 + 1

( 𝑠

𝑠 + 1

) 𝑠 ]
≥ log 𝑛

(𝑠 + 1)𝑒 ≥ 1.

Therefore,

Pr[¬𝒜] ≤ O𝑑(1/𝑛) + 𝑛−0.1� ·
𝛼𝑛∑

𝑠=⌈2(1+�)+1⌉
2−0.1�(𝑠−1) = o𝑛(1) (A.21)

and the proof is complete. □

20



References

Acknowledgements

The authors would like to thank Gaia Carenini for helpful discussions during the course of this
work.

Part of this work was carried out while taking part in the semester programs Meta-Complexity
and Satisfiability: Extended Reunion in the spring of 2023 at the Simons Institute for the Theory of
Computing at UC Berkeley.

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

References

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson.
Space complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211,
April 2002. Preliminary version in STOC ’00.

[AH19] Albert Atserias and Tuomas Hakoniemi. Size-degree trade-offs for Sums-of-Squares
and Positivstellensatz proofs. In Proceedings of the 34th Annual Computational Complexity
Conference (CCC ’19), volume 137 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 24:1–24:20, July 2019.

[AN05] Dimitris Achlioptas and Assaf Naor. The two possible values of the chromatic number
of a random graph. Annals of Mathematics, 162(3):1335–1351, November 2005.

[AO19] Albert Atserias and Joanna Ochremiak. Proof complexity meets algebra. ACM Trans-
actions on Computational Logic, 20:1:1–1:46, February 2019. Preliminary version in
ICALP ’17.

[AR03] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial
calculus: Non-binomial case. Proceedings of the Steklov Institute of Mathematics, 242:18–35,
2003. Available at http://people.cs.uchicago.edu/~razborov/files/misha.pdf.
Preliminary version in FOCS ’01.

[AT92] Noga Alon and Michael Tarsi. Colorings and orientations of graphs. Combinatorica,
12(2):125–134, June 1992.

[Bay82] David Allen Bayer. The Division Algorithm and the Hilbert Scheme. PhD thesis, Harvard
University, Cambridge, MA, USA, June 1982. Available at https://www.math.columbia.
edu/~bayer/papers/Bayer-thesis.pdf.

[BBKO21] Libor Barto, Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to
promise constraint satisfaction. J. ACM, 68(4), jul 2021.

[BCMM05] Paul Beame, Joseph C. Culberson, David G. Mitchell, and Cristopher Moore. The
resolution complexity of random graph 𝑘-colorability. Discrete Applied Mathematics,
153(1-3):25–47, December 2005.

[BE05] Richard Beigel and David Eppstein. 3-coloring in time 𝑂(1.3289𝑛). Journal of Algorithms,
54(2):168–204, February 2005.

21

http://people.cs.uchicago.edu/~razborov/files/misha.pdf
https://www.math.columbia.edu/~bayer/papers/Bayer-thesis.pdf
https://www.math.columbia.edu/~bayer/papers/Bayer-thesis.pdf


GRAPH COLOURING IS HARD ON AVERAGE

[Ben62] George Bennett. Probability inequalities for the sum of independent random variables.
Journal of the American Statistical Association, 57(297):33–45, 1962.

[BIK+94] Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák.
Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. In Proceedings of
the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’94), pages
794–806, November 1994.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin
Biere, Marĳn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7,
pages 233–350. IOS Press, 2nd edition, February 2021.

[Bol78] Béla Bollobás. Chromatic number, girth and maximal degree. Discrete Mathematics,
24(3):311–314, 1978.

[Bus98] Samuel R. Buss. Lower bounds on Nullstellensatz proofs via designs. In Proof
Complexity and Feasible Arithmetics, volume 39 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 59–71. American Mathematical Society, 1998.
Available at http://www.math.ucsd.edu/~sbuss/ResearchWeb/designs/.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis
algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM
Symposium on Theory of Computing (STOC ’96), pages 174–183, May 1996.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44(1):36–50, March 1979. Preliminary version in
STOC ’74.

[DL95] Jesús A. De Loera. Gröbner bases and graph colorings. Beiträge zur Algebra und Geometrie,
36(1):89–96, January 1995. Available at https://www.emis.de/journals/BAG/vol.36/
no.1/.

[DLMM08] Jesús A. De Loera, Jon Lee, Peter N. Malkin, and Susan Margulies. Hilbert’s Nullstel-
lensatz and an algorithm for proving combinatorial infeasibility. In Proceedings of the
21st International Symposium on Symbolic and Algebraic Computation (ISSAC ’08), pages
197–206, July 2008.

[DLMM11] Jesús A. De Loera, Jon Lee, Peter N. Malkin, and Susan Margulies. Computing
infeasibility certificates for combinatorial problems through Hilbert’s Nullstellensatz.
Journal of Symbolic Computation, 46(11):1260–1283, November 2011.

[DLMO09] Jesús A. De Loera, Jon Lee, Susan Margulies, and Shmuel Onn. Expressing combi-
natorial problems by systems of polynomial equations and Hilbert’s Nullstellensatz.
Combinatorics, Probability and Computing, 18(4):551–582, July 2009.

[DMP+15] Jesús A. De Loera, Susan Margulies, Michael Pernpeintner, Eric Riedl, David Rolnick,
Gwen Spencer, Despina Stasi, and Jon Swenson. Graph-coloring ideals: Nullstellensatz
certificates, Gröbner bases for chordal graphs, and hardness of Gröbner bases. In
Proceedings of the 40th International Symposium on Symbolic and Algebraic Computation
(ISSAC ’15), pages 133–140, July 2015.

22

http://www.math.ucsd.edu/~sbuss/ResearchWeb/designs/
https://www.emis.de/journals/BAG/vol.36/no.1/
https://www.emis.de/journals/BAG/vol.36/no.1/


References

[Hal93] Magnús M. Halldórsson. A still better performance guarantee for approximate graph
coloring. Information Processing Letters, 45(1):19–23, January 1993.

[Hus15] Thore Husfeldt. Graph colouring algorithms. In Lowell W. Beineke and Robin J.
Wilson, editors, Topics in Chromatic Graph Theory, Encyclopedia of Mathematics and its
Applications, chapter 13, pages 277–303. Cambridge University Press, May 2015.

[HW08] Christopher J. Hillar and Troels Windfeldt. Algebraic characterization of uniquely
vertex colorable graphs. Journal of Combinatorial Theory, Series B, 98(2):400–414, March
2008.

[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jiří Sgall. Lower bounds for the polynomial
calculus and the Gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Springer, 1972.

[KM21] Pravesh K. Kothari and Peter Manohar. A stress-free sum-of-squares lower bound for
coloring. In Proceedings of the 36th Annual IEEE Conference on Computational Complexity
(CCC ’21), volume 200 of Leibniz International Proceedings in Informatics (LIPIcs), pages
23:1–23:21, July 2021.

[KMS94] David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by
semidefinite programming. In Proceedings 35th Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’94), pages 2–13, November 1994.

[KO22] Andrei Krokhin and Jakub Opršal. An invitation to the promise constraint satisfaction
problem. ACM SIGLOG News, 9(3):30–59, 2022.

[KPGW10] Graeme Kemkes, Xavier Pérez-Giménez, and Nicholas Wormald. On the chromatic
number of random d-regular graphs. Advances in Mathematics, 223(1):300–328, January
2010.

[KT17] Ken-Ichi Kawarabayashi and Mikkel Thorup. Coloring 3-colorable graphs with less
than 𝑛1/5 colors. J. ACM, 64(1), mar 2017.

[Las01] Jean B. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 programs. In
Proceedings of the 8th International Conference on Integer Programming and Combinatorial
Optimization (IPCO ’01), volume 2081 of Lecture Notes in Computer Science, pages 293–303.
Springer, June 2001.

[Lau18] Massimo Lauria. Algorithm analysis through proof complexity. In Proceedings of the 14th
Conference on Computability in Europe (CiE ’18), Sailing Routes in the World of Computation,
volume 10936 of Lecture Notes in Computer Science, pages 254–263. Springer International
Publishing, July 2018.

[LN17] Massimo Lauria and Jakob Nordström. Graph colouring is hard for algorithms
based on Hilbert’s Nullstellensatz and Gröbner bases. In Proceedings of the 32nd
Annual Computational Complexity Conference (CCC ’17), volume 79 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 2:1–2:20, July 2017.

[Lov94] László Lovász. Stable sets and polynomials. Discrete Mathematics, 124(1–3):137–153,
January 1994.

23



GRAPH COLOURING IS HARD ON AVERAGE

[Mat74] Yuri V. Matiyasevich. A criterion for vertex colorability of a graph stated in terms of
edge orientations. Diskretnyi Analiz, 26:65–71, 1974. English translation of the Russian
original. Available at http://logic.pdmi.ras.ru/~yumat/papers/22_paper/.

[Mat04] Yuri V. Matiyasevich. Some algebraic methods for calculating the number of colorings
of a graph. Journal of Mathematical Sciences, 121(3):2401–2408, May 2004.

[McD84] Colin McDiarmid. Colouring random graphs. Annals of Operations Research, 1(3):183–200,
October 1984.

[MN15] Mladen Mikša and Jakob Nordström. A generalized method for proving polynomial
calculus degree lower bounds. In Proceedings of the 30th Annual Computational Complexity
Conference (CCC ’15), volume 33 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 467–487, June 2015.

[Mnu01] Michal Mnuk. Representing graph properties by polynomial ideals. In Proceedings of the
4th International Workshop on Computer Algebra in Scientific Computing (CASC ’01), pages
431–444, September 2001.

[Par00] Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in
Robustness and Optimization. PhD thesis, California Institute of Technology, May 2000.
Available at http://resolver.caltech.edu/CaltechETD:etd-05062004-055516.

[Raz98] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational
Complexity, 7(4):291–324, December 1998.

[Raz17] Alexander A. Razborov. On the width of semialgebraic proofs and algorithms. Mathe-
matics of Operations Research, 42(4):1106–1134, May 2017.

[Rec75] Robert A. Reckhow. On the Lengths of Proofs in the Propositional Calculus. PhD thesis,
University of Toronto, 1975. Available at https://www.cs.toronto.edu/~sacook/
homepage/reckhow_thesis.pdf.

[RT22] Julián Ariel Romero Barbosa and Levent Tunçel. Graphs with large girth and chromatic
number are hard for Nullstellensatz. Technical Report 2212.05365, arXiv.org, December
2022.

[SA90] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming problems.
SIAM Journal on Discrete Mathematics, 3:411–430, 1990.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing, 3(6):103–128, August 2007. Preliminary
version in STOC ’06.

24

http://logic.pdmi.ras.ru/~yumat/papers/22_paper/
http://resolver.caltech.edu/CaltechETD:etd-05062004-055516
https://www.cs.toronto.edu/~sacook/homepage/reckhow_thesis.pdf
https://www.cs.toronto.edu/~sacook/homepage/reckhow_thesis.pdf

	Introduction
	Previous Work
	Our Contribution
	Discussion of Proof Techniques
	Outline of This Paper

	Preliminaries
	Proof Complexity
	Algebra Background
	Graph Theory
	Graph Colouring and Polynomial Calculus

	Techniques and Proof Overview
	Closure and Ordering by Colouring
	Proof Overview

	Lower Bounds for 4-colourability on Random Regular Graphs
	Improvement to 3-colourability
	Lower Bounds for 3-colourability on the Erdős-Rényi Graph
	Concluding Remarks
	Appendix

