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Abstract. We prove a Sum-of-Squares (SoS) degree lower bound for the

planted clique problem on Erdös-Rényi random graphs G(n, 1/2). This prob-
lem is known to have a strong and a weak version, where the former allows SoS

algorithms to use the clique-size constraint x1+...+xn = ω (and all polynomial
identities generated by it). Our degree lower bound is for the strong version, in

the form d = Ω(ϵ2 logn/ log logn) as long as ω = O(n1/2−ϵ). Improving upon

[FK03, MPW15, DM15, HKP+18, BHK+19], this settles the strong planted

clique problem almost optimally in both d and ω.

For techniques, we design pseudo-expectations in a way that is different
from the popular pseudo-calibration. The analysis proceeds with the Johnson

schemes-based method [MPW15] and the approximate factorization technique

[BHK+19], combined into use through certain combinatorial transforms and
a special family of Hankel matrices. As a technical by-product, we also get a

new perspective on the pseudo-expectation in the weak version of the problem.
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1. Introduction

Can one efficiently find a max-size clique in a random graph G ∼ G(n, 1/2)?
This has been a long-standing open problem since its introduction in [Kar76]. A
variant was proposed in [Jer92, Kuč95], known as the planted clique problem: if
additionally plant a random clique of size ω ≫ log n to G, can it be efficiently re-
covered? Information-theoretically this is solvable, since w.h.p. the largest clique in
G has size (2 + o(1)) log n. Computationally, the planted clique problem is widely
believed to be hard on average, and it has been intensively studied, inspiring a
broad range of research directions (cryptography [ABW10], learning [BR13], math-
ematical finance [ABBG11], computational biology [PS+00], etc.). So far, the best
known polynomial-time algorithm works only when ω = Ω(

√
n) [AKS98], which is

a so-called spectral algorithm (see e.g. [HKP+17]).
The sum-of-squares hierarchy (SoS) [Sho87, Par00, Las01] is a stronger family

of semidefinite programming (SDP) algorithms which, roughly speaking, is SDP on
the extended set of variables {xi(1)...xi(d) | i1, ..., id ∈ [n]} according to the degree
parameter d, and it can be significantly more powerful than spectral algorithms and
traditional SDPs (see e.g. [BBH+12, HKP+17]). Recent years have witnessed rapid
development on SoS-based algorithms, which turns out to provide a characterization
of a large class of algorithmic techniques ([BS14, HKP+17]). The SoS proof sys-
tem is the natural proof-theoretic counterpart of SoS algorithms, also known as the
Positivstellensatz system [GV01]: it works with polynomials over R, and given poly-
nomial equalities (axioms) f1(x) = 0, ..., fk(x) = 0 on x = (x1, ..., xn), a proof (that

is, a refutation of the existence of a solution) is −1 =
k∑

i=1

fiqi +
∑

j r
2
j in R[x1, ..., xn]

where q1, ..., qk, r1, ... are arbitrary polynomials on x1, ..., xn over R. Under certain
conditions, in particular when all variables are boolean (x2

i = xi), such an refuta-
tion exists if the axioms have no solution. The degree-d SoS proof system carries
the obvious additional degree restriction, maxi,j{deg(fi) + deg(qi), 2 deg(rj)} ≤ d.
See [O’D17, RW17] for more on the relation between SoS proofs and algorithms.

The average-case hardness of the planted clique problem has a very simple form
in proof complexity: for G ∼ G(n, 1/2), can the proof system efficiently refute the
existence of a size-ω (≫ log n) clique w.h.p.? A lower bound would automatically
give the hardness on any class of algorithms based on the proof system. Given that
the decision version of the spectral algorithm of [AKS98] corresponds to a degree-
2 SoS proof, a SoS degree lower bound potentially can bring us a much better
understanding of algorithmic hardness. The standard problem formulation is the
following.

Definition 1.1. Given an n-vertex simple graph G and a number ω, the Clique
Problem for degree-d SoS proof system has the following axioms.

(1.1)

(Boolean) x2
i = xi ∀i ∈ [n]

(Clique) xixj = 0 ∀{i, j} non-edge
(Size) x1 + ...+ xn = ω

SoS system has a duality, i.e. to show degree lower bound, it suffices to find
a pseudo-expectation whose moment matrix 1 is positive semi-definite (PSD). With
boolean variables (which is our case), this can be demonstrated on multi-linear
polynomials as below. Let X≤d = {xS | S ⊆ [n], |S| ≤ d} for any d ∈ N.

Definition 1.2. A degree-d pseudo-expectation for the Clique Problem on G

is a map Ẽ : Xd → R satisfying the following four constraints when extended by

1The name is simplified; more cautiously, it should be called the pseudo-moment matrix.
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R-linearity.

(Default) Ẽx∅ = 1(1.2)

(Clique) ẼxS = 0, ∀S : |S| ≤ d, G|S non-clique(1.3)

(Size) Ẽ

(
(x1 + ...+ xn)xS

)
= ω · ẼxS ∀S : |S| ≤ d− 1(1.4)

where in (1.4), xA ·xB := xA∪B. To define the last constraint, define the moment

matrix M to be the
(

[n]
≤d/2

)
×
(

[n]
≤d/2

)
matrix2 with M(A,B) = ẼxA∪B, then:

(1.5) (PSDness) M is positive semi-definite.

It is not hard to see that if a degree-d pseudo-expectation exists then there is no
degree-d SoS refutation.

A relaxation of the problem was studied in [BHK+19], asking if an Ẽ as above

exits except with one change: replace Size Constraints by a single inequality Ẽ(x1+
...+xn) ≥ ω. Henceforth, we call the Clique Problem (Definition 1.1) Exact Clique
and this relaxation Non-Exact Clique.3

How to deal with the exact problem is a subtle but important open problem.
On the problem itself, lower bounds on the non-exact (weak) formulation indeed
gave the important algorithmic message, but they do not rule out the possibility
that SoS with additional constraint x1 + ... + xn = ω can output “infeasible” (cf.
the similar situation for random CSP [KOS18]). The distinction between “weak”
and “strong” formulations also involves how one thinks the SoS SDP optimization
problem should be formulated.

Perhaps more importantly, it is about the techniques of proving average-case SoS
lower bounds. Current techniques from the so-called pseudo-calibration heuristic
[BHK+19] tend to deal successfully with “soft” constraints (inequalities, or usually
just one bound on some pseudo-expectation value) while being poor at handling
“hard” constraints (equalities). Finding techniques to deal with the latter is in
need. Progress toward this goal is made in [KOS18] for random CSPs, where the
idea is that the hard constraint is a sum of local constraints, each can be satisfied
by a real distribution on local variables; the locality is formed by a notion of graph
closure which in turn is based on expanders (cf. [Gri01, Sch08, BGMT12, BCK15,
KMOW17]). For Exact Clique whose constraints do not have a similarly clear
global-local structure, it seems unlikely a similar strategy could work.

Lastly, there are concrete applications of a lower bound on Exact Clique to other
problems, e.g. the approximated Nash-Welfare [KM18]. Techniques for proving
such a bound might also help deal with closely related problems like the coloring
problem and stochastic block models [KOS18, KM21, JPR+21].

1.1. Previous work. For lower bounds, on Exact Clique, [FK03] showed that

the (weaker) d-round Lovasz-Schrijver system cannot refute it for ω = O(
√

n/2d),

[MPW15] proved degree-d lower bound on SoS for ω = Õ(n1/d) which was later

improved to Õ(n1/3) for d = 4 [DM15] and further to Õ(n
1

⌊d/2⌋+1 ) for general d
[HKP+18]. For Non-Exact Clique, [BHK+19] proved the almost tight lower bound
d = Ω(ϵ2 log n) for ω = n1/2−ϵ, ϵ > 0 arbitrary.

2d is always assumed to be even.
3There is no “planted clique” in the problem formulation now, but traditionally this is still called
the planted clique problems due to the algorithmic motivation.
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For upper bounds, if ω = Ω(
√
n) then degree-2 SoS can refute Exact Clique

with high probability [FK00]. On the other hand, if ω > d ≥ 2.1 log n, a degree-
d SoS refutation for Exact Clique is not hard to see, which we include below for
completeness.

Observation 1.1. (Upper bound for Exact Clique if ω > d = 2.1 log n) Note that
(x1 + ... + xn)

d = ωd modulo the Size Axiom. The LHS can be multi-linearly
homogenized to degree-d by xS = 1

ω−|S|
∑

i/∈S xS∪{i} by this axiom again, after

which w.h.p. all terms are 0 by Clique Axioms since there is no size-2.1 log n clique
in G ∼ G(n, 1/2) w.h.p.. This gives the contradiction 0 = 1. Note the proof is
actually in the weaker system Nullstellensatz (see e.g. [BIK+96]).

1.2. Results of the paper. Our main result is the following.

Theorem 1. Let ϵ > 0 be any parameter, ω = n1/2−ϵ. W.p. > 1 − n−4 logn

over G ∼ G(n, 1
2 ), any SoS refutation of Exact Clique requires degree at least

ϵ′ log n/ log log n, where ϵ′ = min{ϵ2, 1
402 }/2000.

We also have the following result. It does not allow to improve the lower bound
but provides a new, hopefully simplifying, perspective on certain techniques that
were used for the non-exact problem.

Theorem 2. (Informal) For the Non-Exact Clique problem,
(1). There is a way to define the correct pseudo-expectation from simple inci-

dence algebra on the vertex-set;
(2). For the resulting moment matrix M , there is a weakened version of the

quadratic equation M = NN⊤ whose solvability is given by, and actually equivalent
to, a general graph-decomposition fact from which a “first-approximate” diagonal-
ization of M can be deduced.

2. Key technical ideas

This section is an overview of the proofs. The two results use almost completely
different ideas, so we treat them separately in the proof overview:

• Theorem 1: section 2.1 to 2.4.
• Theorem 2: section 2.5.

More precisely, (where “→” points to the sections in the actual proof)

Pseudo-expectation design: • A common idea (the paragraph below)

• Non-exact case (sec. 2.5 first half → sec. 3.1)

• Exact case (sec.2.1 → sec. 3.2)

Proving PSDness: • Recursive factorization (→ sec. 6.3)

• Lower bound proof (sec. 2.1 to 2.4 → sec. 5 to 8)

We also give a conceptual simplification of the analysis in [BHK+19], which can be
read independently:

• Deduction of the coarse diagonalization (sec. 2.5 second half → sec. 6.2).

Let us start with the pseudo-expectation design. Suppose we deal with degree-d
SoS i.e. deal with size ≤ d-subsets of [n], then as the common idea in complexity
theory, we take a parameter τ ≫ d (think of d ≪ τ ≪ log n) and make our
construction on all size ≤ τ -subsets, in hope to later have a good control on its
behavior on all size ≤ d subsets. This idea is most clearly demonstrated in the
non-exact case (section 3.1.2), and is also the reason for the τ -parameter for the
exact case (in (2.1) below).
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2.1. The exact pseudo-expectation. The constraints force us to design the

pseudo-expectations in a top-down manner, as follows. Fix ẼxS for all |S| = d

first, then recursively set ẼxS ← 1
ω−|S|

∑
i/∈S

ẼxS∪{i} if |S| < d. The Clique Con-

straints (1.3) will be satisfied if ẼdxS factors through 1G is clique on S as functions
on G. Inspired by (almost all) previous work in the literature, we use Fourier
characters and consider

(2.1) ẼxS =
∑

T :|V (T )∪S|≤τ

F (|V (T ) ∪ S|) · χT ∀S ⊆ [n], |S| = d

for some function F : N→ R. We call F a d-generating function.4 Thus

ẼxS =
1(

w−d+u
u

) ∑
T :|V (T )∪S|≤τ

χT ·
[ u∑
c=0

(
|V (T ) ∪ S| − d+ u

c

)(
n− |V (T ) ∪ S|

u− c

)

· F (|V (T ) ∪ S|+ u− c)

]
where u := d− |S|, for all S with |S| ≤ d. One key novelty we bring is the choice

(2.2) F (x) =
(x+ 8τ2)!

(8τ2)!
· (ω

n
)x.

The moment matrix M̃ will be M̃(A,B) =
∑

T :|V (T )∪A∪B|≤τ

M̃(A,B;T )χT forA,B ⊆

[n], |A|, |B| ≤ d/2, where M̃(A,B;T ) =
(2.3)

1(
ω−d+u

u

)[ u∑
c=0

(
|V (T ) ∪A ∪B| − (d− u)

c

)(
n− |V (T ) ∪A ∪B|

u− c

)

·
(
|V (T ) ∪A ∪B|+ u− c+ 8τ2

)
!

(8τ2)!
· (ω

n
)|(V (T )∪A∪B)|+u−c︸ ︷︷ ︸

F
(
|V (T )∪A∪B|+u−c

)
]
,

where u = d− |A ∪B|.

This seemingly mysterious choice of F is ultimately for proving the PSDness of

M̃ , but it seems can be seen only after a series of technical transformations (Remark
2.1, 3.3). It will be very interesting to know if there is a priori an explanation of
it. See Remark 3.2, 7.1 for why some traditional choices from the literature that
simulate some planted distributions seem cannot work here.

2.2. Hadamard decomposition and Euler transform. For the exact problem,
using a standard SoS homogeneity reduction (Lemma 4.1), it suffices to prove PS-

Dness of the
(
[n]
d/2

)
×
(
[n]
d/2

)
principal minor of M̃ . Denote this minor by M . One

unpleasant feature of M is that in its expression (2.3) the parameter u = |A ∩ B|
appears in a deeply nested way. To analyze M (in particular, get a clue of how to
diagonalize it), we resolve this intricacy in two steps.

First, M =
∑ d

2
c=0 mc ◦Mc where “◦” is the Hadamard product, and mc, Mc are

matrices as follows. For all |I|, |J | = d/2,

(2.4) mc(I, J) =
1(

ω−d+u
u

)ωu−c where u denotes |I ∩ J |;

4To be distinguished from the usual generating functions for sequences.
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(2.5)

Mc(I, J) =


∑

T :|V (T )∪I∪J|≤τ

χT ·Mc(|I ∩ J |, |V (T ) ∪ I ∪ J |), if |I ∩ J | ≥ c;

0, o.w.

whose coefficients are

Mc(u, a) =

(
a− (d− u)

c

)(
n− a

u− c

)
n−(u−c) (a+ u− c+ 8τ2)!

(8τ2)!
(
ω

n
)a

where u = |I ∩ J |, a = |V (T ) ∪ I ∪ J |.
The intuition is to let mc carry (as much as possible) the “purely” vertex-set-

based information, |I ∩ J |, so that the second factor Mc will be left with (mainly)
edge-set-based information. As can be expected, in the analysis we will also treat
mc,Mc’s separately.

The more difficult part is Mc. In fact, we will further remove the dependence on
|I∩J | in Mc(I, J) by one more step: a decomposition Mc =

∑
R∈(

[n]

≤ d
2
)

MR
c where each

MR
c is supported on rows and columns whose index contains R, and the expression

of MR
c ’s can be derived from Mc by Euler transform. In summary, we will prove:

Lemma 2.1. (ΣΠ-decomposition of M , Lemma 5.2)

M =

d
2∑

c=0

mc ◦

 ∑
R∈( [n]

≤d/2)

MR
c

 =
∑

R∈( [n]
≤d/2)

 |R|∑
c=0

mc ◦MR
c

(2.6)

where each mc is by (2.4) and MR
c has the following expression. First, MR

c = 0 if
|R| < c. Also if R ̸⊆ I ∩ J then MR

c (I, J) = 0. Finally, if |R| ≥ c and R ⊆ I ∩ J ,
then MR

c (I, J) =
∑

T :|V (T )∪I∪J|≤τ

MR
c (I, J ;T )χT where, denoting a = |V (T )∪I ∪J |,

MR
c (I, J ;T ) = (ωn )

a · Yc(|R|, a) and

(2.7) Yc(r, a) =


r∑

l=c

(−1)r−l
(
r
l

)(
a+l−d

c

)(
n−a
l−c

)
n−(l−c) (a+l−c+8τ2)!

(8τ2)! , if r ≥ c;

0, o.w.

Moreover, for all 0 ≤ c ≤ r ≤ d/2 and 0 ≤ a ≤ τ , |Yc(r, a)| < τ5τ .

Intuition for analysis. To analyze (2.6), the intuition is that the first factor
mc “decreases” in c and m0 is “very positive”; while for fixed R, MR

0 is positive
and other MR

c ’s (c > 0) are “not too large”. This is expounded by the following
two lemmas.

Lemma 2.2. For each c = 0, ..., d/2, m0 = ωm1 = ... = ω
d
2m d

2
≻ d

2ω Id.

Lemma 2.3. (Main Lemma) In (2.6), w.p. > 1 − n−5 logn the following hold.

For all R ∈
(

[n]
≤d/2

)
, let PR = {I ∈

(
[n]
d/2

)
| R ⊆ I},

(1). MR
0 ⪰ n−ddiag(C̃l)PR×PR ;(2.8)

(2). ± ω−cMR
c ⪯ n−c/6 ·MR

0 , ∀0 < c ≤ |R|.(2.9)

These two lemmas directly imply M(G) ⪰ n−d−1diag(C̃l(G))( [n]
d/2)×(

[n]
d/2)

w.h.p.,

and Theorem 1 is an easy corollary of this (Cor. 5.1, 5.2).

The proof of Lemma 2.2 is relatively easier using Johnson schemes (similar to
[MPW15], see Lemma 5.1). Below we demonstrate the idea for proving the Main
Lemma.
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2.3. Recursive factorization: an extension. To prove the Main Lemma, an
important step is to derive an approximate diagonalization of MR

c , for which we
use the recursive factorization technique of [BHK+19]. In section 7 we will derive

an approximate PSD factorization MR ≈ L̃R (−)
(
L̃R
)⊤

. This we roughly describe

as below.

Lemma 2.4. (Recursive factorization, Lemma 7.2) For any R ∈
(

[n]
≤d/2

)
and 0 ≤

c ≤ |R|, we have the following decomposition.

(2.10) MR
c = L̃R ·

[
Dτ

(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
Dτ

]
·
(
L̃R
)⊤

+ ER
c

where L̃R is some matrix of dimension
([n]

d
2

)
×
(( [n]

≤ d
2

)
× (τ + 1)

)
, Dτ is the diagonal

matrix diag
(
(ωn )

|A|
2

)
A⊆[n],|A|≤d/2

⊗ Id{0,...,τ}×{0,...,τ}, and the “middle matrices”

QR
c,k’s are (τ + 1) × (τ + 1)-blocked, each block of dimension

( [n]
≤ d

2

)
×
( [n]
≤ d

2

)
. The

“error” ER
c (G) is supported within rows and columns that contains R and is clique

(given G), and w.p. > 1− n−9 logn,
∥∥ER

c

∥∥ < n−ϵτ/2.

For the reason of the “larger” dimension of matrices, see Remark 7.1.

2.4. Proving PSDness: encounter with Hankel matrices. With Lemma 2.2
and 2.4 at hand, the following is the key step towards the Main Lemma.

Lemma 2.5. W.p. > 1− n−8 logn over G, the following holds: for all R ∈
(

[n]
≤d/2

)
,

(1). QR
0,0 −QR

0,1 + ...±QR
0, d2
⪰ τ−7τ · diag

(
C̃l
)
SR×SR

, where SR = {(A, i) ∈(
[n]

≤d/2

)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d

2};

(2). ∀0 < c ≤ |R|, ±ω−c
(
QR

c,0 −QR
c,1 + ...±QR

c, d2

)
⪯ n−c/4 · diag

(
C̃l
)
SR×SR

.

To prove this lemma, modulo somewhat standard steps (three Lemmas 8.2, 8.3,
8.4) the final technical challenge is: show the positiveness of E[QR

0,0] (Corollary 8.1).
We describe below how this is done. After simplification, the real task is to

analyze the positiveness of the following matrix5:

(2.11)

r∑
l=0

(−1)r−l

(
r
l

)
l!
·Hτ, l+8τ2 for any 0 ≤ r ≤ d/2

where {Hm,t} is the family of (m+ 1)× (m+ 1)-matrices

Hm,t(i, j) = (i+ j + t)! ∀0 ≤ i, j ≤ m.

This is a special family of the so-called Hankel matrices whose (i, j)th element
depends only on i+ j. General Hankel matrices seem to arise naturally in moment
problems but are notoriously wild-behaving in many aspects (see e.g. [Tyr94]).
Fortunately enough, for the special family here we can manage to get a relatively
fine understanding; we term this family factorial Hankel matrices. The key
observation is that they have a concrete recursive diagonalization (Proposition 8.2),
resulting in the following.

Proposition 2.1. If parameters m, t, r satisfy

(2.12) t+ 1 > 8 ·max{r2,m},
then Hm,t+1 ⪰ 2r2Hm,t.

Remark 2.1. Condition (2.12) is why “8τ2” is used in the numerator of F , (2.2).

5The subscripts are not exactly as in the problem but suffice to demonstrate the spirit.
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With this proposition, it is relatively easy to complete the proof of the Lemma
2.5, hence the Main Lemma. This completes the proof overview of Theorem 1.

2.5. Ideas for Theorem 2. We now explain the idea behind Theorem 2, that is,
a different perspective on the techniques used in the non-exact problem.

On defining the pseudo-expectation. Previously, the pseudo-expectation is

obtained via the so-called pseudo-calibration method. We define the same Ẽ but
from a different perspective, the incidence algebra on the vertex-set, which is also
a simple refinement of the construction in [FK03].

The ζ-matrix on [n] is the 2[n]× 2[n] 0-1 matrix with ζ(A,B) = 1 iff A ⊆ B. We
observe that ζ reveals the basic linear structure of the true expectation on cliques if

G is a single planted clique. So we use ζ to define Ẽ. That is, we define a degree-τ
approximate-distribution vector pτ (G) first—it approximates the distribution of τ
cliques inside a planted clique, with a standard twist so that it is only supported

on cliques of the given G (3.5)—then take the vector ζd,τ · pτ (G) as Ẽx (Def. 3.3).
Here, (·)τ means to truncate the matrix or vector to indices whose size ≤ τ . In this

way, Ẽ inherits the linear structure posed by ζ too.

On deducing the first-approximate diagonalization. The goal is to come
up with a coarse, “first-approximate” diagonalization of the moment matrix. We
deduce its form in two steps: 1. Analyze the expectation of the matrix; 2. Ob-
serve that the (imaginary) diagonalization of the matrix is in essence a quadratic
equation, which we weaken to a proper “modular” version to solve.

We call step 2 the mod-order analysis (section 6.2), whose underlying idea is
inspired by and similar to the more broad dimension-analysis in physical sciences:
weaken the equation to its most significant part in a well-defined way (Def. 6.1).
One ingredient towards defining the weakening is the norm information on certain
pseudo-random matrices (the graph matrices).

The resulting weakened equation has a nice structure to work with (Lem. 6.2,
Cor. A.1). Using standard techniques for studying algebraic equations—actually a
simple polarization (Appendix A.2)—we can deduce a solvability condition for the
polarized equation, which translates to the existence of a general graph-theoretic
structure (equation (A.19) and Fact A.1). The “coarse” diagonalization is then
formulated based on this structure.

To demonstrate in more detail, it suffices to concentrate on the
(
[n]
d/2

)
×
(
[n]
d/2

)
-

minor of the moment matrix, denoted by M ′:

M ′(I, J) =
∑

T :|V (T )∪I∪J|≤τ

(
ω

n
)|V (T )∪I∪J|χT , ∀I, J : |I| = |J | = d/2.

Step 1: expectation. By using Johnson schemes as in [MPW15], we get an

explicit decomposition E[M ′] = CC⊤ where C is
(
[n]
d/2

)
×
(

[n]
≤d/2

)
, and actually with

a fine understanding of the spectrum of E[M ′].

Step 2: mod-order analysis. Given E[M ′] = CC⊤ from Step 1, ideally we
hope to solve the quadratic matrix equation

(2.13) M ′ = NN⊤

in N with E[N ] = C, and N extending C by non-trivial Fourier characters. Two
observations about (2.13) follow.

(1) Order in ω
n . Entries of M ′ all have a clear order in ω

n . Like in fixed-
parameter problems, we treat ω

n as a distinguished structural parameter and try to
solve the correct power of ω

n in N first.
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(2) Norm-match. A closer look into CC⊤ shows

(2.14)
∥∥CrC

⊤
r

∥∥ ≈ (d/2
r

)
· (ω

n
)d−rnd/2−r, r = 0, ..., d/2,

where C = (C0, ..., Cd/2), each Cr having column dimension
(
[n]
r

)
. Assume N =

(N0, ..., Nd/2). Then we expect NrN
⊤
r to concentrate around CrC

⊤
r for each r, and

so expect the norm of the non-constant part of NrN
⊤
r to be bounded by (2.14).

Under this condition, the known tight norm bounds on related matrices would tell
us, for each possible appearing term in N , the least order of ω

n in its coefficient.

With these observations, we can weaken equation (2.13) to a simple “modu-
lar version” that is more informative about the (imaginary) solution N . Namely,
abstract (ωn ) as a fresh variable α and work in ring R[α, {χT }], consider

(2.15) (M ′ mod high order) = (N mod high order) · (N⊤ mod high order)

where “order” means power of α (think of α as an “infinitesimal”). We call (2.15)
the mod-order equation and its analysis the mod-order analysis. For details see
Definition 6.1.

We feel that this approach leads us more naturally to the realization of using
the graph-theoretic structure beyond guesses, and the simple general idea behind
the mod-order analysis might hopefully find other applications.

2.6. Structure of the paper. In section 3 we define the pseudo-expectations and
show Theorem 2(1). In section 4 we recall some fundamental tools for analysis. The
proof of the main theorem consists of three steps: section 5 is the first step (com-
binatorial transforms), section 6 and 7 is the second step (recursive factorization,
where in 6 we will refresh the technique of recursive factorization and show Theo-
rem 2(2)), and section 8 is the last step (structural and pseudo-random matrices).
The paper is concluded in section 9 with open problems.

Notation. I, J,A,B, S will be used to denote vertex-sets, and T for edge-sets.
E(S) :=

(
S
2

)
. G denotes a simple graph on the vertex-set [n]. “T ⊆ E([n])” will

be omitted in summation when there is no confusion. “⊔” means disjoint union.
Finally, we use y(n) = O(x(n)) to mean that there is some absolute constant c s.t.
y(n) ≤ cx(n) for all n.

Parameter regime. Throughout the paper,

ϵ = any positive parameter (wlog ϵ <
1

40
);

ω = n1/2−4ϵ;

τ =
ϵ

200
log n/ log log n;

d =
ϵ

100
τ.

3. Pseudo-expectations

As a warm-up, in section 3.1 we construct the non-exact pseudo-expectation. In
section 3.2 we give the construction for the exact case.

3.1. Non-exact case: a new perspective. Given a graph G we can think of a

degree-d pseudo-expectation as assigning a number ẼxS to each subseteq S ⊆ [n] of

size ≤ d, so that the resulting vector Ẽx looks indistinguishable to the expectation
resulted from the case when a random-ω clique is planted, from the view of degree-d
SoS. As explained at the beginning of section 2, to make such an assignment we
first go beyond to slightly larger subsets of size τ . We define an “approximate
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distribution” on size ≤ τ -cliques in G then use it to generate pseudo-expectation
on all size ≤ d-subsets.

3.1.1. ζ-function and Möbius inversion. Given n-vertex graph G, let p(G) ∈ R2[n]

be the max-clique-indicator vector. Then q(G) := ζ · p(G) is a vector supported
exactly on all cliques in G, where ζ is the 2[n] × 2[n] matrix

(3.1) ζ(A,B) = 1 iff A ⊆ B, ∀A,B ⊆ [n].

In particular, if G is a single clique then q(G) is the clique-indicator. We will use

ζa,b to denote the submatrix of ζ on rows
(
[n]
≤a

)
and columns

(
[n]
≤b

)
, and use similar

notation on all related vectors. Consider when G is just a randomly planted clique.

Its distribution can represented by a plant-distribution vector pplant ∈ R2[n]

, and
let the output-expectation qout be the vector of cliques in G in expectation. Then
qout = ζ · pplant. We call such a pair (pplant, qout) a plant-setting.

Definition 3.1. (Two plant-settings) The exact plant-setting (p0, q0) is

(3.2) p0(S) =
1(
n
ω

) if |S| = ω and 0 otherwise, q0(S) = (ζp0)(S) =

(
n−|S|
ω−|S|

)(
n
ω

) .

I.e. in this setting a random size-ω subseteq is chosen to be the planted clique.
The independent plant-setting (p1, q1) is

(3.3) p1(S) = (
ω

n
)|S|(1− ω

n
)n−|S|, q1(S) = (ζp1)(S) = (

ω

n
)|S|

for all S ⊆ [n]. I.e. any vertex is included in the planted clique w.p. ω
n indepen-

dently.

Thus the matrix ζ reveals the basic linear relations between (pplant, qout). It is
upper-triangular (with row- and column-indices ordered in a size-ascending way),
invertible, with the inverse the Möbius inversion matrix: ζ−1(A,B) = (−1)|B\A|

if A ⊆ B, and 0 otherwise. Note (ζa,a)
−1 = (ζ−1)a,a, ∀a ≤ n. Moreover, if let the

pseudo-expectation be defined as Ẽx = p ∈ R2[n]

for some vector p, then the “full”
2[n] × 2[n] moment matrix is

(3.4) MSoS = ζdiag(p)ζ⊤.

In particular, if p is a nonnegative vector then MSoS is immediately PSD.

3.1.2. Non-exact pseudo-expectation for (p1, q1). GivenG, we first construct a degree-
τ “approximate plant-distribution”, pτ (G), that simulates the plant-distribution

and that pτ (G) is supported on size ≤ τ -cliques in G. Then we can take Ẽx =
ζd,τ · pτ (G) so that the result inherits the linear structure posed by ζ.

What is this pτ (G)? From the view of approximation it seems taking ζ−1
τ,τ (q1)τ

would suffice, while to make it supported on cliques, same as in [FK03] we add a
clique-indicator factor, thus

(3.5) pτ (G)(S) =
(
2|(

S
2)|ClS(G) · ζ−1

τ,τ (q1)τ

)
(S) ∀S ⊆ [n] of size ≤ τ

where ClS(·) is the clique indicator function and 2|(
S
2)| is for re-normalization.

Definition 3.2. For any S ⊆ [n], the scaled clique-indicator is C̃lS(G) :=

2|(
S
2)|ClS(G), which is a function on G. C̃l(G) is the (column) vector of them over

a family of S’s, which will always be clear from the context.
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Definition 3.3. The non-exact pseudo-expectation is

(3.6) Ẽnonexact = ζd,τ · pτ (G) = ζd,τ · (C̃l(G) ◦ ζ−1
τ,τ ) · (q1)τ ∈ R(

[n]
≤d)

where “◦” is the Hadamard product6.

In short, Ẽnonexact refined the construction in [FK03] by one step: factor through
size-τ subsets (in the only non-trivial way) so that the size-d output inherits linear
relations posed by ζ. Similarly to (3.4), the resulting moment matrix is

(3.7) Mnonexact(G) = ζd/2,τ · diag (pτ (G)) · (ζd/2,τ )⊤.

Remark 3.1. Ẽnonexact looks like a true expectation on cliques in G, namely, if
pτ (G) were nonnegative then the PSDness of Mnonexact(G) would be immediate.
Alas, this is not true by computation7. That the PSDness could still possibly hold
is because ζd/2,τ in (3.7) is degenerate.

Lemma 3.1. (Theorem 2(1)) For all S ⊆ [n] s.t. |S| ≤ d,

(3.8) ẼnonexactxS =
∑

T :|V (T )∪S|≤τ

(
ω

n
)|V (T )∪S|χT .

Proof. Note C̃lS =
∑

T⊆E(S) χT for all S. Now for S, S′ with appropriate size

bound,

(
C̃l ◦ ζ−1

τ,τ

)
(S, S′) =

{∑
T∈E(S) χT · (−1)|S

′\S|, if S ⊆ S′

0, o.w.
;

(
ζd,τ · (C̃l ◦ ζ−1

τ,τ )
)
(S, S′) =

∑
S′′:S⊆S′′⊆S′

 ∑
T⊆E(S′′)

χT · (−1)|S
′\S′′|


=

∑
T :V (T )∪S⊆S′

χT ·

 ∑
S′′:V (T )∪S⊆S′′⊆S′

(−1)|S
′\S′′|


=

∑
T :V (T )∪S⊆S′

χT · δS′=V (T )∪S =
∑

T :V (T )∪S=S′

χT .

Therefore, ẼnonexactxS =

(
ζd,τ · (C̃l ◦ ζ−1

τ,τ )(q1)τ

)
(S) =

∑
S′:|S′|≤τ

 ∑
T :V (T )∪S=S′

χT · (
ω

n
)|S

′|


=

∑
T :|V (T )∪S|≤τ

χT · (
ω

n
)|V (T )∪S|

for all S with |S| ≤ d. □

6In general (M1 ◦M2) ·M3 ̸= M1 ◦ (M2 ·M3), but they are equal if M1 is a column vector.
7One intuition, suggested by a referee, is that any true expectation on cliques has objective value∑n

i=1 xi = O(logn) w.h.p., now if pτ (G) were nonnegative then it would be almost a distribution

since Ẽnonexact(xϕ) ≈ 1 (can be checked by (3.8)) with a problematically big objective value

n
1
2
−ϵ.
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3.2. Exact case pseudo-expectation. Now we construct a pseudo-expectation
for the exact problem.

First, there is a generic way to generate possible candidates. That is, the Size

Constraints (1.4) suggests to define ẼxS in a top-down fashion: fix ẼxS for all
|S| = d first, then recursively set

(3.9) ẼxS ←
1

ω − |S|
∑
i/∈S

ẼxS∪{i}

for smaller-sized S’s. If denote by Ẽdx the vector of the assignments for S’s s.t.

|S| = d, then this amounts to multiplying Ẽdx by the following matrix.

Definition 3.4. The d-filtration matrix Fild,=d, of dimension
(
[n]
≤d

)
×
(
[n]
d

)
, is

(3.10) Fild,=d(A,B) =

{(
ω−|A|
d−|A|

)−1
, if A ⊆ B (where |B| = d);

0, otherwise.

Definition 3.5. Given vector Ẽdx which assigns a value to each d-subseteq S ⊆ [n],

the exact pseudo-expectation generated by Ẽdx is

(3.11) Ẽx := Fild,=d · Ẽdx.

Lemma 3.2. The pseudo-expectation in Definition 3.5 satisfies Size Constraints

(1.4), regardless of the choice of Ẽdx.

Proof. For |S| < d, take vector vS by vS(S
′) =


ω − |S|, if S′ = S;

−1, if S′ ⊇ S, |S′\S| = 1;

0, otherwise

which is in R(
[n]
≤d). Then it suffices to show v⊤S Fild,=d = 0, which is a direct check. □

The Ẽ generated like so should further satisfy:

(1) Clique Constraints (1.3);
(2) PSDness Constraint (1.5);

(3) Default Constraint (1.2) (so far we only have ω · Ẽx∅ = Ẽx1 + ...+ Ẽxn).

Item (3) is not a problem as long as Ẽx∅ > 0, since we can always rescale everything

by (Ẽx∅)
−1 without affecting other constraints.

Remark 3.2. (Example) The following construction seems natural. Combining
Def. 3.5 with the perspective from section 3.1.2, we can take (3.6) with the exact
plant-setting (p0, q0), followed by multiplying Fild,=d:

ẼexamplexS = Fild,=d ·
(
ζd,τ · (C̃l(G) ◦ ζ−1

τ,τ ) · (q0)τ
)
.

As can be checked, this satisfies the Clique Constraints. It also has a nice Fourier
expression: by some computation which we omit here, modulo provably negligible er-

ror the resulting matrix is Mexample(I, J) =
∑
T :

|V (T )\(I∪J)|≤τ−d

(n−|V (T )∪I∪J|
ω−|V (T )∪I∪J|)

(nω)
χT . The

only problem, however, is that we don’t know how to prove the PSDness. Despite a
transparent similarity to the previous expression (3.8), a similar proof breaks down
seriously here due to the loss of nice arithmetic structure when changing from func-

tion (ωn )
x (in (3.8)) to

(n−x
ω−x)
(nω)

. See also Remark 7.1.

Now we construct an Ẽd in Definition 3.5. With the idea stated in section 2.1,
we give the construction matter-of-factly here. First, take the pseudo-expectation
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for |S| = d in the form ẼxS =
∑

T :|V (T )∪S|≤τ

χT · F (|V (T ) ∪ S|) for some function F .

We call F a d-generating function, to be chosen shortly after. For now, for any
|S| ≤ d, by (3.10) the pseudo-expectation has form: denote u = d− |S|,

(3.12)

ẼxS =
1(

w−d+u
u

) ∑
T :|V (T )∪S|≤τ

χT ·
[ u∑
c=0

(
|V (T ) ∪ S| − d+ u

c

)(
n− |V (T ) ∪ S|

u− c

)

· F (|V (T ) ∪ S|+ u− c)

]
.

Lemma 3.3. (3.12) always satisfy Clique and Size Constraints (1.3),(1.4).

Proof. It satisfies Size Constraints by Lemma 3.2. For Clique Constraints, fix-

ing S, the “[...]”-part in (3.12) only depends on |V (T ) ∪ S|, so ẼxS has the
form

∑
T :|V (T )∪S|≤τ a|V (T )∪S|χT =

∑
k

∑
T :|V (T )∪S|=k akχT , the inner sum factors

through C̃lS =
∑

T⊆E(S) χT . Thus, M(I, J)(G) = 0 if C̃lI∪J(G) = 0. □

Definition 3.6. (Exact d-generating function) We choose

F (x) :=
(x+ 8τ2)!

(8τ2)!
· (ω

n
)x.

Remark 3.3. As already mentioned in section 2.1, the design of F , especially
its first factor, is technical; the goal is to make the resulting M positive. The
numerator (x + 8τ2)! will be used in Prop. 8.3, where the 8τ2 can be replaced by
larger polynomials in τ . The (8τ2)! in denominator is added for convenience (see
Remark 3.4).

Definition 3.7. The exact moment matrix M̃ is defined as M̃(A,B) =
∑

T :|V (T )∪A∪B|≤τ

M̃(A,B;T )χT

for all A,B ⊆ [n], |A|, |B| ≤ d/2, where M̃(A,B;T ) =
(3.13)

1(
ω−d+u

u

)[ u∑
c=0

(
|V (T ) ∪A ∪B| − (d− u)

c

)(
n− |V (T ) ∪A ∪B|

u− c

)

·
(
|V (T ) ∪A ∪B|+ u− c+ 8τ2

)
!

(8τ2)!
· (ω

n
)|(V (T )∪A∪B)|+u−c︸ ︷︷ ︸

f
(
|V (T )∪A∪B|+u−c

)
]
.

Here we denoted d− |A ∪B| by u.

Remark 3.4. In (3.13), the “most significant” factor is (ωn )
|V (T )∪A∪B| · ω−c, if

notice
(n−|V (T )∪A∪B|

u−c )
(ω−d+u

u )
ωun−(u−c) ≪ ω, n. One thing to keep in mind is that factors

like (|V (T )∪A∪B|+u−c+8τ2)!
(8τ2)! are qualitatively smaller than ω in our parameter regime.

4. Some preparation

In this section, we prepare some basic tools for analysis.

4.1. Homogenization for Exact Clique. With the Size Constraints (1.4) sat-

isfied, any moment matrix can be reduced to its
(
[n]
d/2

)
-principal minor, which is

slightly more convenient to work with. The following homogeneity trick is stan-
dard in the SoS literature.



14 SOS LOWER BOUND FOR EXACT PLANTED CLIQUE

Given any degree-d moment matrix MdSoS(G) that satisfies the Size Constraints

(1.4), let M(G) be its principal minor on
(
[n]
d/2

)
×
(
[n]
d/2

)
.

Lemma 4.1. MdSoS(G) is PSD ⇔ M(G) is PSD.

Proof. The⇒ part is trivial. Now supposeMdSoS is not PSD, then ∃a ∈ R(
[n]

≤d/2) s.t.
a⊤MdSoSa = −1. With the presence of boolean constraints (i.e. we can additionally

define Ẽ(x2
i · p) := Ẽ(xi · p) for all i and all polynomial p of degree ≤ d − 2),

this is equivalent to Ẽ(g2) = −1 for some multi-linear polynomial g = a⊤x =∑
|S|≤d/2 aSxS . Now substitute every xS (|S| < d/2) in g by the corresponding

linear combination of {xS′ | |S′| = d/2} from (3.9), we get a multi-linear, degree-
d/2 homogeneous g1. Since g − g1 thus g2 − g21 is a multiple of the constraints,

(4.1) Ẽ(g21) = Ẽ(g2) = −1.

Assume g1 = bTx where x denotes (xS)|S|=d/2. Then (4.1) says b⊤Mb = −1, so M
is not PSD. □

4.2. Concentration bound on polynomials. The following bound on random
polynomials is standard.

Lemma 4.2. Suppose a < log n, and p is a polynomial

p =
∑

T : |V (T )|=a

c(T )χT cT ∈ R

and C > 0 is a number s.t. |c(T )| ≤ C for all T . Then W.p. 1− n−10 logn over G,

(4.2) |p(G)| < C · na/22a
2

n4 log logn.

Proof. For all k ∈ N,

(4.3) p2k =
∑

T1,...,T2k: |V (Ti)|=a

c(T1)...c(T2k)χT1
...χT2k

,

and we take the expectation of this. Each E[χT1
...χT2k

(G)] ̸= 0 (i.e. equals 1) iff
every edge appears even times in T1, ..., T2k, which implies |V (T1 ∪ ... ∪ T2k)| ≤
1
2 · 2ka = ka. There are at most ka

(
n
ka

)
< nka many choices of V (T1 ∪ ... ∪ T2k).

For each choice, there are at most
(
ka
a

)
· 2(

a
2) < (ka)a · 2a2/2 many ways to choose

each Ti. Therefore,

E[p2k] ≤ C2k · nka
(
(ka)a2a

2/2
)2k

:= N2k where N = Cna/2 · (ka)a · 2a
2/2.

By Markov inequality, Pr
[
p2k > (2N)2k

]
< 2−2k. Take k := 10 log2 n, we get that

w.p. > 1−n−10 logn, |p(G)| < 2N < C ·na/22a
2

n4 log logn for all large enough n. □

4.3. Norm concentration of pseudo-random matrices. Like in almost all pre-
vious work on the subject, the norm bound on certain pseudo-random matrices
called graph matrices ([AMP16]) will be a fundamental tool for us. Intuitively,
such a matrix collects all possible Fourier characters from embeddings of a fixed
small graph.

Definition 4.1. (cf. [AMP16, MPW15, HKP15, JPR+21]) A ribbon R is a triple
(A,B;T ) where A,B are vertex-sets and T is an edge set. A,B are called the side
sets, or individually the left and right set of R, respectively. The size of R is
|V (R)| = |V (T ) ∪A ∪B|.

By definition, a ribbon as a graph always has no isolated vertex outside of A∪B.
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Definition 4.2. We say R = (A,B;T ) is left-generated if every vertex in V (R)
is either in B or can be reached by paths8 from A without touching B. Being
right-generated is symmetrically defined.

Definition 4.3. A shape is a equivalent class of ribbons, where two ribbons
(A,B;T ), (A′, B′;T ′) are equivalent or “of the same shape” if there is an isomor-
phism σ between the corresponding graphs s.t. σ(A) = A′ and σ(B) = B′. Denote
a shape by U, represented by a ribbon (A,B;T ). V (U) := A ∪ B ∪ V (T ) and its
size is |V (U)|.

Thus we may speak of the shape of a ribbon R. We say a function f defined
on a set of ribbons is symmetric w.r.t. shapes if, whenever R and R′ are of the
same shape and f is defined on them, f(R) = f(R′).

Definition 4.4. ([AMP16]) Fix n and shape U = (A,B;T ). The graph matrix
of shape U is the following 2[n] × 2[n]-matrix MU:

∀I, J ⊆ [n], MU(I, J) =
∑
T1:

∃injective ϕ : V (U) → [n] s.t.
ϕ(A)=I, ϕ(B)=J, ϕ(T )=T1

χT1

(= 0 if no such ϕ exists). Here, ϕ on T means the natural induced map on edges.

In [AMP16], the matrices have columns and rows indexed by tuples with elements
in [n], instead of subsets (which is our case), but our matrix is always a sub-matrix
of it, e.g. ours can be viewed as supported on strictly increasing tuples.

Theorem 3. (Norm bounds on MU, [AMP16]) For any shape U = (A,B;T ) of
size t < log n, w.p. > 1− n−10 logn over G,

(4.4) ∥MU(G)∥ ≤ n
t−p
2 · 2O(t) · (log n)O(t+p−2r)

where r = |A∩B| and p is the max number of vertex-disjoint paths between (A,B)

in U. Moreover, under the same notation, if further denote s = |A|+|B|
2 then

(4.5) ∥MU(G)∥ ≤ n
t−p
2 · 2O(t) · (log n)O(t−s).

Theorem 3 is proved by a careful estimation of the trace-power E[tr(M2k
U )] (for

some k > 0) which we omit here. Its “moreover” part follows from (4.4) since
t ≥ |A ∪B| = 2s− r, p ≤ s, so t+ p− 2r ≤ t+ s− 2(2s− t) = 3(t− s).

4.4. Some notions on graphs.

Definition 4.5. (Vertex-separator) For a graph H and A,B ⊆ V (H), we say
S ⊆ V (H) is an (A,B)-vertex-separator, or S separates A,B in H, if any path
from A to B in H must pass through S. Let

sA,B(H) := min{|S| | S is an (A,B)-vertex-separator}.
A vertex-separator achieving this minimum is a min-separator. Let mSepA,B(H)
denote the set of all min-separators.

The definition naturally applies to a ribbon R = (A,B;T ), with A,B being the
two vertex-sets. In that case, we can write the corresponding min-separator size as
sA,B(T ) and set of the min-separators as mSepA,B(T ) or mSep(R).

Theorem 4. (Menger’s theorem) For any finite graph H, sA,B(H) equals to the
maximum number of vertex-disjoint paths from A to B in H.

Definition 4.6. For ribbon R = (A,B;T ), define its reduced size to be

(4.6) eA,B(T ) := |V (T ) ∪A ∪B| − sA,B(T ).

8We always stick to the convention of including degenerate paths (one-point path).
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The reduced size is double of the exponent in n in the bound of Theorem 3,
hence is the controlling parameter of the norm of the graph matrix.

A fundamental fact is that the set of all min-separators form a lattice.

Theorem 5. ([Esc72]) For a ribbon (A,B;T ), mSepA,B(T ) has a natural poset
structure: min-separators A1 ≤ A2 iff A1 separates (A,A2;T ), or equivalently as it
can be checked, iff A2 separates (A1, B;T ). The set is actually a lattice under this
partial-ordering: ∀A1, A2 ∈ mSepA,B(T ) their join and meet exist. In particular,
there exist unique minimum and maximum.

We denote the minimum in the above theorem by Sl(A,B;T ) and the maxi-
mum by Sr(A,B;T ), meant to be the leftmost and rightmost min-separator,
respectively.

4.5. Johnson schemes. We only need a minimal amount of knowledge here.

Definition 4.7. ([Del73]) Fix natural numbers n ≥ k, n > 0. A Johnson scheme

J is an
(
[n]
k

)
×
(
[n]
k

)
-matrix that satisfies J(I, J) = J(I ′, J ′) whenever |I∩J | = |I ′∩J ′|.

It can be checked that (fix n, k) all Johnson schemes are symmetric matrices and
form a commutative R-algebra, so they are simultaneously diagonalizable. In below
we fix n and k = d/2. An obvious R-basis for Johnson schemes is D0, ..., Dd/2 where

(4.7) Dr(I, J) =

{
1, if |I ∩ J | = r

0, o.w.
∀I, J ∈

(
S

d/2

)
.

Another basis which we denote by J0, ..., Jd/2 is

(4.8) Jr(I, J) =

(
|I ∩ J |

r

)
, ∀I, J ∈

(
[n]
d
2

)
.

J0, ..., Jd/2 are PSD matrices since

(4.9) Jr =
∑

A⊆[n],|A|=r

uAu
⊤
A where uA ∈ R(

[n]
k ), uA(B) = 1A⊆B .

Also, clearly, Jd/2 = Id. A basis-change from D to J is given by the following.

Lemma 4.3. Dr =
d/2∑
r′=r

(−1)r′−r
(
r′

r

)
· Jr′ .

Proof. The RHS(I, J) =
d/2∑
r′=r

(−1)r′−r
(
r′

r

)(|I∩J|
r′

)
=

|I∩J|∑
r′=r

(−1)r′−r
(|I∩J|

r

)(|I∩J|−r
r′−r

)
=(|I∩J|

r

)
· 1|I∩J|=r = 1|I∩J|=r. □

5. PSDness analysis, I: Hadamard product and Euler transform

Notation. Henceforth throughout the paper, M exclusively refers to the d/2-

homogeneous minor of the moment matrix M̃ in Definition 3.7.

Our main theorem is the following.

Theorem 6. W.p. > 1− n−5 logn, M(G) ⪰ n−d−1diag
(
C̃l(G)

)
( [n]
d/2)×(

[n]
d/2)

.

Corollary 5.1. W.p. > 1− n−5 logn, Ẽx∅ > 0.

Proof. By construction (3.9), Ẽx∅ =
(ω−d/2
d−d/2)

(ωd)(
d

d/2)

∑
S:|S|=d/2

ẼxS =
(ω−d/2
d−d/2)

(ωd)(
d

d/2)
Tr(M), and

by Theorem 6 this is positive with high probability. □
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Proof. (of Theorem 1 from Theorem 6) Lemma 4.1 and Theorem 6 proves the
PSDness of the moment matrix from Definition 3.7, which also satisfies the Default
Constraint (Corollary 5.1 and the discussion above Remark 3.2) and the Clique and
Size Constraints (Lemma 3.2). The degree-d lower bound follows. □

The rest of the paper is for proving Theorem 6. We will use three steps to achieve
so, and this section makes the first step.

To begin with, by definition of M(I, J) (Def. 3.7, (3.13)),
(5.1)

M(I, J ;T ) =

u∑
c=0

[
1(

ω−d+u
u

)ωu−c·

·
((

a− (d− u)

c

)(
n− a

u− c

)
n−(u−c) (a+ u− c+ 8τ2)!

(8τ2)!
(
ω

n
)a
)

︸ ︷︷ ︸
:=Mc(u,a)

]

where u = |I ∩ J |, a = |V (T ) ∪ I ∪ J |. In this expression the parameter u appears
nestedly and makes it difficulty to analyze. (It doesn’t appear in the non-exact
case (3.8) at all.) To resolve the issue, we express M in a ΣΠ-form, i.e. a sum of
Hadamard products, so that in each leaf matrix the dependence on u is removed
to some degree:

(5.2) M =

d
2∑

c=0

mc ◦Mc

where mc, Mc are matrices as follows. For all |I|, |J | = d/2,

(5.3) mc(I, J) =
1(

ω−d+u
u

)ωu−c where u = |I ∩ J |

(5.4) Mc(I, J) =


∑

T :|V (T )∪I∪J|≤τ

Mc(|I ∩ J |, |V (T ) ∪ I ∪ J |)χT , if |I ∩ J | ≥ c;

0 , o.w.

Remark 5.1. It is important to note that mc is supported on all (I, J) while
Mc(I, J) = 0 if |I ∩ J | < c, so that (5.2) holds.

To analyze (5.2), we would hope that the second factor Mc is “close” to each
other for varying c, while the first factor mc is qualitatively decreasing in c. This,
if true, would make it possible for us to concentrate on showing the PSDness in the
main case c = 0. The next Lemma 5.1 proves the second half of the above intuition;
the other half will be stated more precisely in the Main Lemma 5.3.

Lemma 5.1. For each c = 0, ..., d/2, mc = ω−c
d/2∑
k=0

bk · Jk where Jk’s are the John-

son basis (4.8), bk/k! ∈ [ d
2ω , 1 +

2dk
ω ]. In particular,

(5.5) m0 = ωm1 = ... = ω
d
2m d

2
≻ 1

ω
Id.

Proof. By definition, mc = ω−c
d/2∑
l=0

ωl

(ω−d+l
l )

Dl, where Dl (l = 0, ..., d/2) are the

simple basis of Johnson schemes (4.7). By basis-change (Lem. 4.3),

mc = ω−c

d/2∑
k=0

Jk · k!


k∑

l=0

(−1)k−l ·
[

ω

ω − (d− l)
· ... · ω

ω − (d− 1)
· 1

(k − l)!

]
︸ ︷︷ ︸

:=fk(l), which is 1/k! if l=0

 .
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For fixed k, fk(l) is increasing in l so
k∑

l=0

(−1)k−lfk(l) ≥ fk(k) − fk(k − 1) >

d/2
ω · (1 +

d/2
ω )k−1 ≥ d

2ω . Note for k = d/2, Jd/2 = Id, so we get (5.5). □

Euler transform. Fixing c, now we look into the second factor Mc in (5.2).
For fixed (I, J ;T ) denote u = |I ∩ J |, a = |V (T ) ∪ I ∪ J |, then by (5.1) we have
that

(5.6) Mc(u, a) =

(
a− (d− u)

c

)(
n− a

u− c

)
n−(u−c) (a+ u− c+ 8τ2)!

(8τ2)!
(
ω

n
)a

is the coefficient of χT in Mc(I, J) for c ≤ u.

Definition 5.1. (Extended Mc(u, a)) For fixed c ≥ 0, the function Mc(u, a) in
(5.6) is partial, defined for (u, a) ∈ N2 s.t. u ≥ c, u+a ≥ d+ c. It can be naturally
extended to N2 by letting

(5.7)

(
n− a

u− c

)
= 0 if u < c,

and using the convention on binomial coefficients:
(−m

k

)
= (−1)k ·

(
m+k−1

k

)
for all

m > 0, k ≥ 0;
(
m
0

)
= 1 for all m ∈ Z; and

(5.8)

(
m

k

)
= 0 for all 0 ≤ m < k.

In the rest of the paper, we will use Mc(u, a) to mean this extended function.

In particular, if 0 ≤ a− (d− u) < c then Mc(u, a) = 0 since
(
a−(d−u)

c

)
= 0.

One trouble with Mc is that, still, u = |I ∩J | appears in it in an unpleasant way.
To further remove the dependence on u, we consider a decomposition

(5.9) Mc =
∑

R∈(
[n]

≤ d
2
)

MR
c

where for each R ∈
( [n]
≤ d

2

)
the matrix MR

c is supported on rows and columns whose

index contains R. More explicitly, for any (I, J ;T ) let a = |V (T ) ∪ I ∪ J |, suppose

(5.10) MR
c (I, J) :=


(ωn )

a
∑

T :|V (T )∪I∪J|≤τ

Yc(|R|, a) · χT , if R ⊆ I ∩ J ;

0 , o.w.

for some function Yc(u, a) to be chosen, then comparing for every tuple (I, J ;T ) we
see that equation (5.9) is equivalent to the following: for any fixed c, a,

(5.11)

u∑
r=0

(
u

r

)
Yc(r, a)(

ω

n
)a = Mc(u, a).

This suggests to take Yc(u, a) · (ωn )
a to be the inverse Euler transform (w.r.t.

variable u) of the extended function Mc(u, a).

Fact 1. 9 If x(m), y(m) are two sequences defined on N s.t. for all m, x(m) =∑m
l=0

(
m
l

)
y(l), then x(m) is called the Euler transform of y(m). The inverse

transform is given by that for all m, y(m) =
∑m

l=0(−1)m−l
(
m
l

)
x(l).

Definition 5.2. (Coefficients in MR
c ) For every fixed c ≥ 0, define

(5.12) Yc(r, a) =


r∑

l=c

(−1)r−l
(
r
l

)(
a+l−d

c

)(
n−a
l−c

)
n−(l−c) (a+l−c+8τ2)!

(8τ2)! , if r ≥ c;

0 , o.w.

9Coincidentally, this fact can be seen as an application of ζ-matrix and its inverse.
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Then as a clear-up summary, we prove the following the main result of this
section.

Lemma 5.2. (The Hadamard-product decomposition of M)

M =

d
2∑

c=0

mc ◦

 ∑
R:R∈( [n]

≤d/2)

MR
c

(5.13)

=
∑

R∈( [n]
≤d/2)

 |R|∑
c=0

mc ◦MR
c


︸ ︷︷ ︸

:=MR

(5.14)

where each mc is as in Lemma 5.1 and each MR
c has the following expression.

(1) MR
c = 0 if |R| < c;

(2) If R ̸⊆ I ∩ J , MR
c (I, J) = 0;

(3) If |R| ≥ c and R ⊆ I ∩ J , MR
c (I, J) =

∑
T :|V (T )∪I∪J|≤τ

MR
c (I, J ;T )χT where

if denote a = |V (T ) ∪ I ∪ J |, then MR
c (I, J ;T ) =

(5.15) (
ω

n
)a

|R|∑
l=c

(−1)|R|−l

(
|R|
l

)(
a+ l − d

c

)(
n− a

l − c

)
n−(l−c) (a+ l − c+ 8τ2)!

(8τ2)!︸ ︷︷ ︸
Yc(|R|,a) (5.12)

.

(4) For all 0 ≤ c ≤ r ≤ d/2 and 0 ≤ a ≤ τ , |Yc(r, a)| < τ5τ .

Proof. (1), (2), (3) is by definition. To check (5.13) i.e. Mc =
∑

R MR
c , we check

for every (I, J ;T ) where |I| = |J | = d/2, |V (T ) ∪ I ∪ J | ≤ τ . Let u = |I ∩ J |,
a = |V (T ) ∪ I ∪ J |, then note a− (d− u) ≥ 0, and

∑
R:

MR
c (I, J ;T ) =

∑
R:R⊆I∩J

MR
c (I, J ;T ) = (

ω

n
)a

|I∩J|∑
r=0

(
|I ∩ J |

r

)
Yc(r, a).

By the Euler transform and (5.11), the RHS equals the extended Mc(u, a). Thus,
we only need to see Mc(u, a) = 0 if further u < c or a− (d− u) < c (in particular,
in such cases c > 0), and this is by (5.7), (5.8).

For (4),

|Yc(u, a)| =

∣∣∣∣∣
r∑

l=c

(−1)r−l

(
r

l

)(
a+ l − d

c

)[(n− a

l − c

)
n−(l−c)

] (a+ l − c+ 8τ2)!

(8τ2)!

∣∣∣∣∣
< r · 2r · (2τ)r · 1 · (9τ2)2τ < τ5τ

where note r ≤ d/2≪ τ in our parameter regime. □

Lemma 5.3. (Main Lemma) In the decomposition (5.14), w.p. > 1 − n−5 logn

the following hold. For all R ∈
(

[n]
≤d/2

)
, denote PR = {I ∈

(
[n]
d/2

)
| R ⊆ I},

(1). MR
0 ⪰ n−ddiag(C̃l)PR×PR ;

(2). ±ω−cMR
c ⪯ n−c/6 ·MR

0 , ∀0 < c ≤ |R|.

Corollary 5.2. (Theorem 6) W.p. > 1− n−5 logn over G,

M(G) ⪰ n−d−1diag(C̃l(G))( [n]
d/2)×(

[n]
d/2)

.
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Proof. Fix an R, MR =
|R|∑
c=0

mc◦MR
c . Suppose Lemma 5.3 (1), (2) hold (w.p. prob-

ability > 1−n−5 logn). Since Hadamard product with a PSD matrix presevres PS-

Dness (Schur product theorem), we have
|R|∑
c=1

mc ◦MR
c ⪯

|R|∑
c=1

mc ◦
(
ωcn−c/6 ·MR

0

)
by Lemma 5.3(2). The latter equals

(
|R|∑
c=1

n−c/6 ·m0

)
◦MR

0 by Lemma 5.1 which

then ⪯ n−1/6m0 ◦MR
0 . Similarly,

|R|∑
c=1

mc ◦MR
c ⪰ −n−1/6m0 ◦MR

c . Thus

MR ⪰ (1− n−1/6)m0 ◦MR
0 ⪰ n−d−1diag(C̃l)PR×PR (Lem. 5.1 and 5.3(2)).

So in (5.14), M = M∅ +
∑

∅̸=R∈( [n]
≤d/2)

MR ⪰ M∅ ⪰ n−d−1diag(C̃l)( [n]
d/2)×(

[n]
d/2)

. □

The rest of the paper is devoted to proving the Main Lemma 5.3.

6. Recursive factorization: a preparation

In this section, we give a systematic treatment of the recursive approximate
factorization technique of [BHK+19]. In section 6.3 we will formalize this technique
in a convenient language, and extend this technique properly for later use in Section
7. Section 6.1 and 6.2 together is an independent part only for showing Theorem
2(2) via the so-called mod-order analysis; the reader can safely skip them and
proceed directly to section 6.3 to continue the proof of the Main Lemma 5.3.

Notation. Thoughout section 6, for simplicity we discuss the non-exact moment
matrix (which suffices to lay the ground for the technique). Denote by M ′ the([n]

d
2

)
×
([n]

d
2

)
-minor10 of the non-exact moment matrix.

(6.1) M ′(I, J) =
∑

T :|V (T )∪I∪J|≤τ

(
ω

n
)|V (T )∪I∪J|χT ∀I, J ∈

(
[n]

d/2

)
.

The goal of section 6 is to diagonalize M ′ approximately in the “LQL⊤” form
s.t. the difference matrix is negligible (w.h.p. when plugging in G).

6.1. Step 1: Diagonalization of E[M ′].

Proposition 6.1. E[M ′] = CC⊤, where C is the
(
[n]
d/2

)
×
(

[n]
≤d/2

)
-matrix

(6.2) C = (ζ⊤)d/2,≤d/2 · diag
(√

t(|A|)
)

A∈( [n]
≤d/2)

and t(r) = (1−O(dωn )) · (ωn )
d−r for all r = 0, ..., d/2.

This can be shown by a similar calculation as in [MPW15], as below. Recall the
Johnson schemes 4.7.

Fact 2. (See e.g. (4.29) in [Del73]) The Johnson schemes (for (n, d/2)) have

shared eigenspace-decomposition R(
[n]
d/2) = V0 ⊕ ...⊕ Vd/2, and

Jr =

d
2⊕

i=0

λr(i) ·Πi for r = 0, ..., d/2

10Strictly speaking, PSDness of this minor is not sufficient as we do not have a homogeneity
reduction in non-exact case. Nevertheless, it suffices to demonstrate the idea.
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where Πi is the orthogonal projection to Vi w.r.t. the Euclidean inner product, and
the eigenvalues are

λr(i) =

(d
2 − i

r − i

)(
n− d

2 − i
d
2 − r

)
, 0 ≤ i ≤ d

2
.

Lemma 6.1. E[M ′] =
∑d/2

r=0 t(r)Jr where each t(r) = (1−O(dωn )) · (ωn )
d−r.

Proof. By definition, E[M ′] =
∑d/2

r=0(
ω
n )

d−rDr. By Lemma 4.3,

(6.3) Dr =

d/2∑
r′=r

(−1)r
′−r

(
r′

r

)
· Jr′

So

(6.4)

E[M ′] =

d/2∑
r=0

(
ω

n
)d−r

 d/2∑
r′=r

(−1)r
′−r

(
r′

r

)
Jr′


=

d/2∑
r′=0

Jr′ ·

 r′∑
r=0

(
ω

n
)d−r(−1)r

′−r

(
r′

r

)
=

d/2∑
r′=0

Jr′ · (
ω

n
)d−r′(1− ω

n
)r

′

which proves the lemma. □

By Lemma 6.1 and (4.9), if let t(r) = (ωn )
d−r′ [1− ω

n ]
r′ then

E[M ′] =
∑

A:|A|≤d/2

t(|A|)uAu
⊤
A=(ζ⊤)d/2,≤d/2 · diag

(
t(|A|)

)
· ζ≤d/2,d/2 = CC⊤,

where used that the matrix (ζ⊤)d/2,≤d/2 has columns {uA | |A| ≤ d/2}. This proves
Proposition 6.1.

6.2. Step 2: Mod-order analysis toward “coarse” diagonalization.
This subsection is only for the simplification result, Theorem 2(2).

The reader can safely safely skip it and proceed to section 6.3 for the
proof of Theorem 1.

Given E[M ′] = CC⊤ in Step 1, ideally we hope to continue to solve for

(6.5) M ′ = NN⊤

with E[N ] = C, and N extending C by non-trivial Fourier characters. Also, we
restrict ourselves to symmetric solutions w.r.t. shapes.

Toward this goal, we start with a relaxed equation as Definition 6.1, with the
following motivation.

(1) Order in ω
n . Entries of M ′ all have a clear order in ω

n . Like in fixed-
parameter problems, we treat ω

n as a distinguished structural parameter and try to
solve the correct power of ω

n in terms in N .
(2) Norm-match. Let’s have a closer look into

E[M ′] = CC⊤ =

d/2∑
r=0

(1−O(
dω

n
)) · (ω

n
)d−rJr.

By fact 2, each Jr b has norm
(
d/2
r

)
· nd/2−r so

(6.6)
∥∥CrC

⊤
r

∥∥ ≈ (d/2
r

)
· (ω

n
)d−rnd/2−r, r = 0, ..., d/2.
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We expect Nr(Nr)
⊤ to concentrate around Cr(Cr)

⊤, so the norm of the “ran-
dom” part, i.e. matrix of nontrivial Fourier characters in Nr(Nr)

⊤, is expected to
be bounded by (6.6). The essentially tight bound from Theorem 3 (cf. [AMP16])
tells how this may happen, which we review below.

It will be convenient to use a scaling of variables: let

L = (L0, ..., L d
2
) = (Nr · (

ω

n
)

−|A|
2 )0≤r≤ d

2
,

then

(6.7) M ′ = L · diag
(
(
ω

n
)|A|
)
· L⊤ with E[L] = ( Cr · (

ω

n
)−r/2 )r=0,1,...,d/2.

Now suppose

Lr(I, A) =
∑

small T

βI,A(T )χT , A ∈
(
[n]

r

)
where assume as in (1), an order of ω

n can be separated:

(6.8) βI,A(T ) = (
ω

n
)x︸ ︷︷ ︸

main-order term

· ( factor ≪ n

ω
and ≫ ω

n
).

Fix I, A, T , we are looking for the condition on x in order to have the expected
norm control on Lr(

ω
n )

r(Lr)
⊤. Ignore for a moment the cross-terms, such a single

graph matrix square in Lr(
ω
n )

rL⊤
r is

(
ω

n
)2xR(I,A;T ) · (

ω

n
)r ·R⊤

(I,A;T )

with norm11

⪅ (
ω

n
)2x+r · neI,A(T ) · 2O(|V (T )∪I∪A|) · (log n)>0

by Theorem 3. Here recall eI,A(T ) = |V (T )∪ I ∪A| − sI,A(T )(≥ |I| − |A| = d
2 − r).

Compare this with (6.6), we need (ωn )
2xneI,A(T ) <

(
d/2
r

)
( ω√

n
)d/2−r. If think of 2d as

qualitatively smaller than any positive constant power of ω, n, the natural bound
to put is x ≥ eI,A(T ) which actually is the limit requirement when logω

logn →
1
2 .

Suggested by this, we will set the restriction x ≥ eI,A(T ) right from the start in
the relaxed equation.

The above motivation leads to the following definition. Take a ring A by adding

fresh variables α and χT ’s to R, where T ranges over subsets of
(
[n]
2

)
and they only

satisfy relations {χT ′ · χT ′′ = χT : T ′ ⊕ T ′′ = T}.

Definition 6.1. The mod-order equation is

(6.9) Lα · diag
(
α|A|

)
· (Lα)

⊤ = Mα mod (∗)

on the
(
[n]
d/2

)
×
(

[n]
≤d/2

)
matrix variable Lα in ring A, where

Mα(I, J) :=
∑

T :|V (T )∪I∪J|≤τ

α|V (T )∪I∪J|χT ,

and mod (∗) is the modularity, which means position-wise mod the ideal(
{α|V (T )∪I∪J|+1χT }, {χT : |V (T ) ∪ I ∪ J | > τ}

)
.

11Here the matrix is truncated from size 2[n] × 2[n], which doesn’t change anything since the
original matrix is always 0 elsewhere.
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Moreover, if denote Lα(I, A) =
∑

T βI,A(T )χT where βI,A(T ) ∈ R[α], then12

(6.10) αeI,A(T ) | βI,A(T ) ∀I, A, T.

We are interested in solutions that are symmetric, i.e. βI,A(T
′) = βJ,B(T

′′)
whenever (I, A;T ′), (J,B;T ′′) are of the same shape.

The following is the key observation. Its proof demonstrates how to make de-
ductions from the mod-order equations efficiently, and is presented in Appendix
A.1.

Lemma 6.2. (Order match) If a product α|A| · βI,A(T
′) · βJ,A(T

′′) from the LHS
of (6.9) is nonzero mod (∗), then both of the following hold:

A is a min-separator for both (I, A;T ′), (J,A;T ′′);(6.11)

(V (T ′) ∪ I ∪A) ∩ (V (T ′′) ∪ J ∪A) = A.(6.12)

Moreover, (6.11), (6.12) imply that

A is a min-separator of (I, J ;T ) (where T = T ′ ⊕ T ′′);(6.13)

|V (T ′) ∪ I ∪A|, |V (T ′′) ∪ J ∪A| ≤ τ.(6.14)

By this lemma, in an imagined solution we should assume βI,A(T
′) ̸= 0 only

when it satisfies its part in conditions (6.11), (6.14).
Using this information, plus a further technique of polarization, we can deduce

the following Proposition 6.2 which is the main takeaway of the analysis here. In
the deduction, the graph-theoretic fact—the “in particular” of Theorem 5—appears
exactly as the solvability condition. We leave the detail of intermediate deductions
to Appendix A.2.

Proposition 6.2. (Mod-order diagonalization) Let

Lα(I, A) :=
∑

T ′: |V (T ′)∪I∪A|≤τ
A=Sl(I,A;T ′)
T ′∩E(A)=∅

(I,A;T ′) left-generated (Def. 4.2)

αeI,A(T ′)χT ′ ,

Q0,α(A,B) :=
∑

Tm: |T∪A∪B|≤τ
A,B∈mSepA,B(Tm)

αeA,B(Tm)χTm

(Tm to indicate “middle”). Then

(6.15) Lα · [diag
(
α

|A|
2

)
·Q0,α · diag

(
α

|A|
2

)
] · L⊤

α = Mα mod (∗)

where recall (∗) means ideal ({α|V (T )∪I∪J|+1χT }, {χT : |V (T ) ∪ I ∪ J | > τ})
position-wise on each (I, J).

Equation (6.15) is slightly weaker than a solution to (6.9) but is sufficient for
all use since we are only concerned with PSDness. In particular, it gives the first-
approximate diagonalization of the matrix M ′, recast as Definition 6.2 below. This
shows Theorem 2(2).

12Recall eI,A(T ′) is the reduced size |V (T ′) ∪ I ∪A| − sI,A(T ′) (Def. 4.6).
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6.3. Recursive factorization. This subsection gives a systematic treatment of
the recursive factorization technique, which we will use in the proof of Theorem 1.
We formulate it on matrix-products (Def. 6.4, 6.5) with a simplification (Lem. 6.4)
and extension (Prop. 6.4) that will be finally used in Section 7 in the exact case.

As in other parts of the section, we state everything in the non-exact case to
avoid unnecessary complication. The goal is to refine the coarse diagonalization
(6.15), recast below.

Definition 6.2. Let L be the
([n]

d
2

)
×
( [n]
≤ d

2

)
-matrix

(6.16) L(I, A) :=
∑

T ′: |V (T ′)∪I∪A|≤τ
A=Sl(I,A;T ′)
T ′∩E(A)=∅

(I,A;T ′) left-generated

(
ω

n
)|V (T ′)∪I∪A|−|A|χT ′ ,

and Q0 be the
( [n]
≤ d

2

)
×
( [n]
≤ d

2

)
-matrix

(6.17) Q0(A,B) :=
∑

Tm:|Tm∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(
ω

n
)|V (Tm)∪A∪B|χTm .

Finally, let

(6.18) D := diag
(
(
ω

n
)

|A|
2

)
A∈( [n]

≤d/2)
.

We call L(DQ0)L
⊤ the first-approximate diagonalization of M ′.

Despite of its name (“approximate”), the difference

(6.19) M ′ − L(DQ0D)L⊤

is, however, far from negligible. This is where the recursive factorization will be
applied, and in the end it will give

(6.20) M ′ = L · [D · (Q0 −Q1 +Q2...±Qd/2) ·D] · L⊤ + E

for some negligible error-matrix E.

Remark 6.1. The use of D in the above is superficial. We only keep it to make
the middle matrices Qi have slightly more convenient expressions.

Let us start with some necessary notions.

6.3.1. More notion on graphs.

Definition 6.3. ([BHK+19] Def. 6.5) For ribbon R = (I, J ;T ), the canonical
decomposition is a ribbon triple (Rl,Rm,Rr) = ((I, A;Tl), (A,B;Tm), (B, J ;Tr))
as follows. A = Sl(I, J ;T ), B = Sr(I, J ;T ). V (Rl) is A unioned with the set of
vertices reachable by paths from I in T without touching A, and Tl = T |V (Rl)\E(A).
Symmetricallywe define V (Rl) and Tr. Finally, Tm = T\(T ′ ⊔ T ′′). Rl, Rm, Rr are
called the left, middle, right ribbon of R, respectively.

Remark 6.2. For better clarity, we list a few properties that follow from the defi-
nition of the canonical decomposition.

1. A = Sl(I, A;Tl), B = Sr(B, J ;Tr) (so they are unique min-separators of
Rl,Rr, respectively);

2. Tl ∩ E(A) = ∅ = Tr ∩ E[A];
3. Rl is left-generated, Rr is right-generated;
4. A,B ∈ mSepA,B(Tm) (in particular, |A| = |B|).
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The above are properties about Rl, Rm, Rm individually (“inner” properties).
There is also an intersection property on pairs of them (“outer” properties):

5. V (Rl) ∩ V (Rm) ⊆ A, V (Rm) ∩ V (Rr) ⊆ B, V (Rl) ∩ V (Rr) ⊆ A ∩ B. This
implies e(Rl) + |V (Rm)|+ e(Rr) = |V (R)|.

The canonical decomposition can be reversely described, as follows.

Definition 6.4. (Inner-, outer-canonicality) For a ribbon triple (Rl,Rm,Rr) =(
(I, A;Tl), (A,B;Tm), (B, J ;Tr)

)
, their ribbon-sum is ribbon (I, J ;T ) where T =

Tl ⊕ Tm ⊕ Tr (i.e. each edge mod 2 sum). The triple is called inner-canonical, if
they satisfy the “inner” conditions:

(6.21) Items 1—4 in Remark 6.2.

The triple is outer-canonical if they satisfy the “outer” condition:

(6.22) Item 5 in Remark 6.2.

The triple is canonical if it is both inner- and outer-canonical.

Proposition 6.3. Canonical triples are 1-1 correspondent to their ribbon-sum, via
ribbon sum and canonical decomposition.

Proof. This follows directly by checking the definition. □

The above notions can be extended to related matrix products. Denote by
R[{χT }] the ring by adding fresh variables (“characters”) χT ’s into R for every

T ⊆
(
[n]
2

)
(fixing an n), with relations {χT ′ · χT ′′ = χT | T ′ ⊕ T ′′ = T}.

Definition 6.5. (Approximate form) Suppose matrices X,Y have their rows and
columns indexed by subsets of [n] and entries in R[{χT }]. A character in an entry
of such matrix can be regarded as a ribbon on the side sets row and column. Assume
all ribbons have size ≤ τ and X,Y have dimensions s.t. XYX⊤ is defined.

Then every triple product (without collecting like-terms) in XYX⊤ has form

(6.23) X(I, A;Tl)Y (A,B;Tm)X(J,B;Tr)︸ ︷︷ ︸
nonzero in R

χTl⊕Tm⊕Tr
,

and can be identified with a ribbon triple (Rl,Rm,Rr) in the natural way. We
say (6.23) is the resulting term of the ribbon triple; it is an outer-canonical
product if the ribbon triple is outer-canonical. The approximation form of
XYX⊤ is:

(6.24) XYX⊤ = (XYX⊤)can + (XYX⊤)non-can

where
(
XYX⊤)

out-can
collects all terms of outer-canonical products, (XYX⊤)non-can

collects all terms of non-outer-canonical products.

6.3.2. Machinery of recursive factorization. In our just established language,
the first-approximate factorization (Def. 6.2) can be recast as
(6.25)

M ′ = [L(DQ0D)L⊤]can − Edeg = L(DQ0D)L⊤ − [L(DQ0D)L⊤]non-can − Edeg

where Edeg consists of all terms in [L(DQ0D)L⊤]can with |V (T ) ∪ I ∪ J | > τ . Edeg

is actually negligible in matrix norm13, and the main task is to analyze the “main
error”, [L(DQ0D)L⊤]non-can. The key insight is:

(6.26) [L(DQ0D)L⊤]non-can itself factors through L,L⊤ approximately, too.

13They are supported on rows and columns where G is a clique.
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That is, ∃Q1 s.t. [L(DQ0D)L⊤]non-can = [L(DQ1D)L⊤]can + E1;negl for some E1;negl

where [L(DQ1D)L⊤]can = L(DQ1D)L⊤− [L(DQ1D)L⊤]non-can by (6.23); then we
recurse on [L(DQ1D)L⊤]non-can]. We need the following notations to describe this.

Definition 6.6. ([BHK+19]) An improper ribbon is a ribbon plus with a new
set of isolated vertices. In symbol, denote it as R∗ = (A,B;T ∗) with T ∗ = T ⊔ I, T
an edge-set and I a vertex set disjoint from V (T )∪A∪B. I is called the isolated
vertex-set of R∗, denoted by I(R∗). V (R∗) := V (T ) ∪ A ∪ B ∪ I. (A,B;T ) is
called the (unique) largest ribbon in R∗. Note a usual ribbon is an improper ribbon
with I = ∅.

Note I(R∗) could be different from the set of isolated vertices of the underlying
graph, since there can be isolated vertices in A ∪B.

Definition 6.7. The triple
(
Rl,Rm,Rr

)
=
(
(I, A;Tl), (A,B;Tm), (B, J ;Tr)

)
is

called side-inner-canonical if the left and right ribbons, Rl, Rr satisfy the inner-
canonical conditions on their part (the first three of (6.21)), and Rm is just a
ribbon.

The following operation is the technical core of recursive factorization.

Definition 6.8. (Separating factorization, [BHK+19]) Suppose a triple (Rl,Rm,Rr) =
((I, A;Tl), (A,B;Tm), (B, J ;Tr)) is side-inner-canonical and non-outer-canonical.
Let T := Tl⊕Tm⊕Tr and Z be the multi-set of “unexpected” intersections, i.e. the
multi-set of vertices from (Rl ∩Rm)−A, (Rm ∩Rr)−B, (Rl ∩Rr)− (A∩B). Call
|Z| the intersection size of the triple, denoted as z(Rl,Rm,Rr). Note

(6.27) |V (Rl) ∪ V (Rm) ∪ V (Rr)| = |V (Rl)|+ |V (Rm)|+ |V (Rr)| − |A| − |B| − z.

We further separate this triple into an “outer-canonical” one, as follows.

Let S′
l be the leftmost min-separator of (I, A ∪ (Z ∩ V (Rl));Tl), similarly S′

r the
right-most min-separator of (B ∪ (Z ∩ V (Rr)), J ;Tr). Note S′

l , S
′
r ⊆ V (T ) ∪ I ∪ J .

Define R′
l := (I, S′

l ;T
′
l ), whose vertex set V (R′

l) is S
′
l unioned with the set of ver-

tices in Rl reachable from I by paths in Tl without touching S′
l, and T ′

l is Tl\E(S′
l)

restricted on V (R′
l). Ribbon R′

r is symmetrically defined. In particular, T ′
l ∩T ′

r = ∅.
Then let R∗

m be the improper ribbon (S′
l , S

′
r;T

∗
m), T ∗

m :=
(
T\(T ′

l ⊔ T ′
r)
)
⊔ I(R∗

m)
where I(R∗

m) collects all the rest isolated vertices:

(6.28) I(R∗
m) = V (Rl) ∪ V (Rm) ∪ V (Rr) − V (T ) ∪ I ∪ J.

(R′
l,R

∗
m,R′

r) is called the separating factorization of (Rl,Rm,Rr), denoted as

(6.29) (Rl,Rm,Rr)→ (R′
l,R

∗
m,R′

r).

Remark 6.3. Let (Rl,Rm,Rr) → (R′
l,R

∗
m,R′

r) be as above. We list some basic
properties of this operation that are direct from the definition.

(1). (R′
l, R

∗
m,R′

r) is side-inner- and outer-canonical. The latter means their
pair-wise vertex intersections are in S′

l, S
′
r and S′

l ∩ S′
r, respectively. So if replace

R∗
m by its largest ribbon, the triple would be canonical.
(2). R′

l ⊆ Rl, S
′
l separates (V (R′

l), V (Rl)− V (R′
l)) in Rl. So we can talk about

the part of Rl that is strictly to the right of S′
l, which is disjoint from R′

l and is
further contained in R∗

m. The similar fact holds for Rr.
(3). In Rl, since S′

l separates (I, A) and A is the unique min-separator of Rl,
there are |A| many vertex-disjoint paths between A and S′

l. Similarly for Rr.

Lemma 6.3. Under the notation of Def. 6.8,
(1). |S′

l |+ |S′
r| ≥ |A|+ |B|+ 1;
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(2).14 Let s = |A|+|B|
2 , p′ be the max number of vertex-disjoint paths from S′

l to
S′
r in R∗

m, and p be the max number of vertex-disjoint paths from A to B in Rm,
then

2(s′ − s) + (p− p′) + |I(R∗
m)| ≤ z(Rl,Rm,Rr).

Proof. (1): by definition, there must be some unexpected pair-wise intersection
between the triple (Rl,Rm,Rr). In either of the three cases of breaking (6.22),
there exists some v ∈ Z that is in V (Rl)− A or V (Rr)− B. W.l.o.g., suppose the
first case happens. Then S′

l ̸= A since v can be reached from I without passing A
by the left-generated condition on Rl. Similarly, if |S′

l | = |A| then it is A as A is
the unique min-separator separating (I, A), so this is impossible. Thus S′

l > A.
(2). This is Lemma 7.14 of [BHK+19]. We omit the proof here. □

6.3.3. Apply the machinery to M ′. Now we analyze [L(DQ0D)L⊤]non-can in
(6.25). Conceptually, separating factorization allows us to “fix” [L(DQ0D)L⊤]non-can
using L,L⊤. Namely, a term (Rl,Rm,Rr) in [L(DQ0D)L⊤]non-can at the (I, J)-th
position can be “countered” by the term −(R′

l,R
∗
m,R′

r) in a new matrix product
[L(DQ1D)L⊤]can: R′

l at entry (I, S′
l) in L, R′

r at entry (S′
r, J) in L⊤, and the

largest ribbon of R∗
m at (S′

l , S
′
r) in a new middle matrix DQ1D.

Of course, there are other triples whose separating factorization is the same,
and each entry of L is a sum of many different R′

ls, so we need to insure that this
cancellation works for them simultaneously in multiplication.

The following proposition is what insures the simultaneous cancellation can work.
We state a refined version (distinguishing the (i, j) parameters) that is more than
needed here but will be fully need in the exact case (in Lem. 7.3).

Proposition 6.4. (Solvability condition, cf. Claim 6.12 in [BHK+19]) Fix (I, J, S′
l , S

′
r)

and a improper ribbon R∗
m with side sets (S′

l , S
′
r). Let (R′

l,R
′
r) be inner-canonical

left and right ribbons with side sets (I, S′
l), (S

′
r, J) respectively, as in Def. 6.4. Let

(R′′
l ,R

′′
r ) be another such ribbon pair, with the same reduced size e(R′

l) = e(R′′
l ),

e(R′
r) = e(R′′

r ) (the same size, equivalently). Then for every fixed tuple (i, j, z) the
following holds: there is an 1-1 matching between ribbon triples

(Rl,Rm,Rr) s.t.

{
(Rl,Rm,Rr)→ (R′

l,R
∗
m,R′

r),

(e(Rl), e(Rr), z(Rl,Rm,Rr)) = (i, j, z).
(6.30)

and

(Rl,Rm,Rr) s.t.

{
(Rl,Rm,Rr)→ (R′′

l ,R
∗
m,R′′

r ),

(e(Rl), e(Rr), z(Rl,Rm,Rr)) = (i, j, z).
(6.31)

Moreover, this matching fixes every middle Rm.

Proof. We give a reversible map from (6.30) onto (6.31). Take a (Rl,Rm,Rr) from
(6.30). By Remark 6.3 (2), the part of Rl to the right of S′

l is in R∗
m hence is disjoint

from both R′
l and R′′

l . Similarly for R′
r, Rr. Now take a map

(Rl,Rm,Rr) 7→ (ϕ(Rl),Rm, ϕ(Rr))

where ϕ(Rl) replace R′
l by R′′

l in Rl, and ϕ(Rr) replaces R
′
r by R′′

r in Rr.
Clearly, R∗

m (thus Rm) is unchanged. Since R′
l, R

′′
l have the same size by as-

sumption, by the disjointness property in Remark 6.3 (2), the replacement opera-
tion keeps the size of Rl. Moreover, Rl, ϕ(Rl) have the same right set which is the
unique min-separator of both, so e(Rl) = e(ϕ(Rl)). Similarly for Rr, ϕ(Rr), so the
parameter (i, j) is unchanged by ϕ. The intersection parameter z is unchanged too,

14Recall in our setting Rm is always a ribbon, without any isolated vertex.
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since the changed part is disjoint from Z(Rl,Rm,Rr). Finally, the inverse map is
given the same way by changing the role of (R′

l,R
′
r) and (R′′

l ,R
′′
r ). □

We now describe one round of factorization. Let L be as Def. (6.2), Q be any(
[n]

≤d/2

)
×
(

[n]
≤d/2

)
-matrix withQ(A,B) =

∑
Tm: |V (Tm)∪A∪B|≤τ (

ω
n )

|V (Rm)|q(Rm) · χTm ,

where Rm denotes (A,B;Tm) and q(·) is a function symmetric w.r.t. shapes. Below
we define matrices Q′,Enegl as follows so that

(6.32) (LQL⊤)non-can = (LQ′L⊤)can + Enegl.

First let Q′(A,B) :=
∑

Tm: |V (Tm)∪A∪B|≤τ

(ωn )
|V (Rm)|q′(Rm)χTm , q′(Rm) as below.

Fix any Rm = (A,B;Tm), let t = |V (Rm)|(≤ τ), s = |A|+|B|
2 , then for every

improper ribbon R∗
m which contains Rm as its largest ribbon and |V (R∗

m)| ≤ τ , fix
any pair (R′

l,R
′
r) s.t. (R′

l,R
∗
m,R′

r) is the separating factorization for some ribbon
triple with |V (R′

l)|, |V (R′
r)| ≤ τ (if there is none, exclude R∗

m in the summation
below), let

(6.33)

q′(Rm) =
∑

R∗
m: improper ribbon on (A,B)

|V (R∗
m)|≤τ

largest ribbon is Rm

(
ω

n
)|I(R

∗
m)| · q′′(R∗

m) where

q′′(R∗
m) =

∑
1≤z≤d/2

∑
P=(Rl,R,Rr): side-inn. can.

P→(R′
l,R

∗
m,R′

r) for the fixed R′
l,R

′
r

z(P)=z

(
ω

n
)z · q(R).

Note q′(Rm) doesn’t depend on the choice (R′
l,R

′
r) by Prop. 6.4, so q′(·) is also

symmetric w.r.t. shapes. Now define Enegl such that (6.32) holds.

Lemma 6.4. (One round) In the above notation,
(1). W.p. > 1− n−9 logn over G, ∥Enegl∥ ≤ max{q(A,B;T )} · n−ϵτ ;
(2). Given an Rm, let p be the max number of vertex-disjoint paths between in

it between the two side sets. If there is a number C s.t.

(6.34) ∀Rm, |q(Rm)| ≤ C · ( ω

n1−ϵ
)s−p

then |q′(Rm)| ≤ C · ( ω
n1−ϵ )

s−p+1/3 for all Rm.

Proof. We compare [LQ′L⊤]can, [LQL⊤]non-can as step (0), then prove (1), (2).

(0). For any fixed (I, J), recall [LQL⊤]non-can(I, J) is

(6.35)
∑

(Rl,Rm,Rr): side. inn. can.
non-outer-can.

all three have size ≤τ

(
ω

n
)|V (Rl)|+|V (Rm)|+|V (Rr)|−|A|−|B|q(Rm)χTl⊕Tm⊕Tr

where we denote the side sets of Rm by (A,B). For each (Rl,Rm,Rr) in the sum,
there is a unique (R′

l,R
∗
m,R′

r) that is its separating factorization: (Rl,Rm,Rr) →
(R′

l,R
∗
m,R′

r). There are two cases of a term in (6.35).

First case: |V (R∗
m)| ≤ τ . In this case, there is the corresponding term

(6.36) (
ω

n
)|V (R′

l)|+|V (R′
m)|+V (R′

r)|−|S′
l|−|S′

r| · (ω
n
)z+|I(R∗

m)| · q(R′
m)χT ′

l⊕T∗
m⊕T ′

r

in (LQ′L⊤)can(I, J), where R′
m denotes the largest ribbon of R∗

m, T ∗
m means the

edges of R′
m, and z ≥ 1 is the intersection size of (Rl,Rm,Rr). In the separating

factorization, recall T ′
l ⊕ T ∗

m ⊕ T ′
r = Tl ⊕ Tm ⊕ Tr, V (Rl) ∪ V (Rm) ∪ V (Rr)| =

|V (R′
l)|+|V (R∗

m)|+|V (R′
r)|−|S′

l |−|S′
r| = |V (Rl)|+|V (Rm)|+|V (Rr)|−|A|−|B|−z

and |V (R∗
m)| = |V (R′

m)| + |I(R∗
m)|, so the coefficient in (6.36) equals the one in

(6.35) for (R′
l,R

∗
m,R′

r). Conversely, at a position (R′
l,R

′
r), [LQ

′L⊤]can by (6.33)
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and Prop. 6.4 collects exactly all terms from a triple (Rl,Rm,Rr) in [LQL⊤]non-can
whose separating factors have (R′

l,R
′
r) as the left, right part and whose R∗

m has size
≤ τ .

Therefore, Enegl will collect exactly all terms in the next case.

Second case: |V (R∗
m)| > τ . By the above explanation, Enegl(I, J) =

(6.37)
∑

(Rl,Rm,Rr): side. inn. can.
non-outer-can.

all three has size ≤τ
resulting |V (R∗

m)|>τ

(
ω

n
)|V (Rl)|+|V (Rm)|+|V (Rr)|−|A|−|B|q(Rm)χTl⊕Tm⊕Tr

.

where we omit writing the sum condition “Rl (Rr) has left (right) vertex-set as I
(J)”.

(1). Fix any (Rl,Rm,Rr) in (6.37). Note |I(R∗
m)| ≤ z + d/2 as a quick corollary

of Lemma 6.3. Fix T = Tl⊕Tm⊕Tr and a > τ−|V (T )∪I∪J |, we upper bound the
number of triples in (6.37) resulting in (ωn )

|V (T )∪I∪J|+a ·χT (ignoring q(Rm) for the
moment): to create such a triple, we can choose a set as I(R∗

m) of size ≤ a/2+ d/4
where a is intended to be |I(R∗

m)|+z so a ≥ 2I(R∗)−d/2 by the above; then decide

the triple over the vertex set, where there are < 33τ · 23(
τ
2) many ways.

So if let B0 = max{q(·)}, then
∣∣coefficient of χT in (6.37)

∣∣ is no more than

B0(
ω
n )

|V (T )∪I∪J|+an
(a+d)

2 22τ
2

= B0(
ω

n1−2ϵ )
|V (T )∪I∪J| (n−2ϵ

)|V (T )∪I∪J|
( ω√

n
)an

d
2 22τ

2

≤ B0(n
−1/2)|V (T )∪I∪J|n−2ϵ(|V (T )∪I∪J|+a)nd/222τ

2

≤ B0(n
−1/2)|V (T )∪I∪J|n−1.5ϵτ ,

where the last two steps use ω ≤ n1/2−4ϵ, |V (T ) ∪ I ∪ J | + a > τ (case condition)
and d < ϵτ/10, 22τ < nϵ/10. Also, all χT appearing in (6.37) has |V (T )| ≤ 3τ . By
Lemma 4.2, for any (I, J), w.p.> 1− n−10 logn,

|Enegl(I, J)| <
3τ∑
a=0

B0n
−a/2n−1.5ϵτna/2n4 log logn2a

2

< n−1.4ϵτ .

By union bound on (I, J), w.p.> 1− n−9 logn, ∥Enegl∥ < nd · n−1.4ϵτ < n−ϵτ .

(2). Fix an Rm. By (6.33),

q′(Rm) =
∑

z,R∗
m:

largest ribbon = Rm

(
ω

n
)|I(R

∗
m)|+z

∑
P=(Rl,R,Rr): side-inn. can.

P→(R′
l,R

∗
m,R′

r) for the fixed R′
l,R

′
r

z(P)=z

q(R).

For a fixed R∗
m, there are ≤ 8zτ < nϵz many triples in the inner sum (recall R′

l,R
′
r

are fixed). This is because, after fixing how each vertex appears in all three rib-
bons and fixing A,B ⊆ R∗

m as side sets, we only need to assign possible edges
that appear in more than once in the original triple; such an edge must has at
least one end in the already fixed (multi-set) Z. Then by Lem. 6.3(2) and (6.34),∣∣ inner sum ∣∣≤ nϵz(ωn )

z+|I(R∗
m)| · |q(R)| ≤ ( ω

n1−ϵ )
2(s′−s)+(p−p′)+2|I(R∗

m)| · C · ( ω
n1−ϵ )

s−p

≤ C · (ωn )
2|I(R∗

m)| · ( ω
n1−ϵ )

s′−p′+1/2, where (s, p) denote the corresponding parame-
ters for R and (s′, p′) for Rm, and the last step uses s′− s ≥ 1/2 from Lem. 6.3(1).

Finally, in the outer sum, for fixed i0 there are < ni0 many ways to choose R∗
m

s.t. |I(R∗
m)| = i0, 1 ≤ z ≤ 3τ . Together,

|q′(Rm)| ≤ 3τ

d/2∑
i0=0

C · ni0(
ω

n
)2i0 · ( ω

n1−ϵ
)s

′−p′+1/2 ≤ C · ( ω

n1−ϵ
)s

′−p′+1/3.

□
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Apply Lem. 6.4 to [L(DQ0D)L⊤]non-can with Q ← (DQ0D) then repeat as
described under (6.26), we get the recursive approximate factorization of M ′:

(6.38) M ′ = L

(
D(Q0−Q1+Q2−...±Qd)D

)
L⊤−Edeg+

(
−E1;negl+...±E1+d;negl

)
.

Here it implicitly used:

Proposition 6.5. ([BHK+19] Claim 6.15) Qd+1 = 0.

Proof. First we use induction to show that for all k, in Qk every appearing ribbon
Rm = (A,B;Tm) has |A| + |B| ≥ k. The base case k = 0 is trivial. For k + 1,
by Lemma 6.4 every R′

m = (A′, B′;T ′
m) in Qk+1 is the largest ribbon of some R∗

m

in the separating factorization of some non-outer-canonical triple in L(DQkD)L⊤.
Suppose that triple has the middle part Rm = (A,B;Tm), then by inductive hy-
pothesis |A| + |B| ≥ k. By Lemma 6.3(1), |A′| + |B′| ≥ |A| + |B| + 1 ≥ k + 1,

completing induction. For k = 1 + d, no ribbon with both side sets in
(
[n]
d/2

)
can

satisfy this. □

We have completed the preparation of the recursive factorization technique.

Remark 6.4. PSDness of M ′ would follow from (6.38) by some last steps15. Sim-
ilar arguments will be given in section 8 so we omit them here.

7. PSDness analysis, II: Recursive factorization

Now we apply the recursive approximate factorization to the target matrices in
the exact setting, i.e. MR

c in (5.14).

The high-level steps are the same as in section 6: we will first define the first-
approximate factorization (Def. 7.1, 7.3 and Lem. 7.1), then refine it recursively
to get the eventual factorization, Lem. 7.2), which is the main result of this section.

Definition 7.1. Fix R ∈
( [n]
≤ d

2

)
. For every i = 0, ..., τ define matrix LR,i as

(7.1) LR,i(I, A) =



0 , if R ̸⊆ I ∩A;∑
T : |V (T )∪I∪A|≤τ

A=Sl(I,A;T )
T∩E(A)=∅

(I,A;T ) left-generated
eI,A(T )=i

(ωn )
iχT , o.w.

of dimension
([n]

d
2

)
×
( [n]
≤ d

2

)
. Let L̃R := (LR,0, ..., LR,τ ) the left factor, (L̃R)⊤ the

right factor. Note these matrices do not depend on “c”.

Definition 7.2. Dτ := diag
(
(ωn )

|A|
2

)
A⊆[n]: |A|≤d/2

⊗ Id{0,...,τ}×{0,...,τ}.

Our goal is to find a middle,

(( [n]
≤ d

2

)
× (τ + 1)

)
×
(( [n]

≤ d
2

)
× (τ + 1)

)
-matrix QR

c

s.t. MR
c ≈ (LR,0, ..., LR,τ )︸ ︷︷ ︸

L̃R

·
(
Dτ ·QR

c ·Dτ
)
· (LR,0, ..., LR,τ )⊤︸ ︷︷ ︸(

L̃R
)⊤

, achived as Lemma 7.2.

Remark 7.1. Here the middle matrix has “larger” dimension (×{0, ..., τ}). The
reason is that in (5.12), or more broadly in any exact pseudo-expectation generated
by the method in section 3.2, the parameter a = |V (T ) ∪ I ∪ J | appears nestedly
in an essential way. That is, fix (I, J ;T ), the non-exact coefficient (3.8) factors as

15As noted previously, this is not yet the PSDness of the moment matrix as we do not have the
homogeneous reduction in non-exact case. A full proof is just similar, though.
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(ωn )
a = (ωn )

e(Rl)+|V (Rm)|+e(Rr) (Remark 6.2) as the left, middle, right terms, but

now terms like
(
a+l−d

c

)
·
(
n−a
l−c

)
are not log-additive in a. We deal with this by further

specifying parameters (e(Rl), e(Rr)) ∈ {0, ...τ} × {0, ...τ}.

The main factor of the coefficients in MR
c (5.15) can be separated into left, right,

middle factors as before, (ωn )
a = (ωn )

e(Rl) ·(ωn )
|V (Rm)| ·(ωn )

e(Rr). We leave the “hard”

factor Yc(r, a) to the middle matrix QR
c

(
(·, el), (·, er)

)
, el, er “intended” as reduced

sizes, as below.

Definition 7.3. (First-approximate factorization, middle QR
c,0) Define QR

c,0 to be

the {0, ..., τ}×{0, ..., τ}-block matrix, each block of dimension
(

[n]
≤d/2

)
×
(

[n]
≤d/2

)
, that

is 0 outside of the principal minor SR × SR where

(7.2) SR = {(A, i) ∈
(

[n]

≤ d/2

)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d

2
},

and on this principal minor, QR
c,0

(
(A, i), (B, j)

)
=

(7.3) ∑
Tm:|V (Tm)∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(
ω

n
)|V (Tm)∪A∪B|− |A|+|B|

2 ·Yc

(
|R|, |V (Tm) ∪A ∪B|+ (i+ j)

)︸ ︷︷ ︸
defined by (5.12)

·χTm

L̃R ·
(
Dτ ·QR

c,0 ·Dτ
)
·
(
L̃R
)⊤

is called the first approximate factorization of

MR
c .

Remark 7.2. (Intended meaning of parameters in QR
c,0.)

(1). The set SR (7.2) is defined independently of c, where the condition |A|+ i ≥
d/2 is by the intended meaning of i as |V (T ′)\A| ≥ |I| − |A| for some ribbon

(I, A;T ′) in L̃R. If |A| + i < d/2 the corresponding column in L̃R is always 0.
Similarly for j.

(2). QR
c,0 is supported only on those ((A, i), (B, j)) ∈ SR × SR with |A| = |B|.

(3). (cf. Remark 6.2) Regarding (7.3), in “canonical” situations (i.e. for outer-

canonical products in L̃R ·
(
Dτ ·QR

c,0 ·Dτ
)
·
(
L̃R
)⊤

) it holds that

|V (Tm) ∪A ∪B|+ (i+ j) = |V (T ) ∪ I ∪ J |
for any ribbon R = (I, J ;T ) that has (A,B;Tm) as the middle part of its canonical
decomposition and e(Rl) = i, e(Rr) = j.

Lemma 7.1. (QR
c,0 gives the first-approximation) Fix R, c ≤ |R|. For every

(I, J ;T ) s.t. |V (T )∪ I ∪J | ≤ τ and R ⊆ I ∩J , there is exactly one outer-canonical
product in the XYX⊤-type matrix product

(7.4) L̃R︸︷︷︸
as “X”

·
(
Dτ ·QR

c,0 ·Dτ
)︸ ︷︷ ︸

as “Y ”

·
(
L̃R
)⊤

.

It is from the canonical decomposition of (I, J ;T ), and results in term MR
c (I, J ;T )χT .

Proof. Suppose R ⊆ I ∩ J . First, note every triple in (7.4) is inner-canonical by

definition of L̃R, QR
c,0, so all outer-canonical triples there 1-1 correspond to their

triple-product (I, J ;T ) via the canonical decomposition.
Fix an (I, J ;T ) and its canonical decomposition, where |V (T ) ∪ I ∪ J | ≤ τ .

(I, A;T ′) appears exactly once in L̃R(I, A) in block LR,el , where el = eI,A(T
′);
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similarly for (J,B;T ′′) and er = eJ,B(T
′′). Further, there is exactly one outer-

canonical product in (7.4) corresponding to this triple, with coefficient

(7.5) LR,el(I, A;T ′) · (ω
n
)

|A|
2 ·QR

c,0(A,B;Tm) · (ω
n
)

|B|
2 · LR,er (J,B;T ′′).

By definition (7.1), (7.3), if let a := |V (T ) ∪ I ∪ J | then the above coefficient is
(ωn )

a ·Yc(|R|, a) = MR
c (I, J ;T ). Compare (5.12), (5.15), where note a = |V (T )∪I∪

J | = el + |V (Tm) ∪A ∪B|+ er by canonicality, we see that the lemma holds. □

Definition 7.4. Let ER
c;deg be the matrix that collects all products in [L̃R·

(
DτQR

c,0D
τ
)
·(

L̃R
)⊤

]can with |V (T )∪I∪J | > τ (cf. (6.25)), and [L̃R ·(DτQR
c,0D

τ )·(L̃R)⊤]non-can

collects all terms from triples that are non-outer-canonical.

Summarizing, we have the first-approximate factorization:

(7.6) MR
c = L̃R ·

(
DτQR

c,0D
τ
)
·
(
L̃R
)⊤
− [L̃R ·

(
DτQR

c,0D
τ
)
·
(
L̃R
)⊤

]non-can−ER
c;deg.

The crucial fact is that again matrix [L̃R ·
(
DτQR

c,0D
τ
)
·
(
L̃R
)⊤

]non-can factorizes

through L̃R, (L̃R)⊤ approximately, allowing us to factorize recursively (cf. (6.38)).

Definition 7.5. For a fixed R ⊆ [n], we say a function f defined on ribbons on
the ground set [n] is R-symmetric w.r.t. shapes, if f takes the same values on
isomorphic ribbons whose side sets both contain R.

Lemma 7.2. (Recursive factorization, exact case) ∀R ∈
(

[n]
≤d/2

)
, 0 ≤ c ≤ |R|,

(7.7) MR
c = L̃R ·

[
Dτ

(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
Dτ

]
·
(
L̃R
)⊤

+ ER
c where

(1). All QR
c,k’s are supported on the principal minor SR × SR ( (7.2));

(2). QR
c,0 is by Definition 7.3;

(3). ∀1 < k ≤ d/2, QR
c,k is a (τ+1)×(τ+1)-block-matrix supported on SR×SR,

(7.8) QR
c,k

(
(A, i), (B, j)

)
=

∑
Tm:|V (Tm)∪A∪B|≤τ

qRc,k(Rm, i, j) · χTm

where we denote Rm = (A,B;Tm), qRc,k(·, i, j)’s are R-symmetric w.r.t. shapes, and

(7.9) ∀(i, j) |qRc,k(Rm, i, j)| ≤ τ5τ · ( ω

n1−ϵ
)s−p+k/3

where s = |A|+|B|
2 , p is the max number of vertex-disjoint paths between A, B in

Rm.
(4). For any G, ER

c (G) is supported within rows and columns that is clique in G
and contains R. Moreover, w.p. > 1− n−9 logn,

∥∥ER
c

∥∥ < n−ϵτ/2.

To prove this lemma, we use a counterpart of Lemma 6.4 in the exact case, stated

below. Fix an R ⊆
(
[n]
d/2

)
and for convenience denote n1 :=

(
[n]
d/2

)
× (τ + 1).

Lemma 7.3. (One round of factorization, exact case)

Let L̃R be from Def. 7.1, QR be any n1 × n1-matrix supported on SR × SR and

(7.10) QR((A, i), (B, j)) =
∑

Tm: |V (Tm)∪A∪B|≤τ

(
ω

n
)|V (Rm)|q(Rm, i, j) · χTm

where Rm denotes (A,B;Tm), and q(·, i, j) is R-symmetric w.r.t. shapes for any
fixed (i, j). Now we define matrix Q′,Enegl so that

(7.11) [L̃R ·Q · (L̃R)⊤]non-can = [L̃R ·Q′ · (L̃R)⊤]can + Enegl.
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Namely, let Q′ be only supported on SR × SR, with expression Q′((A, i), (B, j))
=

∑
Tm: |V (Tm)∪A∪B|≤τ

(ωn )
|V (Rm)|q′(Rm, i, j)χTm

, where q′(Rm, i, j) is as follows. For

a fixed Rm = (A,B;Tm) and (i, j), let t = |V (Rm)| ≤ τ , s = |A|+|B|
2 , and for every

improper ribbon R∗
m that contains Rm as its largest ribbon and |V (R∗

m)| ≤ τ , fix any
a ribbon pair (R′

l,R
′
r) so that (R′

l,R
∗
m,R′

r) is the separating factorization of some
ribbon triple, |V (R′

l)|, |V (R′
r)| ≤ τ and

(7.12) (e(R′
l), e(R

′
r)) = (i, j).

If there is no such choice, exclude this R∗
m in the summation below. Define

(7.13)

q′(Rm, i, j) =
∑

R∗
m: improper ribbon on (A,B)

|V (R∗
m)|≤τ

largest ribbon is Rm

(
ω

n
)|I(R

∗
m)| · q′′(R∗

m, i, j) where

q′′(R∗
m, i, j) =

∑
(z,i1,j1):
1≤z≤d/2

∑
P=(Rl,R,Rr): side-inn. can.

P→(R′
l,R

∗
m,R′

r) for the fixed R′
l,R

′
r

z(P)=z, e(Rl)=i1,e(Rr)=j1

(
ω

n
)z · q(R, i1, j1).

Here, q′′(Rm, i, j) doesn’t depend on the choice (R′
l,R

′
r) by (the full of) Prop. 6.4,

so q′(·, i, j) is also R-symmetric w.r.t. shapes. Finally, Enegl is defined s.t. (7.11)
holds. Then the conclusions are:

(1). W.p. > 1− n−9 logn over G, ∥Enegl∥ ≤ max{q(·)} · n−ϵτ ;
(2). If there is a number C for which

(7.14) ∀Rm, i, j |q(Rm, i, j)| ≤ C · ( ω

n1−ϵ
)s−p

where p is the max number of vertex-disjoint paths between A,B in Rm, then

∀Rm, i, j |q′(Rm)| ≤ C · ( ω

n1−ϵ
)s−p+1/3.

Proof. (of Lemma 7.3) The proof is almost the same as that of Lemma 6.4; we
point out and explain the differences below.

The support condition (i.e. supported on SR×SR) doesn’t affect anything since

L̃R itself is automatically 0 on columns and rows that are not in SR.

In step (0), we expand [L̃R ·Q′ ·(L̃R)⊤]can to compare with [L̃R ·Q ·(L̃R)⊤]non-can
term-wise, using Prop. 6.4. Here, notice that when (i, j) and R∗

m are fixed, the
size of any choice of (R′

l,R
′
r) satisfying (7.12) are also fixed, so the proposition is

applicable.
The comparison of orders on (ωn ) between the two is the same as in step (0) in the

proof of Lem. 6.4, and we get that Enegl collects all products in [L̃R ·Q·(L̃R)⊤]non-can
whose R∗

m in separating factorization exceeds size τ . I.e. Enegl (I, J)) =∑
i,j

∑
(Rl,Rm,Rr): side inn. can.

non-outer-can.
all three has size ≤τ

|V (R∗
m)|>τ, (e(Rl),e(Rr))=(i,j)

(ωn )
|V (Rl)|+|V (Rm)|+|V (Rr)|−|A|−|B|q(Rm, i, j)χT ,

where T = Tl ⊕ Tm ⊕ Tr and we omitted writing the default condition in the
summation that Rl (Rr) has the left (right) side vertex set I (J).

Conclusions (1), (2) follow from the same estimates as in Lem. 6.4 (after (6.37)).
Note the norm bound from Theorem 3 is still applicable to our case where a graph
matrix can be nonzero only on (A,B) s.t. R ⊆ A∩B; this is because we can process
the original graph matrix by diag(1R) · (−) · diag(1R) where 1R(A) = 1 iff R ⊆ A,
which does not increase norm. Finally, for (1) we have an extra (1 + τ)2-factor
compared with before (occurring from a union bound on blocks), but the estimate
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in Lem. 6.4 is loose enough that when multiplied by this additional factor it is still
< n−ϵτ . □

Proof. (of Lemma 7.2) We apply Lem. 7.3 to [L̃R ·
(
DτQR

c,0D
τ
)
·
(
L̃R
)⊤

]non-can

repeatedly; as the result we can express MR
c as:

(7.15)

L̃R

(
Dτ
(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
Dτ

)(
L̃R
)⊤
−ER

c;deg+
(
−ER

c,1;negl + ...± ER
c,d+1;negl

)
where again it uses that QR

c,d+1 = 0, by the same Prop. 6.5.

(1). All QR
c,k is supported within SR × SR by definition of a round (Lem. 7.3).

(2). This is by definition.
(3). The coefficients {qRc,k(·, i, j)} of each QR

c,k (k = 0, 1, ..., d) are always R-

symmetric w.r.t. shapes by Lem. 7.3. By definition (7.3) and Lem. 5.2(4),

∀Rm, i, j |qRc,0(Rm)| = |Yc(|R|, |Rm|)| · (
ω

n
)|V (T )∪A∪B| ≤ τ5τ · 1.

Notice QR
c,0 is special in that for all Rm = (A,B;Tm) in it, there are |A| = |B|

many vertex-disjoint paths between A,B in Rm, i.e. s = p (as usual s := |A|+|B|
2

and p denotes the max number of vertex-disjoint paths between A,B). So the
above can be equivalently written as |qRc,0(Rm)| ≤ ( ω

n1−ϵ )
s−pτ5τ . Now we use Lem.

7.3(2), whose “q(·)” is qRc,k here, the “Q” matrix is DτQR
c,kD, the “(ωn )

|V (Rm)|q(·)”
is (ωn )

|V (Rm)|−s · (ωn )
s · qRc,k. As the result, |qRc,k(Rm, i, j)| ≤ τ5τ · ( ω

n1−ϵ )
s−p+k/3.

(4). When plug in G, both MR
c L̃R

[
Dτ

(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
Dτ

](
L̃R
)⊤

are supported on clique rows and columns that contain R by definition. So it is the
case for the difference, ER

c , too. Thus we only need to show the norm bound on

ER
c := −ER

c;deg +
(
−ER

c,1;negl + ...± ER
c,d+1;negl

)
. By Lem. 7.3(2) and induction on

k = 0, ..., d, it always holds that |qRc,k| < τ5τ . Also for each ER
k;negl, by Lem. 7.3(1)

w.p. > 1− n−9 logn,
∥∥∥ER

k;negl

∥∥∥ < τ5τn−ϵτ < n−0.9ϵτ .

As for ER
c;deg, recall by Def. 6.5, its (I, J)-th entry is the sum of outer-canonical

products in L̃R ·
(
DτQR

c,0D
τ
)
·
(
L̃R
)⊤

at (I, J) where |V (T ) ∪ I ∪ J | > τ . Thus

ER
c;deg(I, J)=

∑
(Rl,Rm,Rr): side-inn.can.

outer.can.
all three has size ≤τ

|V (T )∪I∪J|>τ

(ωn )
|V (T )∪I∪J| · qRc,0(Rm, e(Rl), e(Rr))χT

where T = Tl⊕Tm⊕Tr, and in the summation Rl (Rr) should have I (J) as the left
(right) set. Note this equation uses |V (T )∪ I ∪ J | = el + er + |V (Rm)|, a fact from
outer- and side-inner-canonicality. By canonicality again, the sum contributes to a
(I, J ;T ) by at most 33τ triples. Since 3τ ≥ |V (T )∪I∪J | > τ and |qRc,0(·)| < τ5τ , we

have by Lem. 4.2 that
∣∣∣ER

c;deg(I, J)
∣∣∣< τ6τ ·

3τ∑
c=0

(ωn )
max{τ,c}(nc/22c

2

n4 log logn) < n−2ϵτ

w.p. > 1−n−10 logn. So, by union bound over (I, J),
∥∥∥ER

c;deg

∥∥∥ < n−d/4n−2ϵτ < n−ϵτ

w.p. > 1− n−9.5 logn.

Together, summing the bounds on
∥∥∥ER

c,k;negl

∥∥∥ and
∥∥∥ER

c;deg

∥∥∥, by union bound over

k = 1, ..., d, we get that w.p. > 1− n−9 logn,
∥∥ER

c

∥∥ < n−ϵτ/2. □
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8. PSDness analysis, III: Structural and pseudorandom matrices

In this section, we prove the Main Lemma 5.3. Recall by Lemma 7.2, for each
R and c, c ≤ |R|, we have:

MR
c = L̃R ·

Dτ

(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
︸ ︷︷ ︸

:=QR
c

Dτ

 · (L̃R
)⊤

+ ER
c .

The key is the following lemma.

Lemma 8.1. W.p. > 1− n−8 logn over G, the following holds.

(1). ∀R ∈
(

[n]
≤d/2

)
, QR

0,0 − QR
0,1 + ... ± QR

0, d2
⪰ τ−7τ · diag

(
C̃l
)
SR×SR

, where

recall SR = {(A, i) ∈
(

[n]
≤d/2

)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d

2}.

(2). ∀R, 0 < c ≤ |R|, ±ω−c
(
QR

c,0 −QR
c,1 + ...±QR

c, d2

)
⪯ n−c/4diag

(
C̃l
)
SR×SR

.

Proof plan of Lemma 8.1. Fix an R ∈
(

[n]
≤d/2

)
. We will prove the lemma by

three ingredients: Corollary 8.3, Lemma 8.3, Lemma 8.4.

Proof plan. Corollary 8.3 (section 8.1, 8.2): Positiveness ofQR
0,0. This is the last

real technical challenge. We use a natural “structural part + pseudo-random part”
decomposition of QR

0,0 (Def. 8.2), aiming to show that on their common support,
the structural part is positive enough and the pseudo-random part is small enough
in norm. The main difficulty here is in analyzing E[QR

0,0] which, ultimately, is about
the choice of generating function F in Definition 3.6.

Lemma 8.3, 8.4 (section 8.2): Other QR
c,k’s (k > 0 or c > 0), when timed with

ω−c, are small and appropriately supported. These are proved by standard means.

We carry out this plan in the upcoming two subsections 8.1, 8.2.

Definition 8.1. Define the root diagonal-clique matrix as

(8.1) DCl(A,B) =

{
0 , if A ̸= B;

2−(
|A|
2 )/2 · C̃lA = 2−(

|A|
2 )/2

∑
T⊆E[A] χT , o.w.

of dimension
(

[n]
≤d/2

)
×
(

[n]
≤d/2

)
, so that D2

Cl(A,A) = C̃l(A) for all A ∈
(
[n]
d/2

)
. Also

let Dτ
Cl := DCl⊗ Id{0,...,τ}×{0,...,τ} which is again diagonal.

Definition 8.2. The structural-pseudorandom decomposition of QR
0,0 is

(8.2) QR
0,0 = Dτ

Cl · E[QR
0,0] ·Dτ

Cl +
(
QR

0,0 −Dτ
Cl · E[QR

0,0] ·Dτ
Cl

)
,

where the summand Dτ
Cl · E[QR

0,0] · Dτ
Cl is called the structural part, and the

summand
(
QR

0,0 −Dτ
Cl · E[QR

0,0] ·Dτ
Cl

)
the pseudo-random part.

8.1. Positiveness of the structural part, E[QR
0,0].

Proposition 8.1. Fix R ∈
(

[n]
≤d/2

)
and 0 ≤ c ≤ |R|, let r := |R|.

(1). E[QR
c,0] is supported on the blockwise partial-diagonals {

(
(A, i), (A, j)

)
∈

SR × SR}, where SR is by (7.2) (i.e. requires R ⊆ A and |A|+min{i, j} ≥ d/2).
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(2). For all

(
(A, i), (A, j)

)
∈ SR × SR, E[QR

c,0]

(
(A, i), (A, j)

)
=

(8.3)

r∑
l=c

(−1)r−l

(
r
l

)
(l − c)!

(
|A|+ i+ j + l − d

c

)(|A|+ 8τ2 + (l − c) + (i+ j)

)
!

(8τ2)!

+O

(
τ1.5τ

n

)
.

In particular, for c = 0,
(8.4)

E[QR
0,0]

(
(A, i), (A, j)

)
=

r∑
l=0

(−1)r−l

(
r
l

)
l!
·

(
|A|+ 8τ2 + l + (i+ j)

)
!

(8τ2)!
+O

(
τ1.5τ

n

)
.

(3). For every A ∈
(

[n]
≤d/2

)
let 1A,A be the

(
[n]

≤d/2

)
×
(

[n]
≤d/2

)
-matrix with a single 1

on position (A,A). Then

(8.5) E[QR
0,0] =

∑
A⊆( [n]

≤d/2)
A⊇R

1A,A ⊗

[(
r∑

l=0

(−1)r−l

(
r
l

)
l!
· P|A|+l

)
+ ER

A

]

where for every fixed A, P|A|+l, E
R
A are (τ + 1) × (τ + 1)-matrices both supported

on the principal minor {i | d/2− |A| ≤ i ≤ τ} × {i | d/2− |A| ≤ i ≤ τ}, satisfying∥∥ER
A

∥∥ < τ2τ

n and

(8.6) P|A|+l(i, j) =

(
|A|+ l + 8τ2 + (i+ j)

)
!

(8τ2)!
, d/2− |A| ≤ i, j ≤ τ.

Proof. For (1), the constant terms in (7.3) correspond to Tm = ∅, which is nonzero
only when A = B for A,B in SR.

For (2), by definition (7.3) notice again Tm = ∅ and A = B. E[QR
c,0((A, i), (A, j))]

= Yc( |R|︸︷︷︸
:=r

, |A|+ i+ j︸ ︷︷ ︸
:=a

), which expands to:

r∑
l=c

(−1)r−l

(
r

l

)(
a+ l − d

c

)
︸ ︷︷ ︸

Def. 5.1

(
n− a

l − c

)
n−(l−c) (a+ l − c+ 8τ2)!

(8τ2)!
.(8.7)

Now use
(
n−a
l−c

)
n−(l−c) = 1

(l−c)!
(n−a)...(n−a−(l−c)+1)

nl−c = 1
(l−c)! (1−O(d2/n)) and∣∣∣∣(rl

)(
a+ l − d

c

)(
n− a

l − c

)
n−(l−c) (a+ l − c+ 8τ2)!

(8τ2)!

∣∣∣∣ < (4d)d · (9τ2)d < τ τ

to (8.7), we get (8.3). Further, in (8.7) when c = 0 we have
(
a+l−d

0

)
= 0 regardless

of a + l − d (any value of it, positive, negative or 0). And the same analysis gives
(8.4).

For (3), each ER
A has dimension (τ + 1) × (τ + 1) and each entry is absolutely

< τ1.5τ/n from part (2). The expression of P|A|+l is directly from (8.4). □

Remark 8.1. (Specialty of c = 0). Comparing E[QR
0,0] and E[QR

c,0] (8.3), (8.4),

the specialty of the case c = 0 is that the factor
(|A|+l−d

0

)
is always 1, which is

important for E[QR
0,0] to be positive. In cases c > 0,

(|A|+l−d
c

)
might be 0 or negative

depending on the order between 0, c, |A|+ l − d, making E[QR
c,0] possibly not PSD.
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Definition 8.3. For every m, t ∈ N, define the factorial Hankel matrix to be

(8.8) Hm,t(i, j) = (i+ j + t)! ∀0 ≤ i, j ≤ m.

The following is our key observation on the structure of these matrices.

Proposition 8.2. (Almost common decomposition of {Hm,t})
(1). Hm,t = Lm ·

(
Nm,t ·Dm,t · (Nm,t)

⊤) · (L⊤
m) where Lm, Dm,t are diagona and

Nm,t is lower-triangular, with expressions

Lm(i, i) = i! Dm,t(i, i) =

t∏
t′=1

(i+ t′) Nm,t(i, j) =

(
i+ t

i− j

)
.

In particular, Lm is independent of t, and Hm,t is positive.
(2). Let Jm be the usual (1 +m)× (1 +m) lower-triangular Jordan block

Jm(i, j) =

{
1 , if i = j or i = j + 1;

0 , o.w.

Then the “left factors” Nm,t satisfy the recursive relation Nm,t+1 = Nm,t · Jm.

Proof. The two items follow from a direct inspection of the definition. □

Proposition 8.3. If parameters m, t, r satisfy

(8.9) t+ 1 > 8 ·max{r2,m}

then it holds that Hm,t+1 ⪰ 2r2Hm,t.

Proof. By Proposition 8.2 it suffices to show that under (8.9),

Jm ·Dm,t+1 · J⊤
m ⪰ 2r2Dm,t.

Equivalently, we need to compare the quadratic forms for fixed m:

(8.10) qt+1(x) := (x⊤Jm)Dm,t+1(J
⊤
mx) v.s. qt(x) := 2r2 · x⊤Dm,tx

where x⊤ = (x0, ..., xm) is the formal variable row-vector. Define two polynomials

α(y) = 2r2
t∏

t′=1

(y + t′), β(y) =

t+1∏
t′=1

(y + t′).

Then we have qt+1(x) =
m∑
i=0

β(i)(xi + xi+1)
2 (xm+1 := 0) and qt(x) =

m∑
i=0

α(i)x2
i .

To compare qt(x), qt+1(x), note qt+1(x) =
∑m

i=0 β(i) · (xi + xi+1)
2

m∑
i=0

[
α(i)x2

i +

(
β(i)− α(i)

)
· (xi +

β(i)

β(i)− α(i)
xi+1)

2 − β(i)2

β(i)− α(i)
x2
i+1

]
So if for 1 ≤ i ≤ m let bi := 1− α(i)

β(i) −
β(i−1)
β(i)

1
bi−1

, b0 = 1− α(0)
β(0) , then

(8.11) qt+1(x) =

m∑
i=0

α(i)x2
i︸ ︷︷ ︸

qt(x)

+

m∑
i=0

β(i)bi(xi +
1

bi
xi+1)

2.

Claim 8.1. For all i ≤ m we have bi > 1/2.

Proof. (of the claim) By definition, b0 = 1− 2r2

(t+1) and

(8.12) bi = 1− 2r2

(t+ 1 + i)
− i

(t+ 1 + i)
· 1

bi−1
, i ≥ 1.
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Use induction for the claim: b0 = 1 − 2r2

t+1 > 1/2 by (8.9). For 1 ≤ i ≤ m,

bi = 1 − 2r2

t+1+i −
i

t+1+i ·
1

bi−1
≥ 1 − 2r2

t+1 −
m
t+1 · 2 > 1/2 by (8.9) and inductive

hypothesis. □

By (8.11) and positiveness of each bi (Claim 8.1), qt+1(x) ≥ qt(x). This proves
(8.10) and thus the proposition. □

Now we apply Proposition 8.3 to matrices P|A|+l (8.6). Note

P|A|+l =
1

(8τ2)!
Hτ−(d/2−|A|), d−|A|+8τ2+l

where A is fixed, l varies. We have the following:

Corollary 8.1. (Positiveness of E[QR
0,0]) In the decomposition (8.5) of E[QR

0,0],

(8.13)

(
r∑

l=0

(−1)r−l

(
r
l

)
l!
· P|A|+l

)
+ ER

A ≻ diag
(
τ−6τ

)
0≤i≤τ−(d/2−|A|)

where we regard the matrices’ support as {i | d/2 − |A| ≤ i ≤ τ)}2 ∼= {0, ..., τ −
(d/2− |A|)}2. In particular, by (8.5)

(8.14)
E[QR

0,0] ≻
∑

A⊆( [n]
≤d/2)

A⊇R

1A,A ⊗ diag
(
τ−6τ

)
d/2−|A|≤i≤τ

= diag
(
τ−6τ

)
SR×SR

where recall SR = {(A, i) | R ⊆ A, |A|+ i ≥ d/2}.

Proof. The “in particular” part is straightforward from (8.13) by checking the sup-
port, and that tensoring with a nonzero PSD matrix preserves the relation ≻. In
below we prove for (8.13).

Fix A, let τ0 = τ − (d/2− |A|), t0 = d− |A|+ 8τ2. Then

(8.15)

r∑
l=0

(−1)r−l

(
r
l

)
l!
· P|A|+l =

1

(8τ2)!
· (Xr +Xr−2 + ...)

where, ∀0 ≤ v ≤ ⌊r/2⌋, Xr−2v =
( r
r−2v)

(r−2v)!

(
Hτ0,t0+r−2v −

(r − 2v)2

(2v + 1)︸ ︷︷ ︸
≤r2

Hτ0,t0+r−2v−1

)

and Hτ0,−1 := 0. Since t0 > 8max{r2, τ0}, by Proposition 8.3

Xr−2v ⪰
(

r
r−2v

)
(r − 2v)!

·max{1
2
Hτ0,t0+r−2v, r2Hτ0,t0+r−2v−1} ∀0 ≤ v ≤ r/2.

So in (8.15), in particular,

(8.16)

r∑
l=0

(−1)r−l

(
r
l

)
l!
·P|A|+l ⪰

1

(8τ2)!
·Hτ0,t0

Prop. 8.2
= L

(
Nt0 ·

Dt0

(8τ2)!
· (Nt0)

⊤
)
L

where we temporarily abuse the notation by omitting the index τ0 in the RHS.
Using the following claim, we can finish the proof of (8.13):

RHS of (8.16) ≻ L · diag
(
τ−5τ

)
0≤i≤τ0

· L (by Claim 8.2)

⪰ diag
(
τ−5τ

)
0≤i≤τ0

,

while by Proposition 8.1 (3),
∥∥ER

A

∥∥ < τ2τ

n < τ−6τ (using the parameter regime).

So LHS of (8.13) ⪰ diag
(
τ−5τ − τ−6τ

)
0≤i≤τ0

⪰ RHS of (8.13). □
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Claim 8.2. Under the notation of Cor. 8.1, the following holds:

(8.17) N−1
t0 (i, j) = (−1)i−j

(
i+ t0
i− j

)
0 ≤ i, j ≤ τ0

(which is defined as 0 if i < j);

(8.18) Nt0 ·
Dt0

(8τ2)!
· (Nt0)

⊤ ≻ diag
(
τ−5τ

)
0≤i≤τ0

.

Proof. For (8.17), multiply this matrix with Nt0 then the (i, j)th entry is∑
j≤k≤i

(−1)i−k

(
i+ t0
i− k

)(
k + t0
k − j

)
=

i′∑
k′=0

(−1)i
′−k′

(
i′ + j + t0
i′ − k′

)(
k′ + j + t0

k′

)
where i′ = i − j, k′ = k − j. To see it is the identity matrix, we use a generating
function. Let Dm[(1 + x)a] denote the coefficient of xm in (1 + x)a, m ≥ 0, a ∈
Z, the above RHS = (−1)i′

∑i′

k′=0 Di′−k′ [(1 + x)i
′+j+t0 ] · Dk′ [(1 + x)−(t0+j+1)] =

(−1)i′Di′ [(1 + x)i
′+j+t0−(t0+j+1)] = (−1)i′Di′ [(1 + x)i

′−1] = 1i′=0.

As for (8.18), note it is equivalent to:

(8.19)
Dt0

(8τ2)!
≻ N−1

t0 · τ
−5τ · (N−1

t0 )⊤.

To upper bound the RHS, let a0 = τ−5τ , consider the quadratic form

(8.20) x⊤N−1
t0 · a0 · (N

−1
t0 )⊤x = a0

τ0∑
j=0

y2j ,

where by (8.17), yj =
(
x⊤N−1

t0

)
j
=
∑τ0

i=j(−1)i−j
(
i+t0
i−j

)
xi. By Cauchy-Schwartz,

y2j ≤ τ0·
∑τ0

i=j

(
i+t0
i−j

)2
x2
i , thus RHS of (8.20) = a0

∑τ0
j=0 y

2
j ≤ a0

∑τ0
i=0 x

2
i ·
(
τ0
∑i

j=0

(
i+t0
i−j

)2)
<
∑τ0

i=0

(
τ−5τ · (9τ2)2i+2

)
x2
i . Now (8.19) follows since, for each i, in the LHS

of (8.19) =
Dt0

(i,i)

(8τ2)! ≥ (8τ2)−(d/2−|A|) by definition, and the latter > τ−2d >

τ−5τ · (9τ2)2i+2 using i ≤ τ0 < τ , d ≪ τ . Combining these two conclusions,
we get (8.19). □

We arrive at the main conclusion of this subsection.

Corollary 8.2. (Positiveness of the structural part of QR
0,0 (Def. 8.2))

Dτ
Cl · E[QR

0,0] ·Dτ
Cl︸ ︷︷ ︸

stractural part of QR
0,0

⪰ τ−6τ · diag
(
C̃l
)
SR×SR

.

Proof. It follows from Corollary 8.1 and the fact that D2
Cl(A,A) = C̃l(A) in Defi-

nition 8.1. □

8.2. Rest bounds: QR
c,ks. In this subsection, we bound the rest matrices:

QR
0,0 −Dτ

Cl · E[QR
0,0] ·Dτ

Cl︸ ︷︷ ︸
pseudo−random part of QR

0,0 (Def. 8.2)

, QR
0,k (k > 0), ω−c ·QR

c,k (c > 0, k ≥ 0)

by three Lemmas 8.2, 8.3, 8.4, respectively, which would prove Lemma 8.1.
The arguments are standard but somewhat lengthy, as we need to be careful on

the block structure and the support of matrices. Like in the proof of Lem. 7.3,
when fixing an R ⊆ [n] we only consider ribbons whose both side sets contain R,
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so the corresponding graph matrices will be multiplied by diag(1R) from left and
right, where 1R(A) = 1 iff R ⊆ A; this does not affect the norm bound in Thm 3.

Definition 8.4. Recall the (blocked) root diagonal-clique matrix Dτ
Cl, Def. 8.1.

Denote by D′ its 0-1 valued version. I.e., D′ is diagonal and D′((A, i), (A, i)) = ClA
for all A ∈

(
[n]

≤d/2

)
and 0 ≤ i ≤ τ .

Lemma 8.2. W.p. > 1− n−9 logn the following holds: ∀R ∈
(

[n]
≤d/2

)
,

(8.21) ±(QR
0,0 −Dτ

Cl · E[QR
0,0] ·Dτ

Cl︸ ︷︷ ︸
pseudo−random part of QR

0,0

)(G) ⪯ n−ϵ · diag
(
C̃l(G)

)
SR×SR

Proof. Fix R. In this proof abbreviate Qps := QR
0,0 −Dτ

Cl · E[QR
0,0] ·Dτ

Cl (“ps”

for pseudo-random). It is (τ + 1)× (τ + 1)-blocked with blocks
(
Qps,(i,j)

)
0≤i,j≤τ

.

In block (i, j), by Def. 7.3 and Prop. 8.1, Qps,(i,j) is supported within Si,j×Si,j ,
where Si,j := {A | |A| + min{i, j} ≥ d/2}. For each A ̸= B, by Prop. 8.1 (1),
Qps,(i,j)(A,B) = QR

0,0((A, i), (B, j)) =

(8.22)
∑

Tm: |V (Tm)∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(
ω

n
)|V (Tm)∪A∪B|− |A|+|B|

2 · q(A,B;Tm) · χTm

and
(8.23)

Qps,(i,j)(A,A) =
∑

Tm: 1≤|V (Tm)\A|≤τ−|A|

(
ω

n
)|V (Tm)∪A|−|A| · q(A,A;Tm) · χTm

.

Here we have abbreviated q(A,B;Tm) := Y0

(
|R|, |V (Tm)∪A∪B|+(i+ j)

)
((7.3))

and have omitted the indices |R|, i + j when they are fixed. Two properties we
need:

q(A,B;Tm) depends only on |V (Tm) ∪A ∪B| when fixing (A,B);(8.24) ∣∣∣∣q(A,B;Tm)

∣∣∣∣ < τ5τ (by Lemma 5.2 (4)).(8.25)

By (8.24), Qps,(i,j)(A,B) always factors through ClA∪B thus ClAClB . In particular,

(8.26) Qps = D′ ·Qps ·D′ (D′ from Def. 8.4).

Claim 8.3. W.p. > 1 − n−9.5 logn, ±Qps,(i,j) ≺ n−1.1ϵdiag
(
2(

|A|
2 )
)
SR
l ×SR

l

for all

(i, j), where l := min{i, j} and SR
l := {A ∈

(
[n]

≤d/2

)
| A ⊇ R, |A|+ l ≥ d/2}.

The lemma follows from this claim and (8.26), as follows. We consider a different
decomposition of Qps: for every b ∈ [0, d

2 ], let Ib := {i | d/2 − b ≤ i ≤ τ}, and let

Qps;b be the principal minor on Wb :=
(
PR
b × Ib

)
×
(
PR
b × Ib

)
of Qps (0 elsewhere),

where PR
b = {A ⊆ [n] | R ⊆ A, |A| = b}. Then

{((A, i), (B, j)) ∈ SR × SR | 0 ≤ |A| = |B| ≤ d/2} =
d/2
⊔
b=0

Wb (disjoint union).

Note QR
c,0 is supported only on those ((A, i), (B, j)) ∈ SR × SR with |A| = |B|

(Remark 7.2(2)); in particular for c = 0, we have a decomposition Qps =
d/2∑
b=0

Qps;b.

Now inside block Ib × Ib, Qps;b is further block-wise, each block a principal

minor of Qps,(i,j). By Claim 8.3, (±) all such blocks ≺ n−1.5ϵ · diag
(
2(

b
2)
)
PR

b ×PR
b
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together w.p. > 1− n−9.5 logn, which implies ±Qps;b ≺ τ2 · n−1.5ϵdiag
(
2(

b
2)
)
Wb

≺

n−ϵdiag
(
2(

b
2)
)
Wb

. So, summing over b, ±Qps ≺ n−ϵdiag
(
2(

|A|
2 )
)
SR×SR

w.p. 1 −

n−9 logn. Insert this to the middle of (8.26), where C̃lA = 2(
|A|
2 ) · ClA, ClA = Cl2A,

we get (8.21). □

Proof. (of Claim 8.3) We use the norm bounds from section 4. Fix (i, j), consider

Qdiag
ps,(i,j) and Qoff

ps,(i,j) = Qps,(i,j) −Qdiag
ps,(i,j) separately.

Diagonal part. For any (A,A) in the support (i.e. |A|+i ≥ d/2, |A|+j ≥ d/2),

Qdiag
ps,(i,j)(A,A) = C̃lA

 ∑
Tm: 1≤|V (Tm)\A|≤τ−|A|

Tm∩E[A]=∅

(
ω

n
)|V (Tm)\A|q(A,A;Tm)χTm


︸ ︷︷ ︸

:=g(A)

by (8.23).

This g(A) can be bounded by norms of diagonal graph matrices as follows. First,
q(A,A;Tm) depends only on |V (Tm)\A| (we have fixed R, i, j, A), so temporarily
denote it as q(|V (Tm)\A|). For any 1 ≤ v ≤ τ − |A| let Uv

1, ...,U
v
h(v) be all different

shapes (A,A;T ) (Def. 4.4) s.t. T ∩ E[A] = ∅, |V (T )\A| = v. Note

(8.27) h(v) ≤ 2|A|v+v2

since we required T ∩ E[A] = ∅.

So w.p. > 1 − n−9.6 logn, |g(A)| =
∣∣∣∣τ−|A|∑
v=1

(ωn )
vq(v) ·

(
h(v)∑
x=1

∑
Tm:(A,A;Tm) has

shape Uv
x

χTm

︸ ︷︷ ︸
=MUv

x
(A,A) by Def. 4.4

)∣∣∣∣

≤
τ−|A|∑
v=1

(ωn )
vq(v) ·

h(v)∑
x=1

∥∥MUv
x

∥∥ ≤ τ−|A|∑
v=1

(ωn )
vτ5τ

h(v)∑
x=1

∥∥MUv
x

∥∥ by (8.25) and that each

MUv
x
is diagonal; this is further <

τ∑
v=1

(ωn )
vτ5τ · 2|A|v+v2 · n v

2 2O(|A|+v) by (8.27) and

Theorem 3, which is <
τ∑

v=1
n−3ϵv · nϵv < n−1.2ϵ in our parameter regime.

Off-diagonal part. By R-symmetry of coefficients (8.24), Qoff
ps,(i,j) is a sum of

graph matrices. Let Us,t
1 , ...,Us,t

h(s,t) be all shapes (A,B;T ) s.t. |A| = |B| = s, A ̸=
B, A,B ∈ mSepA,B(T ) and |V (T )∪A∪B| = t, then by (8.22), Qoff

ps,(i,j) is a block-

diagonal matrix, with blocks s = d/2− i, ..., d/2 according to s = |A| = |B|, the sth
block being Qoff

ps,(i,j)(s) =
∑

t: s<t≤τ (
ω
n )

t−s
∑h(s,t)

x=1 q(Us,t
x )MU

s,t
x
. Here naturally, we

denote q(A,B;Tm) = q(Us,t
x ) if (A,B;Tm) has shape Us,t

x . By Theorem 3,∥∥∥Qoff
ps,(i,j)(s)

∥∥∥ ≤ ∑
s<t≤τ

(
ω

n
)t−s · h(t, s) · n

t−s
2 2O(t)(log n)O(t−s)(8.28)

w.p. > 1−n−9.8 logn. Also clearly, h(t, s) ≤ 2(
t
2)+O(t). So with the same probability,

the RHS of (8.28) ≤
∑

d/2−max{i,j}≤s≤d/2
s<t≤τ

(ωn )
t−s2(

t
2)+O(t)n

t−s
2 (log n)O(t−s) where note

(ωn )
t−s2(

t
2)+O(t)n

t−s
2 (log n)O(t−s) ≤ n−2ϵ(t−s)2O(t)2(

s
2)(2t+s log n)O(t−s) < 2(

s
2)n−1.95ϵ

Taking the blocks together, we get±Qoff
ps,(i,j) ≺ n−1.9ϵ·diag

(
2(

|A|
2 )
)
SR
min{i,j}×SR

min{i,j}

.

By union bound on the two parts, we get that w.p. > 1− n−9.5 logn,



42 SOS LOWER BOUND FOR EXACT PLANTED CLIQUE

±Qps,(i,j) = ±(Qdiag
ps,(i,j) +Qoff

ps,(i,j)) ≺ n−1.5ϵ · diag
(
2(

|A|
2 )
)
SR
min{i,j}×SR

min{i,j}

.

□

Corollary 8.3. (Positiveness of QR
0,0) For any R ∈

(
[n]

≤d/2

)
, w.p. > 1− n−8 logn,

QR
0,0(G) ⪰ τ−6.1τ · diag

(
C̃l(G)

)
SR×SR

.

Proof. This is by Lem. 8.2, Cor. 8.2, and the fact that τ−6.1τ ≫ n−ϵ/10. □

Lemma 8.3. (Bounds on QR
0,k) W.p. > 1 − n−9 logn the following holds. For all

R ∈
(

[n]
≤d/2

)
and all 1 ≤ k ≤ d/2, ±QR

0,k(G) ⪯ n−k/10 · diag
(
C̃l(G)

)
SR×SR

.

Proof. We will use union bound over (R, k), so fix one first. For the fixed R,
k(> 0), we abbreviate QR

0,k as Q in this proof.

Recall the definition of QR
0,k (Lem. 7.2 (3)): Q is supported within SR × SR,

(8.29) Q

(
(A, i), (B, j)

)
=

∑
Tm:|V (Tm)∪A∪B|≤τ

(
ω

n
)t−sqR0,k(Rm, i, j) · χTm .

where t = |A∪B|, s = |A|+|B|
2 . Abbreviate qR0,k as qk. By Lemma 7.2(3), qk(·, i, j) is

R-symmetric w.r.t. shapes for all fixed (i, j) (the R-symmetry condition), and also
|qk(Rm, i, j)| ≤ τ5τ ( ω

n1−ϵ )
s−p+k/3 (the coefficient-size condition) where t = |A∪B|,

s = |A|+|B|
2 and p is the max number of vertex-disjoint paths from A to B in Tm.

By symmetry of qk’s, Q((A, i), (B, j)) factors through Cl(A)Cl(B), so

(8.30) Q = D′ ·Q ·D′

where D′ is by Definition 8.4. It suffices to show that

(8.31) w.p. > 1− n−9.5 logn ±Q ≺ n−k/10 · diag
(
2(

|A|
2 )
)
SR×SR

.

This is because, like in the proof of Lemma 8.2, we can insert (8.31) to the middle
of (8.30) which proves the lemma for the fixed R, k. Below, we prove (8.31).

As a blocked matrix Q = (Q(i,j))0≤i,j≤τ , Q(i,j) supported on A’s s.t. |A| + i ≥
d/2. For any fixed (i, j), any (s1, s2) ∈ {0, ..., d/2}2 s.t. s1+i ≥ d/2, s2+j ≥ d/2,

and any t ≥ max{s1, s2}, let Ut;s1,s2
1 , ...,Ut;s1,s2

h(t;s1,s2)
be all different shapes (A,B;T )

where |A| = s1, |B| = s2, |V (T ) ∪A ∪B| = t. Then by (8.29) and R-symmetry,

Q(i,j) =
∑

(t;s1,s2)
s1+i,s2+j≥d/2

τ≥t≥s1,s2

h(t;s1,s2)∑
x=1

qk(U
(t;s1,s2)
x , i, j) ·M

U
(t;s1,s2)
x

.

This can be alternatively expressed as Q(i,j) =
∑

s1,s2
s1+i,s2+j≥d/2

Q(s1,i),(s2,j) where

(8.32) Q(s1,i),(s2,j) :=
∑
t:

s1,s2≤t≤τ

h(t;s1,s2)∑
x=1

qk(U
(t;s1,s2)
x , i, j) ·M

U
(t;s1,s2)
x

.

Q(s1,i),(s2,j) is a
(
[n]
s1

)
×
(
[n]
s2

)
-matrix on the (i, j)th block, and w.p. > 1−n−10 logn

(8.33)∥∥Q(s1,i),(s2,j)

∥∥ ≤ ∑
t: t≤τ
t≥s1,s2

h(t; s1, s2) · (
ω

n
)t−s(

ω

n1−ϵ
)s−p+k/3 · n

t−p
2 2O(t)(log n)O(t−s)
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by Thm. 3 and coefficient-size condition, where s = s1+s2
2 and p is the max number

of vertex-disjoint paths between the two side sets. Since h(t; s1, s2) ≤ 2(
t
2)+O(t) =

2(
s
2)+O(t)+(t+s)·(t−s), (8.33) implies (note k > 0, 2O(t) < nϵ/10, τ5τ < n1/30)

(8.34)
∥∥Q(s1,i),(s2,j)

∥∥ < 2(
s
2) · τ5τn−k/6n−ϵ(t−s) < 2(

s
2)n−k/8.

Finally, we sum over all double-blocks and use Cauchy-Schwartz. Namely, regard
each Q(s1,i),(s2,j) as on SR × SR (extended by 0’s), Q =

∑
(s1,i),(s2,j)

s1+i,s2+j≥d/2

Q(s1,i),(s2,j)

where ±Q(s1,i),(s2,j) ≺ n−k/8 ·
(
2(

s1
2 )Id(s1,i),(s1,i) + 2(

s2
2 )Id(s2,j),(s2,j)

)
/2 by (8.34)

and Cauchy-Schwartz. Summing over (s1, i), (s2, j), w.p. > 1− n−9.5 logn

±Q ≺ τ2n−k/8diag
(
2(

|A|
2 )
)
SR×SR

≺ n−k/10diag
(
2(

|A|
2 )
)
SR×SR

.

□

Lemma 8.4. (Bounds on QR
c,k, c > 0) W.p. > 1 − n−9 logn the following holds:

for all R, c, k s.t. R ∈
(

[n]
≤d/2

)
, 0 < c ≤ |R| and 0 ≤ k ≤ d/2,

(8.35) ±ω−c ·QR
c,k ⪯ n−c/3 · diag

(
C̃l
)
SR×SR

.

Proof. The proof is almost the same as the previous one (Lemma 8.3). First, by a
union bound over all such (R, c, k), it suffices to show that w.p. > 1 − n−9.5 logn

the inequality holds for a fixed (R, c, k), which we prove below.

Fix (R, c, k) as in the lemma. If k > 0 then the proof is identical to that of
Lemma 8.3 (c = 0), as the same R-symmetry and coefficient-size conditions hold
(by Lem. 7.2), and moreover, the matrix QR

c,k is supported within SR × SR too.

So we only need to deal with the case c > 0, k = 0, i.e. QR
c,0. By Definition 7.3,

it is supported on SR × SR with expression QR
c,0

(
(A, i), (B, j)

)
=

(8.36) ∑
Tm:|V (Tm)∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(
ω

n
)|V (Tm)∪A∪B|− |A|+|B|

2 · Yc

(
|R|, |V (Tm)∪A∪B|+ (i+ j)

)
·χTm

where
∣∣Yc

(
|R|, |V (Tm) ∪A ∪B|+ (i+ j)

)∣∣ < τ5τ by Lemma 5.2 (4). For a fixed

(A,B;Tm) denote t = |V (Tm)∪A∪B|, s = |A|+|B|
2 (= |A| = |B| in this case), then

the coefficient in (8.36) is bounded by (ωn )
t−s · τ5τ in absolute value. So we have

the support condition, the R-symmetry and coefficient-size conditions as in Lemma
8.3; we proceed exactly the same as there till equation (8.32), where a single term
on the RHS now is

h(t; s1, s2) · (
ω

n
)t−sτ5τ · n

t−p
2 2O(t)(log n)O(t−s).

Note in (8.36) any appearing ribbon Rm = (A,B;Tm) has A,B ∈ mSepA,B(Tm)
so p = s (the specialty of k = 0). So we can replace the bound on the RHS of

(8.34) by τ32(
s
2) · n−3ϵ(t−s)τ5τ2O(t) < 2(

s
2)τ6τ and then proceed to get ±QR

c,0 ≺
τ7τ · diag

(
2(

|A|
2 )
)
SR×SR

. Now c ≥ 1, ω = n
1
2−4ϵ (ϵ < 1/40), τ7τ < n1/15, so

±ω−cQR
c,0 ≺ n−c/3diag

(
2(

|A|
2 )
)
SR×SR

. Once again by QR
c,0 = D′QR

c,0D
′, we have

±ω−cQR
c,0 ⪯ n−c/3diag

(
C̃l
)
SR×SR

. □

Lemma 8.1 follows immediately from Corollary 8.3, Lemma 8.3, 8.4.
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8.3. Last step. Now we prove the Main Lemma 5.3 thus Theorem 6. For any fixed

R, recall PR = {I ∈
(
[n]
d/2

)
| R ⊆ I}, Dτ (Def. 7.2) and SR (7.2).

Lemma 5.3 recast: W.p. 1− n−5 logn it holds that for all R ⊆
(
[n]
d/2

)
:

MR
0 ⪰ n−d · diag(C̃l)PR×PR ;(8.37)

± ω−cMR
c ⪯ n−c/6 ·MR

0 , ∀0 < c ≤ |R|.(8.38)

The following lemma will be handy.

Lemma 8.5. L̃RDτ · diag
(
C̃l
)
SR×SR

· Dτ (L̃R)⊤ ⪰ (ωn )
d/2diag

(
C̃l
)
PR×PR

for

any R ∈
(

[n]
≤d/2

)
, when evaluated on any G.

Proof. Fix any R ∈
(

[n]
≤d/2

)
. Without confusion, we omit subscript SR × SR by re-

garding the supports as the vertex-set [n′] = [n]−R and regarding the corresponding

matrix indices as
(
[n′]
d′/2

)
or
(

[n′]
≤d′/2

)
, where d′/2 = d/2 − |R|. τ is unchanged. We

will still use C̃l(X) to mean C̃l(X ⊔R) for X ⊆ [n′].

Since Dτdiag(C̃l)Dτ is nonnegative and diagonal for any G, we have

(8.39) L̃R
(
Dτ · diag

(
C̃l
)
·Dτ

)
(L̃R)⊤ ⪰ LR,0

(
Dτ · diag

(
C̃l
)
·Dτ

)
(LR,0)⊤,

where recall L̃R = (LR,0, ..., LR,τ ). Further, LR,0 = (LR,0
0 , ..., LR,0

d′/2), where LR,0
t is

the matrix on column set
(
n′

t

)
. This means

LR,0
d/2−|R| =

(
0, ..., 0,diag

(
C̃l
)
( [n′]
d′/2)×(

[n′]
d′/2)

)
since in LR,0 (Def. 7.1) only ribbons R = (I, A;T ′) with 0-reduced size can occur,
forcing A = I and T ′ ⊆ E(I). In particular, this implies

RHS of (8.39) ⪰ (
ω

n
)d/2 · diag

(
C̃l
)
( [n′]
d′/2)×(

[n′]
d′/2)

.

Translated back to [n] and d/2, this is exactly the bound in the lemma. □

Proof. (for Lemma 5.3) Fix R ∈
(

[n]
≤d/2

)
. By Lemma 7.2, for all c ≤ |R|

(8.40) MR
c = L̃R ·

[
Dτ

(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
Dτ

]
·
(
L̃R
)⊤

+ ER
c .

The following bounds all hold w.p. > 1−n−8 logn from the corresponding lemmas,
and we take union bound so the overall probability is > 1− n−5 logn.

For (8.37). Fix R, we have:

MR
0 = L̃R ·

[
Dτ

(
QR

0,0 −QR
0,1 + ...±QR

0,d

)
Dτ

]
·
(
L̃R
)⊤

+ ER
0

⪰ τ−7τ

[
L̃R ·Dτdiag

(
C̃l
)
SR×SR

Dτ ·
(
L̃R
)⊤]

+ ER
0 (Lem. 8.1(1))

⪰ τ−7τ (
ω

n
)d/2 · diag

(
C̃l
)
PR×PR

+ ER
0 (Lemma 8.5)

⪰ (τ−7τ (
ω

n
)d/2 − n−ϵτ/2) · diag

(
C̃l
)
PR×PR

(Lemma 7.2(4))

⪰ n−d · diag(C̃l)PR×PR (parameter regime)
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For (8.38). Fix R, 1 ≤ c ≤ |R|, we have:

MR
c = L̃R ·

[
Dτ

(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
Dτ

]
·
(
L̃R
)⊤

+ ER
c

⪯ ωcn−c/4

[
L̃RDτ · diag

(
C̃l
)
SR×SR

·Dτ
(
L̃R
)⊤]

+ ER
c (Lem. 8.1(2))

⪯ ωcn−c/4
[
τ7τ (MR

0 − ER
0 )
]
+ ER

c (Lem. 8.1(1) and (8.40))

⪯ ωcn−c/5MR
0 +

(
ωcn−c/4 + 1

)
n−ϵτ/2diag (Cl)PR×PR (Lem. 7.2(4))

So

ω−cMR
c ⪯ n−c/5MR

0 + 2n−ϵτ/2 · diag (Cl)PR×PR

⪯ (n−c/5 + 2ndn−ϵτ/2)MR
0 ((8.37) and C̃l ≥ Cl)

⪯ n−c/6 ·MR
0 (c ≤ |R| ≤ d/2 and parameter regime)

The same analysis holds for −ω−cMR
c . □

9. Conclusion

We proved the average-case Ω(ϵ2 log n/ log log n) SoS degree lower bound for
Exact Clique with clique-size ω = n1/2−ϵ, which is nearly optimal in both ω, d;
we also gave a new perspective on previous techniques in the non-exact case. Two
related open problems are as follows.

1. Can we remove the log log n factor in d? Perhaps it helps to first find a
conceptual explanation of Definition 3.6.

2. Lower bounds of graph coloring and sparse independent set were recently
proved for the soft case [KM21, JPR+21]. Can our technique (or similar ones) help
with their exact case?
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Appendix A. Deductions in mod-order analysis (section 6.2)

A.1. Set-up recap. Ring A is got by adding fresh variables α and χT ’s to R, where
T ranges over edge sets on [n], and they only satisfy the relations {χT ′ · χT ′′ =
χT whenever T ′ ⊕ T ′′ = T}. The mod-order equation is

(A.1) Lα · diag
(
α|A|

)
· (Lα)

⊤ = Mα mod (∗)

on the
(
[n]
d/2

)
×
(

[n]
≤d/2

)
-matrix variable Lα in ring A, where

Mα(I, J) =
∑

T :|V (T )∪I∪J|≤τ

α|V (T )∪I∪J|χT ∀I, J : |I| = |J | = d/2,

and mod (∗) means to mod the ideal ({α|V (T )∪I∪J|+1χT }, {χT : |V (T )∪I∪J | > τ})
position-wise on each (I, J). We call (∗) the modularity. Moreover, if denote

L′
1(I, A) =

∑
T ′

βI,A(T
′)χT ′ , βI,A(T

′) ∈ R[α]

then we require

(A.2) αeI,A(T ′) | βI,A(T
′) ∀I, A, T ′

where eI,A(T
′) is the reduced size |V (T ′) ∪ I ∪A| − sI,A(T

′) (Def. 4.6).
Expressed in terms, equations (A.1), (A.2) become the following.

(A.3)∑
A∈( [n]

≤d/2)

∑
T ′,T ′′:

T ′⊕T ′′=T

α|A| · βI,A(T
′) · βJ,A(T

′′) = α|V (T )∪I∪J| mod α|V (T )∪I∪J|+1

for every (I, J ;T ) with |V (T ) ∪ I ∪ J | ≤ τ , and

(A.4) αeI,A(T ′) | βI,A(T
′)

for every (I, A;T ′).
The main observation (Lemma 6.2) is the following.
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Lemma A.1. (Order match) In the LHS of equation (A.3), only products α|A| ·
βI,A(T

′) · βJ,A(T
′′) that satisfies the following are non-zero modulo (∗).
A is a min-separator for both (I, A;T ′), (J,A;T ′′);(A.5)

(V (T ′) ∪ I ∪A) ∩ (V (T ′′) ∪ J ∪A) = A.(A.6)

Moreover, (A.5), (A.6) imply that

A is a min-separator of (I, J ;T ) (where T = T ′ ⊕ T ′′);(A.7)

|V (T ′) ∪ I ∪A|, |V (T ′′) ∪ J ∪A| ≤ τ.(A.8)

Proof. Pick a term α|A| · βI,A(T
′) · βJ,A(T

′′) form the LHS of (A.3). By (A.4),

its order in α ≥ |A|+ |V (T ′) ∪ I ∪A| − sI,A(T
′) + |V (T ′′) ∪A ∪ J | − sJ,A(T

′′).

By modularity on the RHS of (A.3), the term is non-zero only if

its order in α ≤ |V (T ) ∪ I ∪ J | and |V (T ) ∪ I ∪ J | ≤ τ

where T = T ′ ⊕ T ′′. This implies
(A.9)
|V (T ′) ∪ I ∪A|+ |V (T ′′) ∪ J ∪A| ≤ |V (T ) ∪ I ∪ J |︸ ︷︷ ︸

1○

+(sI,A(T
′) + sJ,A(T

′′)− |A|)︸ ︷︷ ︸
2○

Note 2○ ≤ |A| and “=” holds iff sI,A(T
′) = sJ,A(T

′′) = |A|. While the LHS above

= |(V (T ′) ∪ I ∪A) ∪ (V (T ′′) ∪ J ∪A)|︸ ︷︷ ︸
≥|V (T )∪I∪J|= 1○

+ |(V (T ′) ∪ I ∪A) ∩ (V (T ′′) ∪ J ∪A)|︸ ︷︷ ︸
≥|A|≥ 2○

.

Therefore, (A.9) could hold only when all “=”’s hold, which means: (1). A is a min-
separator of (I, A;T ′), (J,A;T ′′); (2). (V (T ′)∪I∪A)∪(V (T ′′)∪J∪A) = V (T )∪I∪J ;
(3). (V (T ′) ∪ I ∪A) ∩ (V (T ′′) ∪ J ∪A) = A.

Next, we show (1),(3) imply A ∈ mSepI,J(T ) (and also (2), actually). By (3),
T ′, T ′′ could overlap only in E(A). Now T = T ′ ⊕ T ′′, so

(A.10) T = T ′ ⊔ T ′′ modulo E(A)

(also ⇒ V (T ′) ∪ V (T ′′) ⊆ V (T ) ∪ A). By (1) there are |A| many vertex-disjoint
paths p1, , , .p|A| from I to A in T ′, and similarly q1, ..., q|A| from J to A in T ′′.
These paths are also present in T by (A.10)—where it naturally assumes every
path touches A only once at its endpoint. By (3) again, any pi, qj do not intersect
beside endpoint in A so they are paired to |A| many vertex-disjoint paths from I
to J in T , all passing A (this also implies A ⊆ V (T )∪ I ∪J). On the other hand, if
p is a path in T from I not passing A, then it is a path on I ∪ V (T ′) by induction
using (3). Now by (3) again we have (V (T ′) ∪ I) ∩ J ⊆ A, so p can’t reach J . So
A ∈ mSepI,J(T ).

Finally, under the above implications, V (T ′)∪I∪A ⊆ V (T )∪I∪J and similarly
for V (T ′′) ∪ J ∪A, so both have size ≤ τ . □

By this lemma, we can assume that in an imagined solution, βI,A(T
′) ̸= 0

only when it satisfies the conditions (A.5), (A.8) on its part. If assume further
that the solution is symmetric (which looks plausible), i.e. βI,A(T

′) = βJ,B(T
′′)

whenever (I, A;T ′), (J,B;T ′′) are of the same shape, then this lemma is particularly
informative about some special (I, J ;T )’s.

Corollary A.1. If (I, J ;T ) has a unique min-separator A, then

(A.11)
∑

T ′,T ′′: T ′⊕T ′′=T
(A.5), (A.6) hold

βI,A(T
′) · βJ,A(T

′′) = αeI,J (T )
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where eI,J(T ) = |V (T ) ∪ I ∪ J | − sI,J(T ). In particular, in symmetric solution,

(A.12)
∑

T1⊆E(A)

βI,A(T1 ⊕ T ′)2 = α2·eI,A(T ′)

for all (I, A;T ′) such that

(A.13) A is the unique min-separator of (I, A;T ′).

Proof. The first part is directly from Lemma 6.2. For the “in particular” part, let
(I, A;T ′) satisfy (A.13). By mirroring (I, A;T ′) through A, we get a (J,A;T ′′)
that satisfies the same condition and they together satisfy (A.5), (A.6). There
are always enough vertices in [n] to carry out this mirroring operation. By the
symmetry assumption, βI,A(T

′) = βJ,A(T
′′). From mirroring it is not hard to see

that A is the unique min-separator of (I, J ;T = T ′⊕T ′′), so for this triple (I, J ;T )
equation (A.11) holds, giving that

∑
T1⊆E(A) βI,A(T

′ ⊕ T1)
2 = α|V (T )∪I∪J|−|A| =

α2(|V (T ′)∪I∪A|−|A|). □

We can summarize what we got as follows. If let all βI,A(T
′ ⊕ T1)’s in equation

(A.12) be equal (which is a plausible assumption), then βI,A(T
′) = 2−(

|A|
2 )/2 ·

αeI,A(T ′) (take all + signs). Collecting these terms, we get the following matrix

L′
1 : L′

1(I, A) =
∑

T ′: |V (T ′)∪I∪A|≤τ
(A.13) holds
T ′∩E(A)=∅

2−(
|A|
2 )/2 · α|V (T ′)∪I∪A|−|A|χT ′ · C̃lA

where C̃lA =
∑

T⊆E(A) χT . To see how far this is from a solution, notice C̃l
2

A =

2(
|A|
2 )C̃lA and consider

(A.14) L′
1 · diag

(
α|A|

)
· (L′

1)
⊤ = L1 · diag

(
α|A| · C̃lA

)
· L⊤

1

where L1 is the matrix in A as below (which is cleaner than L′
1 to use).

Definition A.1. ∀I ∈
(
[n]
d/2

)
, A ∈

(
[n]

≤d/2

)
,

(A.15) L1(I, A) :=
∑

T ′: |V (T ′)∪I∪A|≤τ
(A.13) holds
T ′∩E(A)=∅

α|V (T ′)∪I∪A|−|A|χT ′ .

Surely L′
1 is not a solution to the mod-order equation, since (A.14) equals (mod

(*)) only the part of Mα consisting of the special (I, J ;T )’s from Corollary A.1.
For a general (I, J ;T ), Lemma A.1 only says:

(A.16)
∑

A,T ′,T ′′: T ′⊕T ′′=T
A∈mSepI,J (T )

(A.5),(A.6) hold

βI,A(T
′)βJ,A(T

′′) = αeI,J (T ) mod αeI,J (T )+1.

To see how to proceed further, we inspect a further weakening: polarization.

A.2. Polarized solution. Roughly speaking, polarization weakens linear equa-
tions about “x2

i ’s” by replacing these terms with multi-linear “xiyi’s”, where y⃗ are
fresh variables. Then we can plug in any “tentative” solution x⃗0 to solve for y⃗ more
easily (as the equations are linear in y⃗), and see how to modify x⃗0 further.

Definition A.2. The polarized mod-order equation w.r.t. L1 is:

(A.17) L1 · diag
(
α|A| · C̃lA

)
· L⊤

2 = Mα mod (∗)
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where (∗) is the modularity in (A.1), L1 is by (A.15), L2 is the variable matrix

(A.18) L2(I, A) =
∑

T ′: |V (T ′)∪I∪A|≤τ

β
(2)
I,A(T

′)χT ′

satisfying αeI,A(T ′) | β(2)
I,A(T

′) for all (I, A, T ′).

In this polarized form, the essential condition (A.16) becomes

(A.19)
∑

A,T ′,T ′′: T ′⊕T ′′=T
(I,A;T ′) appears in L1

(A.5),(A.6) hold

αeI,A(T ′) · β(2)
J,A(T

′′) = αeI,J (T ) mod αeI,J (T )+1.

By (A.19), existence of a solution L2 at least requires the following condition: for
general (I, J ;T ), there always exist “(I, A;T ′) appearing in L1” and T ′′ which
satisfy the condition in the LHS of (A.19). By a direct (but careful) check, this
condition is actually equivalent to the “In particular” part of the graph-theoretic
fact 5 due to Escalante, restated below.

Fact A.1. For any ribbon (I, J ;T ), the set of all min-separators, mSepI,J(T ),
has a natural poset structure: min-separators A1 ≤ A2 iff A1 separates (I, A2;T ),
or equivalently as can be checked, iff A2 separates (J,A1;T ). The set is further
a lattice under this partial-ordering: ∀A1, A2 ∈ mSepI,J(T ) their join and meet
exist. In particular, there exist a unique minimum and maximum.

Denote the minimum by Sl(I, J ;T ) and the maximum by Sr(I, J ;T ), which is
the “leftmost” and “rightmost” min-separator, respectively.

By this fact, some (I, A;T ′) indeed appears in (A.19) with A = Sl(I, J ;T ).
Moreover, (A.19) is naturally satisfied if take

(A.20) L2(J,A) =
∑

T ′′: |V (T ′′)∪J∪A|≤τ
A∈mSepJ,A(T ′′)

T ′′∩E(A)=∅
(J,A;T ′′) left-generated

αeJ,A(T ′′)χT ′′ .

Here, recall being left-generated means every vertex is either in A or can be con-
nected from J without touching A. Also, with this L2 only one product in the LHS
of (A.19) contributes to the right modulo αeI,J (T )+1. We get:

Proposition A.1. The pair (L1, L2) is a solution to the polarized mod-order equa-
tion (A.17), (A.18).

Remove the polarization. One more use of fact A.1 actually shows that, if
move the “left-generated” condition from L2 to L1, then L2 itself effectively factors

through L1, i.e. we can replace diag(C̃l) ·L⊤
2 by some X ·L⊤

1 in (A.17). This is the
idea behind the following proposition (Prop. 6.2 recast).

Proposition A.2. (Mod-order diagonalization) Let

Lα(I, A) :=
∑

T ′: |V (T ′)∪I∪A|≤τ
A=Sl(I,A;T ′)
T ′∩E(A)=∅

(I,A;T ′) left-generated

αeI,A(T ′)χT ′ ,

Q0,α(A,B) :=
∑

Tm: |T∪A∪B|≤τ
A,B∈mSepA,B(Tm)

αeA,B(Tm)χTm
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(where Tm indicates “middle”). Then

(A.21) Lα · [diag
(
α

|A|
2

)
·Q0,α · diag

(
α

|A|
2

)
] · L⊤

α = Mα mod (∗)

where (∗) is the modularity in (A.1).

Proof. Given Fact A.1, we immediately have the canonical decomposition of graphs
as in Definition 6.3 and Remark 6.2. This implies that in the LHS of (A.21) only
the products from canonical triples are non-zero modulo (∗), and they give Mα. □

Thus we get a “L(−)L⊤”-shape decomposition of Mα, meaning that we do not
lose much from the polarization step since our goal is only to prove the PSDness of
the matrix. Indeed, (A.21) gives the “first-approximate” decomposition in Defini-
tion 6.2.


	1. Introduction
	1.1. Previous work
	1.2. Results of the paper

	2. Key technical ideas
	2.1. The exact pseudo-expectation
	2.2. Hadamard decomposition and Euler transform
	2.3. Recursive factorization: an extension
	2.4. Proving PSDness: encounter with Hankel matrices
	2.5. Ideas for Theorem 2
	2.6. Structure of the paper

	3. Pseudo-expectations
	3.1. Non-exact case: a new perspective
	3.2. Exact case pseudo-expectation

	4. Some preparation
	4.1. Homogenization for Exact Clique
	4.2. Concentration bound on polynomials
	4.3. Norm concentration of pseudo-random matrices
	4.4. Some notions on graphs
	4.5. Johnson schemes

	5. PSDness analysis, I: Hadamard product and Euler transform
	6. Recursive factorization: a preparation
	6.1. Step 1: Diagonalization of E[M'].
	6.2. Step 2: Mod-order analysis toward ``coarse'' diagonalization
	6.3. Recursive factorization

	7. PSDness analysis, II: Recursive factorization
	8. PSDness analysis, III: Structural and pseudorandom matrices
	8.1. Positiveness of the structural part, E[Q0,0R]
	8.2. Rest bounds: Qc,kRs
	8.3. Last step

	9. Conclusion
	Acknowledgement
	References
	Appendix A. Deductions in mod-order analysis (section 6.2)
	A.1. Set-up recap.
	A.2. Polarized solution.


