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Abstract

We prove that conflict-driven clause learning SAT-solvers with the
ordered decision strategy and the DECISION learning scheme are
equivalent to ordered resolution. We also prove that, by replacing
this learning scheme with its opposite that stops after the first non-
conflict clause when backtracking, they become equivalent to general
resolution. To the best of our knowledge, along with [40] this is the
first theoretical study of the interplay between specific decision strate-
gies and clause learning.

For both results, we allow nondeterminism in the solver’s ability
to perform unit propagation, conflict analysis, and restarts, in a way
that is similar to previous works in the literature. To aid the presen-
tation of our results, and possibly future research, we define a model
and language for discussing CDCL-based proof systems that allow for
succinct and precise theorem statements.1

1. Introduction

SAT-solvers have become standard tools in many application domains
such as hardware verification, software verification, automated theo-
rem proving, scheduling and computational biology (see [24, 26, 16,
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32, 19] among the others). Since their conception in the early 1960s,
SAT-solvers have become significantly more efficient, but they have
also become significantly more complex. Consequently, there has been
increasing interest in understanding the theoretical limitations and
strengths of contemporary SAT-solvers. Much of the recent literature
has focused on the connections between SAT-solvers and subsystems
of the resolution proof system originally introduced in [12, 38].

This connection essentially started with the Davis-Putnam-Logemann-
Loveland procedure (DPLL) [22, 21], a backtracking search algorithm
that builds partial assignments one literal at a time until a satisfying
assignment is found or all assignments have been exhausted. Since
DPLL is sound and complete, its computational trace when applied
to an unsatisfiable formula is a proof of unsatisfiability. It is generally
accepted as a folklore result that the computational trace of DPLL
on an unsatisfiable formula can be converted into a tree-like resolu-
tion refutation. Thus, tree-like resolution lower bounds imply DPLL
running time lower bounds. And in some sense, these lower bounds
are tight: DPLL, given oracle access to a tree-like resolution refuta-
tion Π of the input formula, can run in time that is polynomial in
the length of Π. That is, DPLL is essentially equivalent to tree-like
resolution and thus can be viewed as a propositional proof system in
the Cook-Reckhow sense [20].

Nearly all contemporary SAT-solvers are variants of DPLL aug-
mented with modern algorithmic techniques and heuristics. The tech-
nique most often credited for their success is conflict-driven clause
learning (CDCL) [27, 31], so these solvers are interchangeably called
CDCL SAT-solvers, CDCL solvers, or simply CDCL (for further infor-
mation regarding the design of SAT-solvers, see the Handbook of Sat-
isfiability [11]). Just as with DPLL, the computational trace of CDCL
can be converted into a resolution refutation, but may no longer be
tree-like or even regular. Thus, general resolution lower bounds imply
CDCL running time lower bounds, but it is unclear a priori whether
these bounds are tight in the same sense as above.

The line of work on the question of whether CDCL solvers simulate
general resolution was initiated by Beame et al. [6] and continued by
many others [39, 35, 25, 17, 8, 37, 3, 23]. The primary difference
between all these papers is in the details of the model, the models
considered by Pipatsrisawat and Darwich [37] and Atserias et al. [3]
being perhaps the most faithful to actual implementations of CDCL
SAT-solvers. But almost all models appearing in the literature make

2



a few nonstandard assumptions.

1. Very frequent restarts. The solver restarts roughly O(n2) times
for every clause in the given resolution refutation Π (where n is
the total number of variables). Though many solvers do restart
frequently in practice [10], it is unclear if this is really necessary
for the strength of CDCL.

2. No clause deletion policy. The solver has to keep every learned
clause. In practice, some solvers periodically remove half of all
learned clauses [4].

3. Nondeterministic decision strategy. The solver uses oracle access
to Π to construct a very particular decision strategy. In practice,
solvers use heuristics [30, 33, 29].

It is natural to ask whether these assumptions can be weakened
or removed entirely. In this respect, the first two assumptions have
become topics of recent interest. With regards to the first, much
research has been dedicated to the study of nonrestarting SAT-solvers
[39, 17, 18, 14, 7, 28]. The exact strength of CDCL without restarts
is still unknown and, arguably, makes for the most interesting open
problem in the area. With regards to the second, Elffers et al. [23]
proved size-space tradeoffs in a very tight model of CDCL, which may
be interpreted as results about aggressive clause deletion policies.

In this paper we are primarily concerned with the third assump-
tion, i.e., how much does the efficiency of CDCL-solvers depend on the
nondeterminism in the decision strategy? We study a simple decision
strategy that we call the ordered decision strategy which is identical
to the strategy studied by Beame et al. [5] in the context of DPLL
without clause learning. It is defined naturally: when the solver has
to choose a variable to assign, the ordered decision strategy dictates
that it chooses the smallest unassigned variable according to some
fixed order. There is still a choice in whether to fix the variable to 0
(false) or 1 (true), and we allow the solver to make this choice non-
deterministically. If unit propagation is used, the solver may assign
variables out of order; a unit clause does not necessarily correspond to
the smallest unassigned variable. This possibility to “cut the line” is
precisely what makes the situation much more subtle and nontrivial.

Thus, our motivating question is the following:

Is there a family of contradictory CNFs {τn}∞n=1 that pos-
sess polynomial size resolution refutations but require su-
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perpolynomial time for CDCL with any ordered decision
strategy?

Before describing our contributions towards this question, let us briefly
review analogous separations in the context of proof and computa-
tional complexities. Bonet et al. [15] proved that a certain family of
formulas requires exponential-sized ordered resolution refutations but
has polynomial-sized regular resolution refutations. Bollig et al. [13]
proved that a certain boolean function requires exponential-sized or-
dered binary decision diagrams (OBDDs) but have polynomial-sized
general BDDs. These results tell us that order tends to be a strong re-
striction, and the above question asks whether this same phenomenon
occurs for CDCL. It is also worth noting that this question may be
motivated as a way of understanding the strength of static decision
strategies such as MINCE [1] and FORCE [2]. But since such decision
strategies are rarely used in practice we will not dwell on this anymore.

Our contributions

Per the discussion above, a proof system that captures any class of
CDCL solvers should be no stronger than general resolution. It can
also be reasonably expected (and in two particular situations will be
verified below as easy directions of Theorems 2.14, 2.15) that with any
ordered decision strategy, they should be at least as strong as ordered
resolution with respect to the same order. Our main results show
that, for a nondetermistic model of CDCL in which the solver may
arbitrarily choose conflict/unit clauses if there are several, may elect
not to do conflict analysis/unit propagations at all, and may restart
at any time, both extremes are attained. In this setting, the strength
of the system depends on the learning scheme employed; that is, it
depends on the method used to determine which clauses are learned
after conflict analysis. More specifically, we prove

1. CDCL with the ordered decision strategy and a learning scheme
we call DECISION-L is equivalent to ordered resolution (Theorem
2.14). In particular, it does not simulate general resolution.

2. CDCL with the ordered decision strategy and a learning scheme
we call FIRST-L is equivalent to general resolution (Theorem
2.15).

Remark 1 As the name suggests, DECISION-L is the same as the so-
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called DECISION learning scheme used in practice.2 Hence these two
results, taken together, go somewhat against the “common wisdom.”
Namely, it turns out that in the case of ordered decision strategy, an
assertive learning scheme is badly out-performed by a scheme that,
to the best of our knowledge, has not been used before. That said,
FIRST-L is similar to the learning scheme FirstNewCut [6], and both
schemes have the property that they are designed somewhat artificially
to target particular resolution steps in a given refutation.

We also prove linear width lower bounds for CDCL with the or-
dered decision strategy (Theorem 2.16), which are in sharp contrast
with the size-width relationship for general resolution proved by Ben-
Sasson and Wigderson [9].

With the ability of possibly postponing conflict analysis and unit
propagation, the model of CDCL we consider differs in these aspects
from solvers that occur in practice. This is in part because our inten-
tion is to focus on the impact of decision strategies. But this substan-
tial amount of nondeterminism also allows us to identify two proof
systems that are, more or less straightforwardly, equivalent to the cor-
responding CDCL variant. (This correspondence is very much like
the correspondence between regWRTI and a variant of CDCL with
similar nonstandard features called DLL-LEARN, both introduced by
Buss et al. [18, 14].) Determining the exact power of these systems
constitutes the main technical part of this paper.

The first proof system might be of independent interest; we call
it half-ordered resolution. For a given order on the variables, ordered
resolution can be alternatively described by the requirement that in
every application of the resolution rule, the resolved variable is the
largest in both antecedent clauses. We relax this requirement by ask-
ing that this property holds for at least one of them, which reflects the
inherent asymmetry in resolution rules resulting from clause learning
in CDCL solvers. Somewhat surprisingly (at least to us), it turns out
(Theorem 2.6) that this relaxation does not add any extra power, and
half-ordered resolution is polynomially equivalent to ordered resolu-
tion with respect to the same order.

The second proof system, which we call trail resolution, extends
half-ordered resolution and is more auxiliary in nature. It is based on
the observation that with the amount of nondeterminism we allow, all

2We use this slightly different name so that it fits our naming conventions below.
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trails3 that a CDCL solver manages to create can be easily recreated
when needed. Accordingly, the system works with lines of two types,
one for clauses and another for trails. Clauses entail nontrivial trails
via a unit propagation rule while trails can be used to enhance the half-
ordered resolution rule. We show that trail resolution is polynomially
equivalent to resolution (Theorem 2.18), and since it is by far our most
difficult result, let us reflect a bit on the ideas in its proof.

Like other CDCL-based proof systems, trail resolution is not closed
under restrictions or weakening, so many standard methods do not ap-
ply. Instead, we use two operations on resolution proofs (lifting and
variable deletion) in tandem with some additional structural informa-
tion to give us a fine-grained understanding of the size and structure
of the general resolution refutation being simulated. The properties
of these operators allow for a surgery-like process; we simulate small
local pieces of the refutation and then stitch them together into a new
global refutation.

Finally, in order to aid the above work (and, perhaps, even facil-
itate further research in the area), we present a model and language
for studying CDCL-based proof systems. This model is not meant
to be novel, and is heavily influenced by previous work [35, 3, 23].
However, the primary goal of our model is to highlight possible non-
standard sources of nondeterminism in variants of CDCL, as opposed
to creating a model completely faithful to applications. For example,
Theorem 2.15 can be written in this language as:

For any order π, CDCL(FIRST-L, π-D) is equivalent to gen-
eral resolution.

We will also try to pay a special attention to finer details of the model
sometimes left implicit in previous works. This entails several subtle
choices to be made, and we interlace the mathematical description of
our model with informal discussion of these choices.

The paper is organized as follows. In Section 2 we give all necessary
definitions and formulate our main results as we go along.

In Section 3 we prove Theorem 2.14 on the power of CDCL with
the ordered decision strategy and the DECISION-L learning strategy.
Section 3.1 contains proof-complexity theoretic arguments about half-
ordered resolution, while in Section 3.2 we establish its translation to
the language of CDCL.

3A trail is essentially an ordered partial assignment constructed by CDCL during its
execution.
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In Section 4 we prove Theorem 2.15 on the power of CDCL with
the ordered decision strategy and the FIRST-L learning strategy. To
that end, in Section 4.1 we show the equivalence of this system to trail
resolution (mentioned above) and in Section 4.2 we establish that trail
resolution is actually equivalent to general resolution (Theorem 2.18).

In Section 5 we prove Theorem 2.16 that, roughly speaking, states
that the simulation provided by Theorem 2.15 fails extremely badly
with respect to width. Among other things, this implies that there
does not seem to exist any useful width-size relation in the context of
CDCL with ordered decision strategy.

We conclude in Section 6 with a few remarks and suggestions for
future work.

Related works

Recently, Vinyals [40] studied the strength of decision heuristics in
CDCL. He showed that CDCL with the popular VSIDS decision strat-
egy (among others) does not simulate resolution, or more precisely,
ordered resolution, as the hard tautology constructed there is easy for
a certain order.

2. Preliminaries and main results

Throughout the paper, we assume that the set of propositional vari-

ables is fixed as V
def
= {x1, . . . , xn}. A literal is either a propositional

variable or its negation. We will sometimes use the abbreviation x0

for x̄ and x1 for x (so that the Boolean assignment x = a satisfies the
literal xa). A clause is a set of literals, thought of as their disjunction,
in which no variable appears together with its negation. For a clause
C, Var(C) is the set of variables appearing in C. A CNF is a set of
clauses thought of as their conjunction. For a CNF τ , Var(τ) is the
set of variables appearing in τ , i.e., the union of Var(C) for all C ∈ τ .
We denote the empty clause by 0. The width of a clause is the number
of literals in it. A w-CNF is a CNF in which all clauses have width
≤ w.

The resolution proof system is a Hilbert-style proof system whose
lines are clauses and that has only one resolution rule

C ∨ xai D ∨ x1−a
i

C ∨D
, a ∈ {0, 1}. (1)
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We will sometimes make use of the notation Res(C ∨xai , D∨x1−a
i ) for

the conclusion clause C ∨D.
The size of a resolution proof Π, denoted as |Π|, is the number of

lines in it. For a CNF τ and a clause C, SR(τ ⊢ C) is the minimal
possible size of a resolution proof of the clause C from clauses in τ (∞
if C is not implied by τ). Likewise, w(τ ⊢ C) is the minimal possible
width of such a proof, defined as the maximal width of a clause in it.
For a proof Π that derives C from τ , the clauses in τ that appear in
Π are called axioms, and if C = 0 then Π is called a refutation. Let
Var(Π) denote the set of variables appearing in Π, i.e., the union of
Var(C) for C appearing in Π.

Note that the weakening rule

C

C ∨D
is not included by default. In the full system of resolution it is admis-
sible in the sense that SR(τ ⊢ 0) does not change if we allow it. But
this will not be the case for some of the CDCL-based fragments we
will be considering below.

Remark 2 Despite the above distinction, it is often convenient to
consider systems that do allow the weakening rule. We make it clear
when we do this by adding the annotation ‘+ weakening’ to the system.
For example, resolution + weakening is the resolution proof system
with the weakening rule included.

Resolution graphs

Our results depend on the careful analysis of the structure of resolu-
tion proofs. For example, it will be useful for us to maintain struc-
tural properties of the proof while changing the underlying clauses
and derivations. We build up the following collection of definitions for
this analysis, to which we will refer throughout the later sections. The
reader may skip this section for now and return to it in the future as
needed.

Definition 2.1 For a resolution + weakening proof Π, its resolution
graph, G(Π), is a directed acyclic graph (DAG) representing Π in the
natural way: each clause in Π has a distinguished node, and for each
node there are incoming edges from the nodes corresponding to the
clauses from which it is derived. Every node has in-degree 0, 1, or
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2 if its corresponding clause is an axiom, derived by weakening, or
derived by resolving two clauses, respectively. Denote the set of nodes
by V (Π), and the clause at v ∈ V (Π) by cΠ(v). We do not assume
that cΠ is injective, that is we allow the same clause to appear in the
proof several times.

There is a natural partial order on V (Π) reflecting the order of
appearances of clauses in Π: v > u if and only if v is a descendant
of u, or equivalently, there is a (directed) path from u to v. We
sometimes say that v is above (resp. below) u if v > u (resp. v < u).
If, moreover, (u, v) is an edge (directed from u to v), we say that u is
a parent of v. A set of nodes is independent if any two nodes in the
set are incomparable. Note that we have defined this order so that
we naturally view resolution graphs in bottom-up orientation, where
axioms appear at the bottom and derivations flow upwards.

Maximal and minimal nodes of any nonempty S ⊆ V (Π) are de-

fined with respect to this partial order: maxΠ S
def
= {v ∈ S : ∀u ∈

S¬(v < u)}, and similarly for minΠ S.

Definition 2.2 Let S ⊆ V (Π). The upward closure and downward

closure of S in G(Π) are uclΠ(S)
def
= {v ∈ V (Π) : ∃w ∈ S(v ≥ w)} and

dclΠ(S)
def
= {v ∈ V (Π) : ∃w ∈ S(v ≤ w)}, respectively. A subset of

nodes S is parent-complete if for any v ∈ S of in-degree 2, one parent
of v being in S implies that the other parent of v is also in S. It is
path-complete if for any directed path p in G(Π), the two end points
of p being in S implies all nodes of p are.

Remark 3 The following are some basic facts about these definitions.

� The upward closure uclΠ(S) is path-complete but need not be
parent-complete.

� The downward closure dclΠ(S) is always both path-complete and
parent-complete.

� Path-completeness does not imply upward-closedness.

� The complement of any upward-closed set is downward-closed.

Also, these definitions behave naturally, as demonstrated by the
following proposition.

Proposition 2.3 Let S ⊆ V (Π) be a nonempty set of nodes that is
both parent-complete and path-complete. Then the induced subgraph on
S in G(Π) is the graph of a proof which derives maxΠ S from minΠ S.
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Proof. Let S∗ ⊆ S be the set of all nodes in S “provable” from
minΠ S inside S. Formally, it is the closure of minΠ S according to
the following rule: if v ∈ S and all its parents are in S∗ then v is also
in S∗. We need to show that S∗ = S.

Assume not, and fix an arbitrary v ∈ minΠ(S \ S∗). Since v ̸∈
minΠ S, there exists w ∈ S below v. Since S is path-complete, we can
assume w.l.o.g. that w is a parent of v, and since S is parent-complete,
all parents of v are in S. Now, since v is minimal in S \S∗, all of them
must be actually in S∗. Hence v ∈ S∗, a contradiction.

In the sequel, we refer to a proof (refutation) defined on a subgraph
in this way as a subproof (subrefutation).

Definition 2.4 A resolution graph is connected if |maxΠ V (Π)| = 1,
i.e., there is a unique sink.

This is not the usual definition of connectedness for directed graphs.
But it implies that every node can be connected to the unique sink by
a directed path, and thus implies the weak connectedness in the usual
sense (i.e., there is an undirected path between any two nodes).

Remark 4 For a resolution proof Π and v ∈ V (Π), the subgraph
on dclΠ({v}) is a connected resolution graph whose axiom nodes are
among axiom nodes of G(Π).

Ordered and half-ordered resolution

Fix now an order π ∈ Sn. For any literal l = xak, π(l)
def
= π(k). For

k ∈ [n], let Varkπ denote the k smallest variables according to π. A
clause C is k-small with respect to π if Var(C) ⊆ Varkπ.

The proof system π-ordered resolution is the subsystem of reso-
lution defined by imposing the following restriction on the resolution
rule (1):

∀l ∈ C ∨D (π(l) < π(xi)).

That is, the two antecedents are i-small. We note that in the literature
this system is usually defined differently, namely in a top-down manner
(see e.g. [15]). It is easy to see, however, that our version is equivalent.

Definition 2.5 π-half-ordered resolution is the subsystem of resolu-
tion in which the rule (1) is restricted by the requirement

∀l ∈ C (π(l) < π(xi)). (2)
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That is, at least one of the antecedents is i-small.

Recall [20] that a proof system P p-simulates another proof system
Q if there exists a polynomial time algorithm that takes any Q-proof
to a P -proof from the same axioms (in particular, the size of the P -
proof is bounded by a polynomial in the size of the original proof).
Two systems P and Q are polynomially equivalent if they p-simulate
each other.

We are now ready to state our first result.

Theorem 2.6 For any order π ∈ Sn, π-ordered resolution is polyno-
mially equivalent to π-half-ordered resolution.

The next proof system, π-trail resolution, is even more heavily
motivated by CDCL solvers. For this reason we interrupt our proof-
complexity exposition to define the corresponding model. As we noted
in the introduction, we will try to highlight certain subtle points in
the definition of the model by injecting informal remarks.

2.1. CDCL-based proof systems

A unit clause is a clause consisting of a single literal. An assignment
is an expression of the form xi = a (1 ≤ i ≤ n, a ∈ {0, 1}). A
restriction ρ is a set of assignments in which all variables are pairwise
distinct. We denote by Var(ρ) the set of all variables appearing in ρ.
Restrictions naturally act on clauses, CNFs, resolution proofs, etc.; we
denote by C|ρ, τ |ρ, Π|ρ . . . the result of this action. Note that both
π-ordered resolution and π-half-ordered resolution are closed under
restrictions, i.e., if Π is a π-(half)-ordered resolution proof, then Π|ρ
is a π|ρ-(half)-ordered resolution proof of no-bigger size, where π|ρ is
the order induced by π on V \ Var(ρ).

Remark 5 Restrictions of proofs also act on resolutions graphs, i.e.,
they give rise to a transformation from G(Π) to G(Π|ρ). For example,
if a clause is satisfied by a restriction ρ, its node will be immediately
removed. And even if a clause is not satisfied, its node still might be
not used in constructing G(Π|ρ) since e.g. a parent is removed.

An annotated assignment is an expression of the form xi
∗
= a (1 ≤

i ≤ n, a ∈ {0, 1}, ∗ ∈ {d, u}). Informally, a CDCL solver builds
(ordered) restrictions one assignment at a time, and the annotation
indicates in what way the assignment is made: ‘d’ means by a decision,
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and ‘u’ means by unit propagation. See Definition 2.8 and Remark 8
below for details about these annotations.

Definition 2.7 A trail is an ordered list of annotated assignments in
which all variables are again pairwise distinct. A trail acts on clauses,
CNFs, etc., just in the same way as does the restriction obtained from
it by disregarding the order and the annotations on assignments. For
a trail t and an annotated assignment xi

∗
= a such that xi does not

appear in t, we denote by [t, xi
∗
= a] the trail obtained by appending

xi
∗
= a to its end. t[k] is the kth assignment of t. A prefix of a trail

t = [xi1
∗1= a1, . . . , xir

∗r= ar] is any trail of the form [xi1
∗1= a1, . . . , xis

∗s=
as] (0 ≤ s ≤ r) denoted by t[≤ s]. Λ is the empty trail.

A state is a pair (C, t), where C is a CNF and t is a trail. The
state (C, t) is terminal if either C|t ≡ 1 for all C ∈ C or C contains
0. All other states are nonterminal. We let Sn denote the set of all
states (recall that n is reserved for the number of variables), and let
Son ⊂ Sn be the set of all nonterminal states.

Remark 6 As unambiguous as Definition 2.7 may seem, it already
reflects one important choice, to consider only positional4 solvers, i.e.,
those that are allowed to carry along only CNFs and trails, but not any
other auxiliary information. The only mathematical ramification of
this restriction is that we will have to collapse the whole clause learning
stage into one step, but that is a sensible thing to do anyway. From
the practical perspective, however, this restriction is far from obvious
and we will revisit this issue in our concluding remarks (Section 6).

Remark 7 We are now about to describe the core of our (or, for that
matter, any other) model, which can be viewed as a labeled transition
system consisting of the state space Sn and possible labeled transitions
between states. But since this definition is the longest one, we prefer
to change gears and precede it with some informal remarks rather than
give them after the definition.

Proof systems attempting to capture performance of modern CDCL
solvers are in general much bulkier than their logical counterparts and
are built from several heterogeneous blocks. At the same time, most
papers highlight the impact of one or a few of the features, with a
varying degrees of nondeterminism allowed, while the features out of
focus are treated in often unpredictable and implicit ways. We have

4The name is suggested by a similar term “positional strategy” in game theory.
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found this state of affairs somewhat impending for the effort of trying
to compare different results to each other or to build useful structure
around them of the kind existing in “pure” proof complexity. There-
fore, we adapt an approach that in a sense is the opposite. Namely,
we rigorously describe a basic model that is very liberal and nonde-
terministic and intends to approximate the union of most conceivable
features of CDCL solvers. Then models of actual interest will be de-
fined by their deviations from the basic model. These deviations will
take the form of “amendments” forbidding certain forms of behavior
or, potentially, allowing for new ones.

Besides this point, there are only few (although sometimes subtle)
differences from the previous models, so our description is given more
or less matter-of-factly.

Definition 2.8 For a nonterminal state S = (C, t) ∈ Son, we define the
finite set Actions(S) and the function TransitionS : Actions(S) −→
Sn; the fact TransitionS(A) = S′ will be usually abbreviated to S

A
=⇒

S′. Those are described as follows:

Actions(S)
def
= D(S)

.
∪ U(S)

.
∪ L(S),

where the letters D, U , and L naturally stand for decision, unit prop-
agation, and learning.5

� D(S) consists of all annotated assignments xi
d
= a such that xi

does not appear in t and a ∈ {0, 1}. We naturally let

(C, t) xi
d
=a

=⇒ (C, [t, xi
d
= a]). (3)

� U(S) consists of all those assignments xi
u
= a for which C|t con-

tains the unit clause xai ; the transition function is given by the
same formula (3) but with a different annotation:

(C, t) xi
u
=a

=⇒ (C, [t, xi
u
= a]). (4)

� As should be expected, L(S) is the most sophisticated part of the
definition (cf. [3, Section 2.3.3]). It consists of clause-trail pairs
(C, t∗) where C is a learnable clause and t∗ is a prefix of t with
the assignments that persist after learning C and backtracking.

5Restarts will be treated as a part of the learning scheme.
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The exact class of such pairs is given in Definition 2.9. The
transition function is then defined naturally:

(C, t) (C,t∗)
=⇒ (C ∪ {C}, t∗).

Definition 2.9 Given (C, t) ∈ Son, the set of learnable clauses from

S is defined as follows. Let t = [xi1
∗1= a1, . . . , xir

∗r= ar]. By reverse
induction on k = r+ 1, . . . , 1 we define the set Ck(S) that, intuitively,
is the set of clauses that can be learned by backtracking up to the
prefix t[≤ k].

We let
Cr+1(S)

def
= {D ∈ C |D|t = 0}

be the set of all conflict clauses.
For 1 ≤ k ≤ r, we do the following: if the k-th assignment of t

is of the form xik
d
= ak, then Ck(S)

def
= Ck+1(S). Otherwise, it is of

the form xik
u
= ak, and we build up Ck(S) by processing every clause

D ∈ Ck+1(S) as follows.

� If D does not contain the literal xakik then we include D into
Ck(S) unchanged.

� If D contains xakik , then we resolve D with all clauses C ∈ C
such that C|t[≤k−1] = xakik and include into Ck(S) all the results
Res(C,D). D itself is not included.

To make sure that this definition is sound, we have to guarantee that
C and D are actually resolvable (that is, they do not contain any
other conflicting variables but xik). For that we need the following
observation, easily proved by reverse induction on k, simultaneously
with the definition:

Claim 2.10 D|t = 0 for every D ∈ Ck(S).

Finally, we let

C(S)
def
=

r⋃
k=1

Ck(S),

and

L(S)
def
=

{
{(0,Λ)} if 0 ∈ C(S);

{(C, t∗) | C ∈ (C(S) \ C) , t∗ a prefix of t such that C|t∗ ̸= 0} otherwise.

(5)
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Example 1 Consider the scenario in which

C = {x1 ∨ x4, x3 ∨ x4, x1 ∨ x3 ∨ x4, x1 ∨ x3 ∨ x4}

t = [x1
d
= 0, x4

u
= 0, x3

u
= 1]

S = (C, t).

Then

C4(S) = {x3 ∨ x4, x1 ∨ x3 ∨ x4}
C3(S) = {x1 ∨ x4}
C2(S) = {x1}
C1(S) = C2(S)

so C(S) = {x1, x1 ∨ x4} and, finally,

L(S) = {(x1,Λ), (x1 ∨ x4,Λ), (x1 ∨ x4, (x1
d
= 0))}.

This completes the description of the basic model.

Remark 8 For nearly all modern implementations of CDCL, the an-
notations are redundant because CDCL solvers typically require unit
propagation always to be performed when it is applicable (in our lan-
guage of amendments, this feature will be called ALWAYS-U). Nev-
ertheless, the presence of annotations makes the basic model flexible
enough to carry on various, sometimes subtle, restrictions and ex-
tensions. In particular, we consider solvers that are not required to
record unit propagations as such. This allows for the situation in which

xi
d
= a and xi

u
= a are in Actions(S), and the set of learnable clauses

is sensible to this.

Remark 9 In certain pathological cases, mostly resulting from ne-
glecting to do unit propagation, the set Actions(C, t) may turn out to
be empty even if (C, t) is nonterminal and C is contradictory. But for
the reasons already discussed above, we prefer to keep the basic model
as clean as possible syntactically, postponing such considerations for
later.

The transition graph Γn is the directed graph on Sn defined by
erasing the information about actions; thus (S, S′) ∈ E(Γn) if and
only if S′ ∈ im(TransitionS). It is easy to see (by double induc-
tion on (|C|, n − |t|)) that Γn is acyclic. Moreover, both the set
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{(S,A) |A ∈ Actions(S)} and the function (S,A) 7→ TransitionS(A)
are polynomial-time6 computable. These observations motivate the
following definition.

Definition 2.11 Given a CNF C, a partial run on C from the state
S to the state T is a sequence

S = S0
A0=⇒ S1

A1=⇒ . . . SL−1
AL−1
=⇒ SL = T, (6)

where Ak ∈ Actions(Sk). In other words, a partial run is a path in
Γn, with annotations restored. A successful run is a partial run from
(C,Λ) to a terminal state. A CDCL solver is a partial function7 µ on
Son such that µ(S) ∈ Actions(S) whenever µ(S) is defined. The above
remarks imply that when we apply a CDCL solver µ to any initial
state (C,Λ), it will always result in a finite sequence like (6), with T
being a terminal state (successful run) or such that µ(T ) is undefined
(failure).

Remark 10 Theoretical analysis usually deals with classes (i.e., sets)
of individual solvers rather than with individual implementations, and
there might be several different approaches to defining such classes.
One might consider for example various complexity restrictions like
demanding that µ be polynomial-time computable. But in this paper
we are more interested in classes defined by prioritizing and restricting
various actions.

Definition 2.12 A local class of CDCL solvers is described by a col-
lection of subsets AllowedActions(S) ⊆ Actions(S), S ∈ Son. It con-
sists of all those solvers µ for which µ(S) ∈ AllowedActions(S), when-
ever µ(S) is defined.

We will describe local classes of solvers in terms of amendments
prescribing what actions should be removed from the set Actions(S)
to form AllowedActions(S). Without further ado, let us give a few
examples illustrating how familiar restrictions look in this language.
Throughout the description, we fix a nonterminal state S = (C, t).

ALWAYS-C If C|t contains the empty clause, then D(S) and U(S)
are removed from Actions(S). In other words, this amendment
requires the solver to perform conflict analysis if it can do so.

6in the size of the state S, not in n
7It is possible for Actions(S) to be empty, see Remark 9.
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ALWAYS-U If C|t contains a unit clause, then D(S) is removed from
Actions(S). This amendment insists on unit propagation, but
leaves to nondeterminism the choice of the unit to propagate if
there are several choices. Note that as defined, ALWAYS-U is a
lower priority amendment than ALWAYS-C: under the latter, if
both a conflict and a unit clause are present, the solver must do
conflict analysis while under the former both unit propagation
and conflict analysis are permitted.

ALWAYS-R In definition (5) of L(S) we keep only those (C, t∗) for
which t∗ = Λ.

NEVER-R In definition (5) of L(S), we require that t∗ is the longest
prefix of t satisfying C|t∗ ̸= 0 (in which case C|t∗ is necessarily
a unit clause). As described, this amendment does not model
nonchronological backtracking or require that the last assign-
ment in the trail is a decision. However, this version is easier to
state and it is not difficult to modify to have the aforementioned
properties. Furthermore, all open questions pertaining to this
amendment remain open for either version.

ASSERTING-L In definition (5) of L(S), we shrink C(S)\C to (
⋃s

k=1Ck(S))\
C, where s < r is the largest index for which xis = as is anno-
tated as ‘d’ in t. This amendment is meaningful (and mostly
used) only when combined with ALWAYS-C and ALWAYS-U, in
which case we can state expected properties like the fact that
every learned clause contains the literal x1−as

is
(we do not need

this fact in this paper, so we leave its proof to the reader).

DECISION-L In definition (5) of L(S), we shrink C(S)\C to C1(S)\C.
This amendment has appeared in practice as a natural asserting
learning scheme. By induction on length of the trail t, it is not
hard to see that the learned clause according to this amendment
is falsified by just the decisions in t. The clause could consist of
a strict subset of those decided variables.

FIRST-L In definition (5) of L(S), we shrink C(S)\C to those clauses
that are obtained by resolving, in the notation of Definition 2.8,
between pairs C and D with D ∈ C. As noted in the introduc-
tion, this is similar to the scheme FirstNewCut [6] but one is
not a generalization of the other. FIRST-L is applicable in more
settings (FirstNewCut was designed in a setting with mandatory
conflict analysis). And the “New” in FirstNewCut refers to its
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ability to perform more resolutions in order to derive a clause
not currently in the formula, which is not modeled by FIRST-L.

π-D, where π ∈ Sn is an order on the variables We keep inD(S)

only the two assignments xi
d
= 0, xi

d
= 1, where xi is the smallest

variable w.r.t. π that does not appear in t. Note that this amend-
ment does not have any effect upon U(S), and the main technical
contributions of our paper can be also phrased as determining
under which circumstances this “loophole” can circumvent the
severe restriction placed on the set D(S).

WIDTH-w, where w is an integer In definition (5) of L(S), we keep
in C(S)\C only clauses of width ≤ w. Note that this amendment
still allows us to use wide clauses as intermediate results within
a single clauses learning step.

SPACE-s, where s is an integer If |C| ≥ s, then L(S) is entirely
removed from Actions(S). This amendment makes sense when
accompanied by the possibility to do bookkeeping by removing
“unnecessary” clauses. We will briefly discuss positive amend-
ments in Remark 12 below.

Thus, our preferred way to specify local classes of solvers and the
corresponding proof systems is by listing one or more amendments,
with the convention that their effect is cumulative: an action is re-
moved from Actions(S) if and only if it should be removed according
to at least one of the amendments present.

Definition 2.13 For a finite set A1, . . . ,Ar of poly-time computable
amendments,8 we let CDCL(A1, . . . ,Ar) be the (possibly incomplete)
proof system whose proofs are those successful runs (6) in which none
of the actions Ai is affected by any of the amendments A1, . . . ,Ar.

Remark 11 The amendments ALWAYS-C, ALWAYS-U are present in
most previous work and, arguably, it is precisely what distinguishes
conflict-driven clause learning techniques. Nonetheless, we have de-
cided against including them into the basic model as they may be
distracting in theoretical studies focusing on other features; our work
is one example.

8An amendment is poly-time computable if determining whether an action µ(S) is in
AllowedActions(S) is poly-time decidable given S and µ(S).
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Remark 12 Let us briefly discuss the possibility of extending the
basic model rather than restricting it. The most substantial deviation
would be to forfeit the assumption of positionality (see Remark 6) or,
in other words, to allow the solver to carry along more information
than just a set of clauses and a trail. Two such examples are dynamic
variable ordering and phase saving. The first is very pertinent to the
technical part of our paper, so we defer the corresponding discussion
to Section 6.

For positional solvers, extending the basic model amounts to in-
troducing positive amendments enlarging the sets Actions(S) instead
of decreasing them. Here are a few suggestions we came across during
our deliberations.

CLAUSE DELETION For S = (C, t) ∈ Son, we add to Actions(S) all
subsets C0 ⊆ C. The transition function is obvious:

(C, t) C0=⇒ (C0, t).

This is the space model whose study was initiated in [23], and like
in that paper, we do not see compelling reasons to differentiate
between original clauses and the learned ones.

MULTI-CLAUSE LEARNING In the definition (5) of L(S), we can allow
arbitrary nonempty subsets C0 ⊆ C(S) \ C instead of a single
clause C and require that C|t∗ ̸= 0 for any C ∈ C, with the
obvious transition

(C, t) (C0,t∗)
=⇒ (C ∪ C0, t

∗).

Though existing SAT-solver implementions tend not to do this,
it is natural to consider when thinking of Pool resolution or RTL
proof systems as variants of CDCL (see e.g. [39, 18]).

INCOMPLETE LEARNING In the definition (5) of L(S), we could re-
move the restriction C|t∗ ̸= 0 on the prefix t∗. This positive
amendment could make sense in the absence of ALWAYS-C, that
is, if we are prepared for delayed conflict analysis.

In this language, the (nonalgorithmic part of the) main result from
[3, 37] can be roughly summarized as

CDCL(ALWAYS-C, ALWAYS-U, ALWAYS-R, ASSERTING-L)
is polynomially equivalent to resolution.9

9Their result is actually stronger in that the choice of which unit to propagate and
which clause to learn can be made adversarially.
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The algorithmic part from [3] roughly says that any CDCL solver in
the associated class, subject to the only condition that the choice of
actions from D(S) (when it is allowed by the amendments) is ran-
dom, polynomially simulates bounded-width resolution10. The open
question asked in [3, Section 2.3.4] can be reasonably interpreted as
whether CDCL(ALWAYS-C, ALWAYS-U, WIDTH-w) is as powerful as
width-w resolution, perhaps with some gap between the two width
constraints (We took the liberty to remove those amendments that do
not appear to be relevant to the question.) Finally, we would like to
abstract the “no-restarts” question as

Does CDCL(ALWAYS-C, ALWAYS-U, NEVER-R) (or at least
CDCL(NEVER-R)) simulate general resolution?

where we have again removed all other amendments in the hope that
this will make the question more clean mathematically.

2.2. Technical contributions

As they had already been discussed in the introduction, here we formu-
late our results (in the language just introduced) without additional
exposition.

Theorem 2.14 For any fixed order π on the variables, the system
CDCL(π-D, DECISION-L) is polynomially equivalent to π-ordered res-
olution.

Theorem 2.15 For any fixed order π on the variables, the system
CDCL(π-D, FIRST-L) is polynomially equivalent to general resolution.

Theorem 2.16 For any fixed order π on the variables and every ϵ > 0
there exist contradictory CNFs τn with w(τn ⊢ 0) = O(1) not provable
in CDCL(π-D, WIDTH-(1 − ϵ)n).

Finally, let us mention that while CDCL(A1, . . . ,Ar) can be nat-
urally regarded as a (possibly incomplete) proof system where proofs
are efficiently checkable, it need not necessarily be a Hilbert-style proof
system, operating with “natural” lines and inference rules. Assume,
however, that the set AllowedActions(S) additionally satisfies the fol-
lowing two properties:

10That is, has running time nO(w(τn⊢0)) with high probability, given a contradictory
CNF τn as an input.
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1. whenever AllowedActions(S) ∩ L(S) ̸= ∅, it contains an action
leading to a state of the form (C,Λ) (i.e, restarts are allowed);

2. (monotonicity) If S = (C, t), S′ = (C′, t) and C ⊆ C′ then
AllowedActions(S) ∩ (D(S)

.
∪ U(S)) ⊆ AllowedActions(S′) ∩

(D(S′)
.
∪ U(S′)).

Then every trail t that appears in a run can always be recreated,
at a low cost, when it is needed again. Thus, under these restrictions
we get a “normal” proof system with nice properties.

Note that property 2) might not hold in the presence of ALWAY-C,
ALWAYS-U, and this is the main reason why we do not include them
in the basic model for studying CDCL as a proof system. Let us
now formulate this system explicitly for the case π-D we are mostly
interested in.

Definition 2.17 Fix an order π on the variables. π-trail resolution
is the following (two-typed) proof system. Its lines are either clauses
or trails (where the empty trail is an axiom), and it has the following
rules of inference:

t

[t, xi
d
= a]

, (Decision rule)

where xi is the π-smallest index such that xi does not appear in t and
a ∈ {0, 1} is arbitrary;

t C

[t, xi
u
= a]

, (Unit propagation rule)

where C|t = xai ;

C ∨ xai D ∨ x1−a
i t

C ∨D
, (Learning rule)

where (C ∨D)|t = 0, (xi
∗
= a) ∈ t and all other variables of C appear

before xi in t.

It is straightforward to see that without the unit propagation rule,
this is just π-half-ordered resolution.

Then, the main technical part in proving Theorem 2.15 is the fol-
lowing.

Theorem 2.18 For every fixed order π on the variables, π-trail resolution
is polynomially equivalent to general resolution.
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3. CDCL(π-D,DECISION-L) =p π-ordered

In this section we prove Theorem 2.14. The proof is made up of two
parts (Theorem 2.6, Theorem 3.4), with half-ordered resolution as the
intermediary.

3.1. π-half-ordered =p π-ordered

Half-ordered resolution trivially p-simulates ordered resolution, so the
core of Theorem 2.6 is the other direction. In this section we will
depend heavily on resolution graphs (Definition 2.1) and related defi-
nitions from Section 2.

Definition 3.1 A resolution refutation Π is ordered up to k (with
respect to an order π) if it satisfies the property that if any two clauses
are resolved on a variable xi ∈ Varkπ, then all resolution steps above

it are on variables in Var
π(i)−1
π . We note that π-ordered resolution

proofs are precisely those that are ordered up to n− 1.

We now prove the main part of Theorem 2.6, namely that π-
ordered resolution p-simulates π-half-ordered resolution.

Proof. (of theorem 2.6) Let Π be a π-half-ordered resolution refuta-
tion of τ . Without loss of generality, assume that π = id (otherwise
rename variables).

We will construct by induction on k (0 ≤ k ≤ n−1) a half-ordered
resolution refutation Πk of τ , which is ordered up to k. For the base
case, let Π0 = Π. Suppose Πk has been constructed; without loss of
generality we can assume that Πk is connected (otherwise take the
subrefutation below any occurrence of 0).

Consider the set of nodes whose clauses are k-small. Note this set
is parent-complete. We claim it is also upward-closed. Indeed, let u
be any node in this set (i.e., c(u) = cΠk

(u) is k-small) and v be a
child of u. Then c(v) is obtained by resolving a variable xi ∈ Varkπ
since we disallow weakenings. The fact that Πk is ordered up to k
implies Var(c(v)) ⊆ Vari−1

π ⊆ Varkπ (otherwise, some variable in c(v)
would have remained unresolved on a path connecting v to the sink by
connectedness), thus c(v) is also k-small i.e. v is in this set. Therefore,
by induction, any node above u is in the set.

Upward-closedness implies path-completeness (see Remark 3), so
by Proposition 2.3, the set {v | c(v) is k-small} defines a subrefutation
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C ∨ x1
¬x1

C

C ′

xi ¬xi

0

→

C ∨ x1
¬x1

C

C ′ ∨ x1

xi ∨ x1 ¬xi

x1

0

Figure 1: A toy example of the transformation from Π0 to Π1

of the clauses labeling the independent set

Lk
def
= minΠk

{v| c(v) is k-small}. (7)

Denote U := uclΠk
(Lk) (= {v| c(v) is k-small}) and D := dclΠk

(Lk)
where D,U ,L stands for downward, upward, and layer, respectively.
Then we have the following.

� U ∩ D = Lk (from the independence of nodes in Lk);

� D is also a subproof (by Remark 3 and Proposition 2.3);

� Πk = U ∪ D. To see this, note by connectedness any node v can
be connected by a directed path p in Πk to the unique sink—the
empty clause which belongs to U . Consider the first u ∈ p that
is in U . If u = v then v ∈ U , otherwise u ∈ Lk (since U is path-
and parent-complete) and then v ∈ D.

That is, the “layer” Lk splits Πk into two subproofs U , D and they
meet at Lk = minΠk

(U) = maxΠk
(D). U contains all nodes labeled

by a k-small clause, and D is the union of Lk and the set of all nodes
whose labeled clause is not k-small. In particular, all axioms are in
D, all resolutions in U are on the variables in Varkπ and, since Πk is
ordered up to k, all resolutions in D are on the variables not in Varkπ.

Define

M
def
= minD{w| c(w) is the result of resolving two clauses on xk+1}

(8)
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where minD is taken with respect to the topological order in the proof

D (cf. the last paragraph in Definition 2.1). If M is empty, Πk+1
def
=

Πk. Otherwise, suppose M = {w1, . . . , ws} (where w1, . . . , ws are
independent nodes in D), and define

Ai
def
= uclD({wi}). (9)

We will eliminate all resolutions on xk+1 in D by the following pro-
cess; it should be emphasized that the set of nodes stays the same dur-
ing this process. Only the edges and clause-labeling function change.
More precisely, we update D in s rounds, defining π-half-ordered res-
olution + weakening proofs D1,D2, . . . ,Ds. Initially D0 = D, i = 1.
Let ci−1 denote the clause-labeling cDi−1 . To define the transition
Di−1 → Di, we need the following structural properties of Di−1 (that
will also be proved by induction simultaneously with the definition).

Claim 3.2 Let u and v be arbitrary vertices in V (D).

a. If v is not above u in D, then the same is true in Di−1;

b. ci−1(v) is equal to cD(v), cD(v) ∨ xk+1 or cD(v) ∨ xk+1;

c. If v /∈
⋃i−1

j=1Aj then ci−1(v) = cD(v), and ci−1(v) is obtained in
Di−1 via application of the same resolution rule as in Di;

d. Di−1 is a π-half-ordered resolution + weakening proof.

In the base case (i = 1), Claim 3.2 holds simply because D0 = D.
Let us construct Di. By Claim 3.2(c), the resolution step at wi

(which is not in
⋃i−1

j=1Aj by independence) is unchanged from D to
Di−1. Assume that it resolves cD(w′) = B ∨ xk+1 and cD(w′′) =
C ∨ xk+1. Since Πk is half-ordered, either B or C is k-small. Assume
without loss of generality that B is k-small.

Recall that there is no resolution in D on variables in Varkπ. Thus,
for all v ∈ Ai, it follows that B is a subclause of cD(v), and by Claim
3.2(b), we get the following crucial property:

For all v ∈ Ai, B is a subclause of ci−1(v). (10)

Note that Ai is upward closed in Di−1 by Claim 3.2(a). Accordingly,
as the first step, for any v ̸∈ Ai we set ci(v) := ci−1(v) and do not
change its incoming edges.

Next, we update vertices v ∈ Ai in an arbitrary D-topological order
maintaining the property ci(v) ∈ {ci−1(v), ci−1(v) ∨ xk+1} (in partic-
ular, ci(v) = ci−1(v) whenever ci−1(v) contains the variable xk+1).
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First we set ci(wi) := ci−1(wi) ∨ xk+1 (recall that ci−1(wi) = cD(wi)
by Claim 3.2(c) and hence does not contain xk+1 by (8)), and replace
incoming edges by a weakening edge from w′′.

For v ∈ Ai \ {wi} (as a reminder, it might be that v ∈
⋃

j<iAj),
we proceed as follows.

1. If xk+1 ∈ ci−1(v), keep the clause but replace incoming edges
with a weakening edge (w′, v). This is well-defined by (10), and
note for the record that w′ <D wi <D v.

2. If ci−1(v) = Res(ci−1(u), ci−1(w)) on xk+1 where xk+1 ∈ ci−1(u),
set ci(v) := ci−1(v) ∨ xk+1, and replace incoming edges by a
weakening edge (u, v).

3. If ci−1(v) is weakened from ci−1(u) (and xk+1 ̸∈ ci−1(v)), set
ci(v) := ci−1(v) ∨ ci(u). In other words, we append the literal
xk+1 to ci(v) if and only if this was previously done for ci(u).

4. Otherwise, xk+1 /∈ ci−1(v) and ci−1(v) = Res(ci−1(u), ci−1(w))
on some xℓ where ℓ > k+1. In particular, xk+1 /∈ {ci−1(u), ci−1(w)}.
Set ci(v) := Res(ci(u), ci(w)) that is, like in the previous item,
we append xk+1 if and only if it was previously done for either
ci(v) or ci(w). Note that since ℓ > k + 1, this step remains
π-half-ordered.

This completes our description of Di; we have to check Claim 3.2
for it. For (a), note that the only new edges were added in item 1, and
see the remark made there. The items (b) and (c) are straightforward.
For (d), the only different resolution steps were introduced in item 4;
again, see the remark made there.

The next claim summarizes the necessary properties of the end
result, Ds.

Claim 3.3

a. Ds is a π-half-ordered resolution + weakening proof without res-
olutions on xk+1.

b. If cs(v) ̸= cD(v) for some v ∈ D, then there is a vertex w in
dclD(M) \ {M} such that cD(v) = Res(cs(w), cs(v)) on xk+1,
and this resolution is half-ordered. In fact, w is a parent (in D’s
topology) of some node in M .

Proof.
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a. No new resolution on the variable xk+1 has been introduced, while
all old ones are in A1 ∪ · · · ∪ As and thus have been eliminated. The
conclusion follows from this observation together with Claim 3.2(d).

b. Suppose c(v) was changed in Di−1 → Di (and hence stayed un-
changed afterwards by Claim 3.2(b)) then in particular v ∈ Ai. Set
w := w′ where w′ is the parent of wi we chose in the paragraph
above (10). Note that cs(w) = cD(w) since the latter contains the
literal (say) xk+1. Then we readily have cD(v) = cDi−1(v) = Res(B ∨
xk+1, cD(v)∨xk+1) by (10), and it is half-ordered since B is k-small.

Now to get Πk+1, we try to reconnect Ds with U along Lk (again,
their node sets have been unchanged so far), then clear out weakenings.
The problem with this approach is the added appearances of xak+1

(where a may be 0 or 1) in cs(v) for v ∈ Lk, as in Claim 3.2(b).
We introduce new nodes to deal with them. Namely, let Lbad

k :=
{v ∈ Lk | cs(v) ̸= cD(v)}, and for each node v ∈ Lbad

k , keeping in
mind Claim 3.3(b), create a new node denoted by ṽ labeled with the
clause Res(cs(w), cs(v)) = cD(v). Denote the set of new vertices by
N . Define Π̃k+1 to be the result of connecting Ds ⊔ N and U along
(Lk\Lbad

k ) ⊔N .11

Before this operation neither Ds nor U contained resolutions on
xk+1, and hence Π̃k+1 is a half-ordered refutation (with weakenings)
that is ordered up to k + 1. Let Πk+1 be obtained by contracting12

all weakening rules in Π̃k+1. Then Πk+1 is also half-ordered up to
k + 1 since contracting weakening rules preserves this property. It
only remains to analyze the size, |Πk+1| (note that a priori it can be
doubled at every step, which is unacceptable).

Since
|Πk+1| ≤ |Πk| + |Lk|, (11)

we only have to control |Lk|. For that we will keep track of the invari-
ant |dclΠk

(Lk)|; more precisely, we claim that

|dclΠk+1
(Lk+1)| ≤ |dclΠk

(Lk)|. (12)

11For example, suppose v ∈ Lk and cD(v) = x1∨x2 but cs(v) = x1∨x2∨xk+1 (assuming
k > 1). By Claim 3.3(b), there is a vertex w with cs(w) ⊆ x1 ∨ x2 ∨ xk+1 and

c(ṽ) := Res(cs(w), cs(v)) = x1 ∨ x2 = cD(v),

so we will use ṽ instead of v in connecting Ds and U to construct Π̃k+1.
12By contraction here we mean the process implicit in showing that weakening rules can

be eliminated in a resolution refutation without increasing its size.
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Let us prove this by constructing an injection from dclΠk+1
(Lk+1) to

dclΠk
(Lk); we will utilize the previous notation.

First note that the resolution + weakening refutation Π̃k+1 and its
weakening-free contraction Πk+1 can be related as follows. For every
node v ∈ V (Πk+1) there exists a node v∗ ∈ V (Π̃k+1) with c

Π̃k+1
(v∗) ⊇

cΠk+1
(v) which is minimal among those contracting to v. If v is an

axiom node of Πk+1 then so is v∗ in Π̃k+1. Otherwise, if u and w are
the two parents of v, and if u′ and w′ are the corresponding parents
of v∗ (v∗ may not be obtained by weakening due to the minimality
assumption), then c

Π̃k+1
(u∗) is a subclause of c

Π̃k+1
(u′) and c

Π̃k+1
(w∗)

is a subclause of c
Π̃k+1

(w′). We claim that (v 7→ v∗) |dclΠk+1
(Lk+1)

(which is injective by definition) is the desired injection. We have to
check that its image is contained in dclΠk

(Lk).
Fix v ∈ dclΠk+1

(Lk+1). Then either v is an axiom or both its par-
ents are not (k+1)-small (by (7)). By the above mentioned facts about
the contraction Π̃k+1 → Πk+1, this property is inherited by v∗. In par-
ticular, v∗ ̸∈ N (the set of the newly added nodes when constructing
Πk) because all nodes in this set have at least one (k + 1)-small par-
ent (the w node in Claim 3.3(b)). Finally, since the corresponding
clauses in D and Ds differ only in the variable xk+1, v

∗ cannot be
in U , for the same reason (recall that all axioms are in D). Hence
v∗ ∈ V (Ds) = V (D) = dclΠk

(Lk).
Having thus proved (12), we conclude by the obvious induction

that |Lk| ≤ |dclΠk
(Lk)| ≤ |dclΠ0(L0)| ≤ |Π|. Then (11) implies

|Πn−1| ≤ n|Π|, as desired.

3.2. π-half-ordered =p CDCL(π-D,DECISION-L)

In this section, we prove the following theorem.

Theorem 3.4 The systems CDCL(π-D,DECISION-L) and π-half-ordered
resolution are p-equivalent.

One direction is almost trivial.

Proposition 3.5 CDCL(π-D,DECISION-L) p-simulates π-half-ordered
resolution.

Proof. As usual, assume π = id. Suppose C∨D = Res(C∨xi, D∨xi)
is any half-ordered resolution, and without loss of generality assume
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C is i-small. It is enough to present a partial run from (τ,Λ) to
(τ ∪ {C ∨ D},Λ) of length at most n + 1, where τ is any clause set
containing C ∨ xi and D ∨ xi.

Let xj be the largest variable in C (thus j < i). Consider a trail
of the form

t = [x1
d
= a1, . . . , xj

d
= aj , xi

u
= 1, xj+1

d
= aj+1, . . . , xi−1

d
= ai−1, xi+1

d
= ai+1, . . . , xn

d
= an]

such that (C ∨D)|t = 0. By definition, t[l] ∈ AllowedActions((τ, t[≤
l− 1])) for all l ̸= j+ 1. But since C is i-small, (C ∨ xi)|t[≤j] = xi and

thus xi
u
= 1 ∈ AllowedActions((τ, t[≤ j])) as well. Therefore,

(τ,Λ)
t[1]
=⇒ (τ, t[≤ 1])

t[2]
=⇒ (τ, t[≤ 2]) . . .

t[n]
=⇒ (τ, t)

is a partial run from (τ,Λ) to (τ, t). It now suffices to show (τ ∪ {C ∨
D},Λ) ∈ L((τ, t)). This follows by verifying Definition 2.8 directly:
(D∨xi)|t = 0 so D∨xi ∈ Cn+1((τ, t)). For j′ > j+ 1, the assignment
t[j′] is a decision, so D ∨ xi ∈ Cj+2((τ, t)). Since (C ∨ xi)|t[≤j] =
xi, C ∨ D = Res(C ∨ xi, D ∨ xi) ∈ Cj+1((τ, t)). Finally, for j′ ≤
j, t[j′] is a decision, so C ∨ D ∈ C1(τ, t) and (τ ∪ {C ∨ D},Λ) ∈
AllowedActions((τ, t)).

The other direction of Theorem 3.4 is less obvious. We begin with
some additional notation.

Previous works describe standard learning schemes like DECISION-L
with respect to so-called trivial resolution on a set of particular clauses
(e.g., in [37, 6]). We can recast this notion in our model by the fol-
lowing lemma. Let

D ◦x C def
=

{
Res(D,C) if C and D are resolvable on x

D otherwise (“null case”)

and we extend this definition by left associativity:

C0 ◦xi1 C1 ◦xi2 · · · ◦xik Ck
def
= (. . . (C0 ◦xi1 C1) ◦xi2 . . . ) ◦xik Ck.

Note if xij appears maximally in Cj (according to π) for each j ∈ [k],
then all the resolutions are π-half-ordered.

Lemma 3.6 Assume, in the notation of in Definition 2.8, a clause
D is learned from state S = (C, t = [y1

∗1= a1, . . . , yr
∗r= ar]).
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Assume D ∈ Cj(S) for some j ∈ [r + 1]. Then there exist k ≤ r,
indices j ≤ i1 < · · · < ik ≤ r and clauses C1, . . . , Ck+1 ∈ C such
that ∗i1 = ... = ∗ik = u (i.e. the indices correspond to some unit
propagations in t) and the following properties hold.

1. Ck+1|t = 0.

2. Cν |t[≤iν−1] = y
aiν
iν

for ν ∈ [k].

3. D = Ck+1 ◦yik Ck · · · ◦yi1 C1 where all operators are not null.

4. For any ℓ ∈ [j, r] with ∗ℓ = u, if variable yℓ appears in Cν for
some ν ∈ [k + 1] then ℓ ∈ {i1, . . . , ik}.

Proof. This is by directly tracing Definition 2.8. Suppose D ∈ Cj ,
we use reverse induction on j to define the desired clauses and indices.
If j = r + 1, let k = 0 and Ck+1 = D (the conflict clause). If j ≤ r,
either D ∈ Cj+1(S), or there are clauses D′ ∈ Cj+1(S), C ∈ C such
that C|t[≤j−1] = y

aj
j and D = Res(D′, C) on yj . In the first case,

the clauses and indices are the same as for D ∈ Cj+1(S), and in the
second case, enlarge the index list by adding j and the clause list by
appending C to be the first. Items 1,2,3 follow immediately by this
definition.

Now we can represent the learning of D as a sequence of clauses

Xr+1(= Ck+1)
step r−→ Xr → ...

step 1−→ Xj(= D) where at each step
iµ ∈ {i1, ..., ik} a resolution Xiµ = Res(Xiµ+1, Cµ) happens, and at
each step a ∈ [j, r]\{i1, ..., ik}, Xa = Xa+1. To prove item 4, assume
ℓ ∈ [r], ν ∈ [k + 1] satisfy the assumption there. Let ik+1 := r + 1
for convenience. First, it cannot be that iν < ℓ since Var(Cν) ⊂
Var(t[≤ iν ]) but yℓ /∈ Var(t[≤ iν ]). So assume iν > ℓ (if iν = ℓ then
we are done). By items 1 and 2, for any ν ′ with iν′ > ℓ, Cν′ does
not contain yaℓℓ ; so in particular, y1−aℓ

ℓ ∈ Cν by assumption. Then

y1−aℓ
ℓ ∈ Xiν = (Ck+1 ◦yik Ck · · · ◦yiν Cν) (where all resolutions are not

null), and the literal y1−aℓ
ℓ appears in Xiν ...Xℓ+1. Hence, a resolution

step on yℓ must happen at step ℓ, which means ℓ ∈ {i1, ..., ik}.

In short, Ck+1 is a conflict clause and the other Cν ’s are clauses in
C chosen to do resolutions while backtracking in a learning step. These
clauses are not necessarily unique, but we fix a choice arbitrarily.

Example 2 Let us consider the same scenario as in Example 1 with
π = id (so that t is a legitimate trail). One way to learn the clause
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x1 ∈ C1(S) is to take the clauses

C1 = x1 ∨ x4
C2 = x1 ∨ x3 ∨ x4
C3 = x1 ∨ x3 ∨ x4

so that (C3 ◦x3 C2) ◦x4 C1 = x1.

The following Proposition 3.7 will complete the proof of Theorem
3.4, and with Theorem 2.6 this completes the proof of Theorem 2.14.

Proposition 3.7 π-half-ordered resolution p-simulates CDCL(π-D,DECISION-L).

Proof. Fix a successful run in CDCL(π-D,DECISION-L). Since the
clause set only changes after a learning step, it suffices to show that for

each learning step S = (C, t) (D,t∗)
=⇒ (C∪ {D}, t∗), there is a short half-

ordered resolution proof of D from C. Suppose t = [y1
∗1= a1, . . . , yr

∗r=
ar] and assume π = id, as usual. Fix the clauses Cν for ν ∈ [k + 1]
and the set {i1, ..., ik} as in Lemma 3.6 where we take j = 1 (that is,
D ∈ C1(S)) due to DECISION-L.

Recall that
D = Ck+1 ◦yik Ck · · · ◦yi1 C1. (13)

The high-level idea is the following. The sequence of resolutions (13)
is not all half-ordered only if some y

aiν
iν

is not the largest in Cν (which
may happen since the assignments in t need not necessarily respect
the order π). Our goal is thus to replace in (13), this time going from
right to left, each clause Cν for ν ∈ [k] by a clause C ′

ν in which yiν is
the largest. This will give the desired half-ordered resolution.

First, let C ′
1 = C1. For ν ∈ [2, k + 1], let

C ′
ν

def
= Cν ◦yiν−1 C ′

ν−1 · · · ◦yi1 C ′
1 (14)

where this time some operators may be null.
It is immediate from (14) and Lemma 3.6(2) that

yaνiν ∈ C ′
ν for all ν ∈ [k] (15)

and

C ′
ν ⊆

ν⋃
µ=1

Cµ for all ν ∈ [k + 1] (by induction on ν). (16)
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Lemma 3.8 For any µ < ν, variable yiµ does not appear in the clause
Cν ◦yiν−1 C ′

ν−1 · · · ◦
yiµ C ′

µ.

Proof. We first prove the fact that, for all ν ∈ [k + 1] and µ ≤ ν,

(Cν ◦yiν−1 C ′
ν−1 · · · ◦yiµ C ′

µ)|t[≤iν−1] = y
aiν
iν

where y
aik+1

ik+1
:= 0.

For this we use double induction, first on ν and then on µ = ν . . . 1. For
µ = ν, this is Lemma 3.6(2) (and Lemma 3.6(1) when µ = ν = k+ 1).

For µ < ν let E
def
= (Cν ◦yiν−1 C ′

ν−1 · · · ◦
yiµ+1 C ′

µ+1); we have to prove

that (E ◦yiµ C ′
µ)|t[≤iν−1] = y

aiν
iν

from E|t[≤iν−1] = y
aiν
iν

. We can assume
without loss of generality that this operator is not null, and then note
C ′
µ |t[≤iµ−1]= y

aµ
iµ

by the inductive assumption applied to the pair
ν := µ, µ := 1.

Now we prove the lemma. Again let E = Cν ◦yiν−1 C ′
ν−1 · · · ◦

yiµ+1

C ′
µ+1. Note that y

aiu
iµ

∈ C ′
iµ

by (15) so y
aiµ
iµ

/∈ E (otherwise E |t[≤iν−1]=

1, contradicting the above fact), and the two clauses are consistent on
other variables in C ′

µ (according to t[≤ iµ − 1]). Then a simple case
analysis on whether or not E ◦yiµ C ′

iµ
is a null operator shows that the

result does not contain yiµ or yiµ .

Example 3 Considering the same clauses as in Example 2, note that
the resolution C3 ◦x3 C2 is not (id)-half-ordered. The derivation from
the above lemma would yield the clauses

C ′
1 = C1

C ′
2 = C2 ◦x4 C ′

1 = x1 ∨ x3
C ′
3 = (C3 ◦x3 C ′

2) ◦x4 C ′
1 = x1

where all resolutions are now half-ordered.

We now complete the proof of Proposition 3.7. By Lemma 3.8,
the variable yiµ does not appear in Cν ◦yiν−1 C ′

ν−1 · · · ◦
yiµ C ′

µ (µ < ν).
Also, it does not appear in Cµ−1, . . . , C1 (by Lemma 3.6(2)) and thus
not in C ′

µ−1, . . . , C
′
1 (by (16)). Hence it does not appear in C ′

ν and we
arrive at the following strengthening of (16):

∀ν ∈ [k + 1], C ′
ν ⊆ (

ν⋃
µ=1

Cµ)\(

ν−1⋃
µ=1

{yiµ , yiµ}). (17)
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By Lemma 3.6(4) and the fact that j = 1 (here we use DECISION-L),
(17) means any variable different from yiν in C ′

ν is labeled as d in
t[≤iν−1]. This implies yiν (ν ∈ [k]) is maximal in C ′

ν since we are in
π-D. Thus for all ν ∈ [k + 1] the sequence Cν ◦yiν−1 C ′

ν−1 · · · ◦yi1 C ′
1

is half-ordered. Taken together, these sequences yield a half-ordered
derivation of C ′

k+1 with O(k2) steps in total.

Finally, by (17) C ′
k+1 ⊆ (

k+1⋃
µ=1

Cµ)\(
k⋃

µ=1
{yiµ , yiµ}) ⊂ D where the

latter inclusion follows by Lemma 3.6(3). This suffices for proving the
proposition since the weakening rule is admissible in π-half-ordered
resolution.

4. CDCL(π-D, FIRST-L) =p resolution

In this section we prove Theorem 2.15. We first show that CDCL(π-D,FIRST-L)
and π-trail resolution (see Definition 2.17) are p-equivalent and then
prove size upper bounds for π-trail resolution.

4.1. π-trail resolution =p CDCL(π-D,FIRST-L)

Theorem 4.1 For any fixed order π, the systems CDCL(π-D), CDCL(π-D,FIRST-L)
and π-trail resolution are p-equivalent.

Proof. Let Π be a π-trail resolution refutation of a contradictory
CNF τ . We simulate Π step-by-step in CDCL(π-D,FIRST-L) by di-
rectly deriving each clause in Π. Suppose we have arrived at a state
(C,Λ), where C contains both premises in the inference

C ∨ xai D ∨ x1−a
i t

C ∨D
, (18)

as well as all preceding clauses, and assume that all variables in C
appear before xi in t. Let t = [xj1

∗1= a1, . . . , xjr
∗r= ar, xi

∗
= a, . . .]

and (for ease of notation) ts
def
= t[≤ s]. To derive C ∨ D, we first

build the trail tr; note that since t might be derived in Π using the
Unit Propagation rule, the sequence j1, . . . , jr need not necessarily be
π-increasing.

We build the trail tr simply by performing the corresponding ac-
tions in CDCL(π-D,FIRST-L) for decisions and unit propagations. By
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induction, assume that we have already built ts−1, s ≤ r. If ∗s = d
then xjs is the smallest variable according to π that is not in ts−1, so

by definition xjs
d
= as ∈ D((C, ts−1)). In the case of the Unit Propa-

gation rule (∗s = u), there is a clause E in Π preceding (18) such that
E|ts−1 = x

as−1

s−1 . Since E ∈ C by assumption, xjs
u
= ajs ∈ U((C, ts−1)).

Next, we build [tr, xi
u
= a] from tr (note that it is different from tr+1

if ∗ = d), which is possible since C ∨xai ∈ C by our assumption. Then

we further extend [tr, xi
u
= a] by making decisions in π-ascending order

on the remaining variables {x1, ..., xn}\ (Var(ts) ∪ {xi}) until D∨x1−a
i

becomes a conflict clause. Denote the resulting state by S = (C, t′).
Since all assignments after xi in t′ are decisions, D ∨ x1−a

i ∈
Cr+2(S), in the notation of Definition 2.8. Therefore, C∨D ∈ Cr+1(S),
and hence (C ∨D,Λ) is in AllowedActions(S) even in the presence of
FIRST-L. Induction completes the simulation.

The other direction is more straightforward: π-trail resolution p-
simulates CDCL(π-D) by design. Whenever a run arrives at a state
(C, t), we infer in π-trail resolution all clauses C ∈ C as well as all
prefixes of t, including t itself. More specifically, for a transition

(C, t) A
=⇒ (C′, t′), if A is a decision action or a unit propagation ac-

tion, then we can derive prefixes of t′ using the Decision rule and the
Unit propagation rule, respectively. If A is a learning action, then it
suffices to make the following simple observation: by construction, for
any γ ∈ [|t|], the clauses in Cγ((C, t)) can be derived from clauses in
C and Cγ+1((C, t)) using the Learning rule with the trail t.

It is easy to see that both simulations increase size by at most a
multiplicative factor n.

4.2. π-trail resolution =p resolution

It remains to prove that π-trail resolution simulates resolution. This
is the interesting direction of Theorem 2.18 and follows from Theorem
4.8 below.

Throughout this section, assume that π = id. We first introduce
operators for lifting π-trail resolution proofs to include appearances of
the literal x1 and deleting variables from resolution refutations, both
of which we use extensively in the proof of Theorem 4.8.

The lifting operator is primarily a bookkeeping mechanism for
managing auxiliary appearances of the literal x1 in proofs.
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Definition 4.2 Let ψ and τ be CNFs such that x1 ̸∈ Var(ψ) and for
each C ∈ ψ, τ contains either C or C ∨x1. For C ∈ ψ, define Liftτ (C)
to be C if C ∈ τ , and C ∨ x1 otherwise. For a π-trail resolution proof
Π from ψ define Liftτ (Π) to be the π-trail resolution proof resulting
from the following operations on Π.

� Add the derivation of [x1
d
= 0] by the Decision rule to the begin-

ning of Π.

� Replace each trail t in Π with [x1
d
= 0, t].

� Replace each axiom A appearing in Π with Liftτ (A) and then let
the added appearances of x1 be naturally inherited throughout
the clauses of Π.

It is straightforward to verify that Liftτ (Π) is a π-trail resolution
proof and if Π derives C from ψ then Liftτ (Π) derives C or C ∨ x1
from τ . Note also that this is only possible because x1 is the smallest
variable according to π and hence does not interfere with the Learning
rule. In the proof of Theorem 4.8, we will want to construct Π but will
only be able to derive clauses in τ , so we construct Liftτ (Π) instead
and then manage the additional appearances of x1.

The second operator, variable deletion, is an analog of restriction
for sets of variables (as opposed to assignments). Let S ⊆ V be a set
of variables. For a clause C, let DelS(C) denote the result of removing
from C all literals whose underlying variables are in S. For a CNF

τ , define DelS(τ)
def
= {DelS(C) : C ∈ τ} \ {0}. Here we see the first

interesting feature of variable deletion, namely that we ignore clauses
that become 0 after removing variables from S. But, as we show
below, if τ is contradictory and the subset S is proper then DelS(τ) is
also contradictory. This is not true in general for τ |ρ \ {0} of course.

The action of variable deletion on refutations will be described in
Definition 4.3. It is presented as a (linear time) algorithm that op-
erates on the underlying resolution graph as its input, by recursively
changing edges and clauses while nodes keep their identity (although
some may be deleted). This is similar to the approach we took in
Section 3.1. In order to more easily keep the node structure fixed,
the algorithm first produces a proof in the subsystem of resolution +
weakening in which all applications of the weakening rule are dummy

(that is, are of the form
C

C
). We call proofs in this system general-

ized resolution proofs. We further emphasize that variable deletion is
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defined only on connected refutations, as connectedness is necessary
for the output to be a refutation (cf. Claim 4.4(1)). Consequently, we
ensure in the proof of Theorem 4.8 that we only apply it to connected
refutations.

In the following, recall cΠ(v) denotes the corresponding clause at
node v in a proof Π.

Definition 4.3 Let Π be a connected resolution refutation of τ and
let S be a proper subset of Var(Π). Let Γ be the generalized reso-
lution refutation of DelS(τ) whose resolution graph is output by the
algorithm below. The resolution refutation DelS(Π) is the result of
contracting dummy applications of the weakening rule in Γ.

Deletion Algorithm

1. For each axiom node v, set c(v) := DelS(cΠ(v)). If c(v) becomes
0 (that is, when Var(cΠ(v)) ⊆ S), delete it.

2. Processing nodes in topological order, let v be a resolution node
and let v1, v2 be its parents.

(a) If both v1 and v2 were previously deleted, delete v as well.

(b) If only one of them was deleted or none was deleted but
c(v1), c(v2) are no longer resolvable, then one of them, say,
c(v1) is a subclause of DelS(c(v)) (we will see this in Claim
4.4). Set c(v) := c(v1), and replace incoming edges with a
dummy weakening edge from v1.

(c) If both v1 and v2 survived and c(v1), c(v2) are resolvable, set
c(v) := Res(c(v1), c(v2)).

After processing the root v of Π, output the current downward-closure
of v.

We claim that this algorithm is well-defined (that is, the condition
in step 2b is always met) and that the root vertex v is not deleted
and c(v) = 0 (that is, the algorithm produces a generalized resolution
refutation of DelS(τ)). Both statements are immediate corollaries of
the following claim.

Claim 4.4

1. A vertex v is deleted if and only if for every axiom node w ∈
dclΠ(v) it holds that Var(cΠ(v)) ⊆ S. In particular:
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� The root vertex is not deleted (recall that Π is connected);

� If v is deleted then Var(cΠ(v)) ⊆ S.

2. For every remaining vertex v, c(v) is a subclause of DelS(cΠ(v)).

3. In the situation of step 2b, there indeed exists vi such that c(vi)
is a subclause of DelS(cΠ(v)).

Proof. These are proved by induction, simultaneously with the con-
struction. In the base case, axioms, the three items clearly hold. In
the inductive step, we prove them by analyzing each case in Deletion
Algorithm. The only interesting case is step 2b. If precisely one of
the two vertices (say, v2) was deleted, then Var(cΠ(v2)) ⊆ S by Claim
4.4(1) and hence cΠ(v) was obtained by resolving on a variable xi in
S. Applying Claim 4.4(2) to the other parent v1, we see that c(v1) is a
subclause of DelS(cΠ(v1)) which in turn is a subclause of DelS(cΠ(v))
since xi ∈ S. Similarly, if both parents of v are alive but become non-
resolvable, then by Claim 4.4(2) the resolved variable is no longer in
one of the parents (say v1) and c(v1) is a subclause of DelS(cΠ(v)).

One key difference between variable deletion and restriction is that
Π|ρ may be trivial, in the sense that it is a single empty clause, while
DelVar(ρ)(Π) is not. As a simple example, consider the CNF {x1, x1 ∨
x2, x2} and the refutation

x1 x1 ∨ x2
x2 x2

0

If ρ = {x1 = 0}, then Π|ρ is trivial, whereas Del{x1}(Π) is

x2 x2
0

The final property of DelS(Π) is that its size can be characterized
with respect to the relationship between Π and S. This allows us to
“slough off” parts of the Π that we might have already seen before.

Lemma 4.5 Let Π be a connected resolution refutation and let S ⊊
Var(Π). Let t denote the number of resolution steps Res(C,D) in Π
on variables in S. Then

|DelS(Π)| ≤ |Π| − t.
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Proof. By Claim 4.4(2), all remaining resolution steps 2c are on
variables that do not belong to S.

Remark 13 (Restriction as intersection, deletion as projection.) If
we view a clause C semantically as the set C−1(0) ⊂ {0, 1}n, then the
restriction operator (say by ρ) on any clause C means to take inter-
section with the subcube ρ−1(1): C−1(0) → C−1(0) ∩ ρ−1(1); while
the deletion operator DelS(·) corresponds to the projection {0, 1}n →
{0, 1}Sc

induced on C−1(0).

We now have sufficient machinery to prove Theorem 4.8. As is
sometimes useful, the simulation we define is more ambitious than
necessary. Rather than outputting a refutation, it outputs a proof
that derives all literals (as unit clauses) appearing in the input. The
motivation for this is twofold. First, unit clauses make π-trail resolu-
tion significantly more powerful because they grant more control over
the trails that can be derived. In particular, if all literals appearing
in a refutation Π have been derived, then Π can be simulated in n|Π|
steps by directly simulating each resolution appearing in it. Second,
in reference to the deletion operator, all clauses of DelS(τ) can be
derived using clauses of τ and unit clauses x0 and x1 for x ∈ S.

Our simulation algorithm is based on the obvious restrict-and-
branch method, by which one recurses on Π|{xi=0} and Π|{xi=1}, lifts
the resulting proofs to have axioms in τ , and then derives 0 (if it has
not been derived already) by resolving the unit clauses xi and xi. The
clear issue with this approach is that we cannot afford to recurse on
both restricted proofs: there are parts of Π that are “double counted”
as a consequence of its DAG structure and the size may blow up. But
recursing on just Π|{xi=0} may ignore relevant parts of Π, namely those
resolutions on variables not even appearing in Π|{xi=0}. This is the
purpose of the deletion operator. The refutation DelVar(Π|{xi=0})(Π)
is a refutation with resolutions that correspond to resolutions in Π
but not in Π|{xi=0}, so we can recurse on it without worrying about
this double counting issue. This can be iterated so that we eventually
see all literals appearing in Π without considering a particular reso-
lution more than once. So an incomplete but instructive outline of
our algorithm is this: recurse on Π|{xi=0} and lift the proof to axioms
of τ , iterate the deletion operator to derive all literals appearing in Π
with possible additional appearances of xi, and then simulate Π|{xi=1}
directly to derive xi and remove all additional appearances of xi.
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Before we finally state and prove Theorem 4.8, we present two
simple lemmas that are factored out of the proof to simplify its pre-
sentation. The first essentially states that a variable in a connected
refutation must play a nontrivial role, which intuitively should be true
if we want to derive its corresponding literals. The second tells us that
once we can directly simulate a connected π-trail refutation, we can
also directly simulate a proof of all its literals; this is essentially a
stronger version of the observation in the previous paragraphs that is
more suited to the goal of deriving all literals.

Lemma 4.6 Let Π be a connected resolution refutation of τ such that
x ∈ Var(Π) and let Π′ be the downward closure of any appearance of
0 in Π|{x=a}. Then there is a clause C ∈ τ that contains x1−a and
appears restricted in Π′.

Proof. Suppose for contradiction that there is no such clause. Then
all axioms in Π′ are axioms in Π not containing the variable x, so in the
standard definition of restriction no edges are contracted and G(Π′) is
a downward-closed subgraph of G(Π) with identical labels. Since Π is
connected it has a unique appearance of 0 (otherwise, 0 would be the
premise of some resolution step that is impossible). Therefore Π′ = Π
which contradicts the fact that x ∈ Var(Π).

Lemma 4.7 For any connected resolution refutation Π of τ , there is
a resolution proof from τ of size at most |Π|+2n2 that derives, as unit
clauses, all literals of variables in Var(Π).

Proof. It suffices to note that if literals of all variables in Res(C ∨
x0i , D ∨ x1i ) have been derived as unit clauses, then there is a proof of
size at most 2n that derives x0i and x1i . This process can be repeated
on clauses in Π in reverse topological order (skipping clauses for which
x0i and x1i have already been derived). Connectedness guarantees that
every clause appearing in Π (and hence every variable) is processed.

Theorem 4.8 There is a polynomial time algorithm that, given a
connected resolution refutation Π of τ , outputs a π-trail proof of size
O(n2|τ ||Π|) that derives, as unit clauses, all literals of variables in
Var(Π).
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Proof. We present the algorithm Sim which is recursively called on
derivations with fewer variables.

Simulation Algorithm (Sim)

1. If |Var(Π)| = 1, then for some variable xi, Π contains only a
resolution of xi and ¬xi. In this case, output the axioms xi and
xi.

2. Assume without loss of generality that all variables appear in
Π. Define Π0 to be the downward closure of some appearance
of 0 in Π|{x1=0}. Derive Liftτ (Sim(Π0)) (note that |Var(Π0)| <
|Var(Π)|, which justifies the recursive call to Sim) and let ly,a ∈
{ya, ya ∨ x1} for y ∈ Var(Π0) denote the lifted unit clauses ap-
pearing in it. Note that Π0 might be trivial, in which case x1 is
an axiom in τ and the next step can be skipped.

3. If x1 appears in any ly,a from the previous step, then derive
x1 = Res(ly,0, ly,1). Otherwise, by Lemma 4.6, there is a clause
C ∈ τ containing the literal x1. Derive x1 by consecutively
resolving C with literals ℓy,a, for all ℓy,a in C. We note here that
these are half-ordered resolutions and hence admissible in π-trail
resolution, but we refrain from pointing this out in similar cases
below.

4. Derive the clauses {C ◦x1 x1 : C ∈ τ}.

At this point we have derived a set of clauses τ∗ such that for
every clause C in

ψ
def
= Del{x1}(τ) ∪

⋃
y∈Var(Π0)

{y0, y1},

the set τ∗ contains either C or C ∨ x1.
5. Set S := Var(Π0). While S ∪ {x1} ≠ V perform the following

procedure constructing a π-trail resolution proof from the set of
axioms ψ. We maintain that at the start of each iteration, all
unit clauses in

⋃
y∈S{y0, y1} have been derived. Also, to make

clear, the proof constructed in this step is not part of the output,
but its lifted verison will be (in step 6).

(a) Construct the clauses of DelS∪{x1}(τ) by resolving each clause
in Del{x1}(τ) with the unit clauses xa for x ∈ S. Then build
DelS∪{x1}(Π) using the deletion algorithm.
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(b) Assume without loss of generality that DelS∪{x1}(Π) is con-
nected; otherwise, as usual, take the downward closure of
any appearance of 0. Construct the proof Sim(DelS∪{x1}(Π)).
(This is the other recursive call to Sim.)

(c) Set S := S ∪ Var(DelS∪{x1}(Π)).

6. Since DelS∪{x1}(Π) is always nontrivial when S ∪{x1} ≠ V (this
follows from the well-definedness of the Deletion operator, Claim
4.4), the previous step terminates. Call the resulting proof Υ; it
is the union of the proofs from step 5 (Υ need not be connected),
which derives from ψ all unit clauses xai for i ∈ [2, n]. Derive the
proof Liftτ∗(Υ), where τ∗ is the set of clauses in step 4. This
proof derives (this time from τ) li,a ∈ {xai , xai ∨ x1} for i ∈ [2, n].
It remains to derive x1.

7. For that purpose, it is now possible to build any trail (up to

annotations) that extends [x1
d
= 0] by using the Unit Propaga-

tion Rule with the lifted unit clauses from the previous step.
Therefore, we can simulate any resolution proof not containing
the variable x1 by directly simulating each resolution step. Do
this to the resolution proof extending Π|{x1=1} that derives all
literals appearing in it (Lemma 4.7).

8. By Lemma 4.6, there is a clause C ∈ τ containing x1 that appears
restricted in Π|{x1=1}. Derive x1 by resolving C with all new
literals from the previous step, when possible.

9. Derive all remaining literals by resolving li,a with x1 when nec-
essary.

Let f(n,m) and s(n,m) be upper bounds on the running time of
Sim and the size of π-trail proof output by Sim, respectively, when
Sim is run on a proof containing at most n variables and whose size is
at most m. Our primary focus is on understanding the contributions
of step 2 and 5 since the algorithm is called recursively in these steps.
Step 2 adds at most s(n− 1, |Π0|) to s(n, |Π|) and

f(n− 1, |Π0|) +O(n · s(n− 1, |Π|))

to f(n, |Π|).
Suppose that step 5 iterates T (which is ≤ n) times. For i ∈ [T ],

define Si to be the state of S before the ith iteration and define Πi to be
DelSi∪{x1}(Π). Then steps 5-6 contribute at most

∑T
i=1 s(n− 1, |Πi|)
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to the size bound and

T∑
i=1

f(n− 1, |Πi|) +O(n|τ | · |Π|)

to the running time bound.
The most important fact here is that, by Lemma 4.5,

∑T
i=0 |Πi| ≤

|Π|. This is because the sets Var(Πi) for i ∈ [0, T ] are pairwise dis-
joint and so the resolutions in each proof Πi correspond to unique
resolutions in Π. Note the special case of Π0, which uses the fact that
restrictions, like variable deletion, have the property that all resolu-
tions in the resulting proof correspond to resolutions in Π on the same
variable.

The auxiliary operations performed throughout the algorithm (e.g.,
recreating trails by adding assignments to x1 at the start) are clearly
O(n|τ | · |Π|) that yields the bounds

s(n, |Π|) ≤
T∑
i=0

s(n− 1, |Πi|) +O(n|τ | · |Π|)

and

f(n, |Π|) ≤
T∑
i=0

f(n− 1, |Πi|) +O

(
T∑
i=0

s(n− 1, |Πi|)

)
+O(n2|τ | · |Π|).

By induction on n, first for s and then f , it follows that s(n,Π) =
O(n2|τ | · |Π|) and f(n, |Π|) = O(n3|τ | · |Π|).

5. Width lower bound

Our last piece of technical work is Theorem 2.16, which demonstrates
the limitations of bounded width clause learning in the presence of the
ordered decision strategy. Using the connection to π-trail resolution
from the previous section, Theorem 2.16 follows from a general width
lower bound for the latter. Some of the formulas to which this bound
applies have constant width (that implies polynomial size) refutations
and hence, by Theorem 2.15, automatically have polynomial size π-
trail refutations. Thus this result also shows that there is no size-width
relationship for π-trail resolution like the one for resolution proved by
Ben-Sasson and Wigderson [9].
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Say that a clause C is almost-k-small with respect to π if |Var(C)\
Varkπ| ≤ 1, and that a trail t = [xi1

∗1= a1, . . . , xir
∗r= ar] is k-trivial if

for s
def
= min(r, k), all assignments in t[≤ s] are decisions on variables

in Varkπ in π-increasing order: t[≤ s] = [xπ(1)
d
= a1, . . . , xπ(s)

d
= as].

Definition 5.1 The order π is k-robust for a contradictory CNF τ
if for any restriction ρ such that |Var(ρ) \ Varkπ| ≤ 1, the following
properties hold:

� the formula τ |ρ is minimally unsatisfiable, i.e., all strict subsets
of τ |ρ are satisfiable;

� for all i ∈ [n], if (xi = a) ∈ ρ then there is a clause in τ that
appears restricted in τ |ρ, i.e., it is not satisfied by ρ and contains
the literal x1−a

i .

Example 4 For a CNF τn, the r-ary parity substitution of τn, de-
noted by τn[⊕r], is the formula in which for all i ∈ [n], each variable
xi is replaced with

⊕r
j=1 yi,j where the variables yi,1, yi,2, . . . , yi,r are

new and distinct. As described, τn[⊕r] is technically not a CNF, but
its encoding as a CNF is straightforward and natural; see [36] for full
details. It is also straightforward to check that whenever τn is mini-
mally unsatisfiable and contains all variables x1, . . . , xn, the order π
on the variables of τn[⊕r] given by

π(y1,1) < π(y2,1) < · · · < π(yn,1) <

π(y1,2) < π(y2,2) < · · · < π(yn,2) < · · · <
π(y1,r) < π(y2,r) < · · · < π(yn,r)

is ((r − 2)n)-robust. In fact, this readily follows from the observation

that any restriction ρ that satisfies |Var(ρ)\Var
(r−2)n
π | ≤ 1 must leave

unassigned at least one variable in each group {yi,1, . . . , yi,r}.

The following theorem shows that robustness implies large width
in π-trail resolution.

Theorem 5.2 Let τ be a contradictory CNF formula and let π be a
w-robust order for τ . Then the width of any π-trail refutation of τ is
at least w.

Proof. Assume without loss of generality that π = id. Let Π be
a π-trail refutation of τ and let C be the first almost-w-small clause
appearing in Π. We will actually prove that Varwπ ⊆ Var(C).
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First, we claim that all trails that appear before C in Π are (w+1)-
trivial. Suppose otherwise and let t be the first trail in Π that is not.
Since Π contains all prefixes of t, and all such prefixes precede t, it

follows that t is of the form [t′, xi
u
= a], where t′ = [x1

d
= a1, x2

d
=

a2 . . . , xj
d
= aj ] with j ≤ w. Suppose that t follows from t′ by the Unit

Propagation rule with the clause D. This means D|t′ is a unit clause,
which implies D is almost-w-small, contradicting the assumption that
C is the first almost-w-small clause in Π.

It then follows that all resolutions (corresponding to applications
of the Learning rule) that appear before C are on variables not in
Varw+1

π . Indeed, suppose that the inference

D ∨ xai E ∨ xai t

D ∨ E

appears before C in Π. By the claim in the previous paragraph, t is
(w + 1)-trivial. Therefore if xi ∈ Varw+1

π , then it is actually assigned
in t[≤ w + 1] and so are all variables appearing in D. This implies
D is almost-w-small, contradicting the assumption that C is the first
such clause.

Finally let Π∗ be the resolution refutation corresponding to Π;
that is, the refutation constructed from Π by ignoring all trails. Let
Γ be the connected subproof of C in Π∗ on the downward closure
of C. By the remark in the previous paragraph, all resolutions in Γ
are on variables not in Varw+1

π . Lastly, let ρ be any restriction with
the domain Varwπ ∪ Var(C) that falsifies C, so that Γ|ρ is a refutation
of τ |ρ. By the first property in the definition of robustness, τ |ρ is
minimal, which implies that all clauses in τ |ρ appear as axioms of Γ|ρ.
Therefore, there are paths from these clauses (unrestricted) to C in Γ.
By the second property of robustness, each variable in Varwπ appears in
at least one of these clauses. Since all resolutions in Γ are on variables
not in Varw+1

π , it follows that Varwπ ⊆ Var(C).

Finally, we prove Theorem 2.16, which is restated here for conve-
nience. The proof is a simple variation of the one above (we only have
to make sure that the variables in Varwπ appear in a learned clause).

Theorem 5.3 (Theorem 2.16 restated) For any fixed order π on the
variables and every ϵ > 0 there exist contradictory CNFs τn with
w(τn ⊢ 0) = O(1) not provable in CDCL(π-D, WIDTH-(1 − ϵ)n).
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Proof. The formula used here is Indm[⊕r] where Indm is the Induc-
tion principle

x1 ∧
m−1∧
i=1

(xi ∨ xi+1) ∧ xm,

and r will be chosen as a sufficiently large constant. The natural
resolution refutation of this formula has width O(r).

Fix ϵ > 0. LetR be a successful run in CDCL(π-D) on Indm[⊕r] and
let Π be the natural π-trail simulation of this run given by Theorem
4.1. We begin with some observations about Π that are easily verified
by examining the proof of Theorem 4.1. First, all clauses learned in R
are derived exactly in Π, in the order they appear inR. Second, for any
learning step (C, t′) in R from the state (C, t), the proof Π contains the
connected subproof of C from C corresponding exactly to the sequence
of resolutions used to learn C (Lemma 3.6). Furthermore, the trail t
appears before this subproof in Π.

Let w = (r−2)m and let D be the first almost-w-small clause in Π.
Similar to the proof of Theorem 5.2, it follows that Varwπ ⊆ Var(D)
and all trails appearing before D in Π are (w + 1)-trivial. If D is
not a learned clause, then it appears in the subproof of some learned
clause C. Suppose that C follows from the state (C, t) in R. As is
made clear in Lemma 3.6, all resolutions in the subproof of C are
on variables whose assignments are unit propagations in t. Since t
appears before D, it is (w+1)-trivial, so none of the variables in Varwπ
are resolved on to derive C. This implies all variables in Varwπ are
inherited in C from D.

The result follows by taking r > 2/ϵ so that (r−2)m > (1−ϵ)rm.

6. Conclusion

This paper continues the line of research aimed at better understand-
ing theoretical limitations of CDCL solvers. We have focused on the
impact of decision strategies, and we have considered the simplest ver-
sion that always requires to choose the first available variable, under
a fixed orderings. We have shown that, somewhat surprisingly, the
power of this model heavily depends on the learning scheme employed
and may vary from ordered resolution to general resolution.

The result that CDCL(π-D,ALWAYS-C,ALWAYS-U,DECISION-L)
is not as powerful as resolution supports the observation from prac-
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tice that CDCL solvers with the ordered decision strategy are usually
less efficient than those with more dynamic decision strategies. What
can be proved if DECISION-L is replaced with some other amendment
modeling a different, possibly more practical learning scheme? Fur-
thermore, is it possible that CDCL(π-D,ALWAYS-C,ALWAYS-U) does
not simulate general resolution?

Just as in [6, 37, 3], our simulations use very frequent restarts.
Perhaps the most interesting open question in this area is whether
it is actually necessary. In the language we have introduced, this
amounts to understanding the power of proof systems CDCL(NEVER-
R) and CDCL(ALWAYS-C, ALWAYS-U, NEVER-R), the latter version
being more oriented towards actual CDCL solvers.

We have also proved that our simulations fail quite badly with re-
spect to width (as opposed to size): there are contradictory CNFs τn
refutable in constant width but not belonging to CDCL(π-D,WIDTH-(1−
ϵ)n). The ordering π in our result, however, essentially depends on
τn. Is a uniform version possible? That is, do there exist contradic-
tory CNFs τn refutable in small width that do not belong to (say)
CDCL(π-D,WIDTH-Ω(n)) for any ordering π? Another interesting
question, extracted from [3], asks if τn refutable in small width are
always in (say) CDCL(ALWAYS-C,ALWAYS-U,WIDTH-Ω(n)).

Finally (cf. Remark 6) our model is geared towards “positional
solvers”, i.e., those that are allowed to carry along only the set of
learned clauses and the current trail but are otherwise oblivious to
the history of the run. This restriction is of little importance in the
theoretical, nondeterministic part of the spectrum, but it will make
a big difference if we would like to study dynamic decision strategies
(like those mentioned in [40]), further strengthen the amendments
ALWAYS-C and ALWAYS-U by postulating the behavior in the presence
of multiple choices, etc. It would be interesting to develop a rigorous
mathematical formalism that would include nonpositional behavior as
well.
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[26] Franjo Ivančić, Zijiang Yang, Malay K. Ganai, Aarti Gupta, and
Pranav Ashar. Efficient SAT-based bounded model checking for
software verification. Theoretical Computer Science, 404(3):256–
274, 2008.

[27] Roberto J. Bayardo Jr. and Robert C. Schrag. Using CSP
look-back techniques to solve real-world SAT instances. In
AAAI/IAAI, pages 203–208, 1997.

[28] Chunxiao Li, Noah Fleming, Marc Vinyals, Toniann Pitassi, and
Vijay Ganesh. Towards a Complexity-theoretic Understanding of
Restarts in SAT solvers. In Theory and Applications of Satisfia-
bility Testing – SAT 2020, pages 233–249. Springer, 2020.

[29] Jia Hui Liang, Vijay Ganesh, Ed Zulkoski, Atulan Zaman, and
Krzysztof Czarnecki. Understanding VSIDS branching heuristics
in conflict-driven clause-learning SAT solvers. In Haifa Verifica-
tion Conference, pages 225–241. Springer, 2015.

[30] João P. Marques-Silva. The impact of branching heuristics in
propositional satisfiability algorithms. Progress in Artificial In-
telligence, pages 850–850, 1999.

[31] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search
algorithm for propositional satisfiability. IEEE Transactions on
Computers, 48(5):506–521, 1999.

[32] Ralph Eric McGregor. Automated theorem Proving using SAT.
Clarkson University, 2011.

[33] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT

48



solver. In Proceedings of the 38th Annual Design Automation
Conference, pages 530–535. ACM, 2001.

[34] Nathan Mull, Shuo Pang, and Alexander Razborov. On CDCL-
based proof systems with the ordered decision strategy. In Theory
and Applications of Satisfiability Testing – SAT 2020, pages 149–
165. Springer, 2020.

[35] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solv-
ing SAT and SAT Modulo Theories: From an Abstract
Davis–Putnam–Logemann–Loveland Procedure to DPLL(T ).
Journal of the ACM, 53(6):937–977, 2006.

[36] Jakob Nordström. Pebble games, proof complexity, and time-
space trade-offs. Logical Methods in Computer Science, 9, 2013.

[37] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-
learning SAT solvers as resolution engines. Artificial Intelligence,
175(2):512–525, 2011.

[38] John Alan Robinson. A machine-oriented logic based on the reso-
lution principle. Journal of the ACM (JACM), 12(1):23–41, 1965.

[39] Allen Van Gelder. Pool Resolution and Its Relation to Regular
Resolution and DPLL with Clause Learning. In Logic for Pro-
gramming, Artificial Intelligence, and Reasoning – LPAR 2005,
pages 580–594. Springer, 2005.

[40] Marc Vinyals. Hard Examples for Common Variable Decision
Heuristics. In Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence (AAAI’20), 2020.

49


