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ABSTRACT

We aimed to blunt islet B-cell directed autoim-
mune aggression as a potential approach for
the treatment of Type 1 Diabetes (T1D). For
this purpose, we proposed the use of a particu-
lar type of Mesenchymal Stem Cells, retrieved
from the post-partum umbilical cord Wharton
Jelly (hUCMS). To maximize hUCMS immu-
nomodulatory potential, that has been proven
impaired by cell-to-cell contact, we encapsulat-
ed these cells within highly purified, alginate-
based microcapsules. Encapsulation enabled
physical isolation of the cells from the host’s
immune system.

Pilot in vitro experiments where microencap-
sulated hUCMS were co-incubated with PBMCs
derived from T1D patients showed induction of
Treg and rebalance of Th1/Th2 cells. In vivo
studies in diabetic NOD mice showed that mi-
croencapsulated hUCMS yield long-term remis-
sion of hyperglycemia. Use of the encapsulated
hUCMS showed that in cell-based immuno-
modulatory strategies, the transplanted cells
can benefit from encapsulation. It is likely that
such immune-therapeutic approach could have
efficacy only if residual native B-cell mass is
still present. Otherwise, hUCMS-induced re-
habilitation of the immune system would be
unable to grant for reversal of diabetes. The

proposed method, employing hUCMS in algi-
nate microcapsules, presents a good safety and
efficacy profile. This could warrant initiation of
pilot human clinical trials of microencapsulated
hUCMS grafts patients with recent-onset T1D.

THE DISEASE

Diabetes mellitus is a chronic metabolic disease,
consisting of uncontrolled high blood glucose lev-
els, deriving from insufficient insulin production
or action. Chronically elevated blood glucose may
result in severe complications, associated with
disabling outcomes, affecting the cardiovascular
system, eye, nerves, and kidney. Diabetes mellitus
may be considered a global epidemic with continu-
ous, steep increase in prevalence and incidence
worldwide'?. Healthcare expenditure due to diabe-
tes and its complications is climbing worldwide'.
Type 1 diabetes (T1D), a form of diabetes mellitus
characterized by autoimmune destruction of pan-
creatic islet $-cells, may occur at any age, but it fre-
quently appears in the youth. T1D strictly requires
immediate exogenous insulin supplementation.
Unfortunately, though a life-saving therapy, exog-
enous insulin may delay but not eliminate the risk
of developing secondary, chronic complications of
the disease’.

For the past 25 years, attempts to identify the
underlying autoimmune mechanisms of T1D have
been unsuccessful - due to either the polyclonal na-
ture of the autoimmune response, or the immune
dysregulation in T1D patients*’. Combination of
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approaches has often been proposed to address
these challenges'¢-®. New strategies to treat or, de-
sirably, cure the disease, are currently being sought.

Due to robust immunomodulatory properties,
combined with low immunogenicity and multipo-
tency, Mesenchymal Stem Cells (MSCs) have been
regarded as a possible pro-regenerative and repair
therapy to contrast the pathological changes occur-
ring in T1D%". The ability of MSCs to modulate
immune responses through paracrine mechanisms
is well documented” and quite appealing for the
treatment of TID". Among MSC, those deriving
from the umbilical cord Wharton jelly have been
associated with interesting effects on autoimmune
disorders'>',

UmBILICAL CORD WHARTON JELLY-DERIVED
HumaN ApuLt MESENCHYMAL STEM CELLS
HUCMYS)

hUCMS do not pose ethical problems since they
are derived from extra-embryonic tissue. These
cells are also easy to purify by using either clas-
sic methods such as “chopping” procedures'” or a
faster and more efficient approach, consisting of an
enzymatic digestion of the retrieved cord tissues'®.
hUCMS, generally identified as mesenchymal-like
cells, express the surface markers CDI10, CDI13,
CD29, CD44, and CD90. They also express, at low-
er levels, transcription factors that are primarily
expressed by embryonic stem cells (OCT-4, SOX-
2 and NANOG)"*, but they are not of hemato-
poietic nature (they do not express CD31, CD34,
CD45)*. Noteworthy, hUCMS result negative
for class II human leukocyte antigens (HLA)-
DR. There are some discrepancies between data
obtained by different research groups: some au-
thors?? reported on a stable expression of HLA-1
only through 5 culture passages, while Weiss et
al*® did not find any changes. These differences
may relate to epigenetic factors induced by dif-
ferent culture conditions.

Upon isolation and culture maintenance, hUC-
MS show a fibroblast-like appearance throughout
15 days along the initial culture passages. Some au-
thors?>% found more than one cell phenotype in cul-
ture, identifiable also at later time. Doubling time
(DT) ranges from 60 to 85 hours during the first
passages, while it declines dramatically through
the following passages, with variations between
groups, down to 20-60 hours?*?*26, Subsequently,
DT steadily increases until the cells reach senes-

cence, with no karyotype changes. In light of this
variability, stromal cells retrieved from the cord
matrix likely contain more than one type of stem
cells. Possibly a sub-group of primitive stem cells
is present, with variations related to different iso-
lation methods. hUCMS are peculiar, in that they
present specific cytoskeleton filaments. This may
support the idea that rather than fibroblasts or myo-
cytes, they are in fact myofibroblasts - cells with
characteristics of both smooth muscle cells and fi-
broblasts”’. In particular, contractile proteins such
as not muscular myosin, desmin, and alfa-actin of
the smooth muscle (a marker of myofibroblasts) ap-
pear in these cells. On the contrary, muscle myosin
is absent. Furthermore, hUCMS express vimentin,
a protein of the intermediate filaments that is typi-
cal of cell of mesenchymal-origin, such as fibro-
blasts, but that is missing in the smooth muscle.
Co-expression of vimentin and desmin indicates
the myofibroblastic nature of these cells. Another
intermediate filament expressed in stromal cells
is cytokeratin, a typical marker of ectodermal and
endodermal-derived epithelial cells. Co-expression
of these markers make hUCMS a very attractive
cellular model for their differentiation potential.
Notably, hUCMS are adult stem cells able to
differentiate in vitro and in vivo into several cell
phenotypes '® %32 hUCMS can also home to in-
jured and inflamed tissue, a property that is prob-
ably related to the expression of a specific set of re-
ceptors for chemokines and adhesion molecules®.
Over the past decade, growing evidence has shown
that hUCMS are not only multipotent cells, with
promising applications in regenerative medicine*,
but also a powerful tool to modulate the immune
system (Table 1). Owing to their anatomical loca-
tion, hUCMS express HLA-E, HLA-F, and HLA-G
- the latter being involved in the tolerogenic pro-
cess occurring at the fetal-maternal interface®.
hUCMS can interact with the majority of immune
cell types belonging to the adaptive or innate im-
mune system. hUCMS can exert their functions via

TABLE 1. hUMSCs PROPERTIES

* Low immunogeneicity
Immunoregulatory capacity
Pro-regenerative properties
Pancreatic tropism

No ethical issues
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cell to cell contact and via secretion of soluble me-
diators, including transforming growth factor f1
(TGF-B1) indoleamine 2,3-dioxygenase (IDO), ni-
tric oxide (NO), interleukin-6 (IL6), prostaglandin
E2 (PGE2), hepatocyte growth factor (HGF), and
vascular endothelial growth factor (VEGF). In this
regard, the inhibition of effector T lymphocytes
and the stimulation of regulatory T (Tregs) cells is
one of their most relevant beneficial effects™**.

IMMUNOMODULATION OF AUTOIMMUNE DISEASES

Immunoregulatory properties, coupled with low
immunogenicity, make hUCMS a potentially pow-
erful tool for the cell therapy of T1D (Table 1). The
suppression of immune cell activation would be of
critical importance in the context of hyperactive
immune conditions, such as transplant rejection,
autoimmune and inflammatory diseases. Compel-
ling preclinical results indicate that adoptive trans-
fer of Tregs can prevent or reverse autoimmune dis-
eases and allograft rejection, by restoring immune
tolerance to self-antigens or alloantigens®®. Tregs
operate by both suppressing effector T-cells (CD4
and CDg8) and regulating the activation of dendritic
cells. They exert these functions by means of a mi-
croenvironment enriched in immunosuppressive
cytokine IL-10 and TGF-B1, but possibly also by
cell-to-cell interactions. Various CD4'regulatory
T-cell subsets have been extensively described™®,
while here we specifically refer to a subset of CD4*
T helper cells indicated as Tregs. Studies in pre-
clinical models have indicated that polyclonal
Tregs can prevent autoimmune diseases, whereas
only self-antigen-specific Tregs can reverse active
autoimmunity. In T1D, insulin-producing [-cells
are destroyed by autoimmunity; several preclinical
models of the disease have shown that the trans-
fer of ex vivo primed Tregs can block the disease
process®#. Studies in NOD mice had previously
shown that T1D is mainly a Thl-driven disease
with a synergistic action of CD4" and CDS8" cells
on B-cell destruction pathways**. Moreover, the re-
cent identification of Thl17 cells and their role in
multiple autoimmune diseases®, prompted several
authors to evaluate the involvement of this cell sub-
set in T1D pathogenesis. It has been suggested that
IL-17 and, therefore, Th17 cells, may be crucial for
triggering autoimmunity in the early stages of the
disease. Recent data demonstrated that Th17 cells
are present among islet-infiltrating T lymphocytes
at disease onset***, thereby suggesting that 1L-17

may be more important in the induction rather than
the perpetuation of autoimmunity in T1D.

The expansion of pathogenic T cells and the re-
duction of Treg cells appear to be the most likely
scenario for the development of T1D, similarly to
other autoimmune disorders*-#5.

The inhibition of effector T lymphocytes and
the stimulation of Tregs cells are among the most
relevant beneficial effects induced by hUCMS®.
Therefore, several studies attempted to determine
the therapeutic potential of hUCMS in a wide array
of autoimmune diseases. Despite promising results
in experimental arthritis and in in vitro studies us-
ing immune cells from patients with rheumatoid
arthritis (RA)*°, it has become evident that the
physical interaction between hUCMS and immune
cells is pivotal in many other conditions’'. In fact,
we have demonstrated that if hUCMS are co-incu-
bated with lymphocytes isolated from patients with
primary Sjogren’s syndrome' or with T1D', their
immunomodulatory function fades away.

Hence, physical separation between hUCMS
and effector T cells appears to be necessary. We
have addressed this issue by using microcapsules.

ALGINATE-BASES MICROCAPSULES:
AvrprLicaTION TO HUCMS

Microencapsulation consists of entrapping live
cells within polymeric and non-cytotoxic artificial
membranes that constitute immunoprotective bar-
riers. Based on this concept, a wide spectrum of
cells, including pancreatic islets, have been encap-
sulated within microcapsules. The applicability of
the encapsulation strategy is broad and extends be-
yond T1D. It was recently postulated that the suc-
cess of this approach might require a detailed focus
on multiple issues concerning biocompatibility and
bio-performance of the microcapsules’>*.

Since the time of the first successful reports
from Lim and Sun®, alginates that are highly puri-
fied and almost endotoxin- and protein-free have
gained popularity for the preparation of transplant-
able microcapsules®®. Microcapsules proved to pro-
mote better growth, differentiation and maturation
of different cell types, including mesenchymal stem
cells, mESCs, hESCs, neural stem cells and hepa-
tocytes®™. Biocompatibility and chemical compo-
sition of the alginate-based biomembranes are criti-
cal parameters for the maintenance of encapsulated
cells. These properties are mainly related to protein
absence, in conjunction with very low endotoxin
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levels®®!, Since alginate is the major component of
microcapsules, endotoxin and pyrogen-free criteria
have to be thoroughly fulfilled to make this com-
pound suitable for clinical application®.

In our studies, microencapsulation was per-
formed by mixing hUCMS pellets with 1.8% (v/v)
ultrapurified alginate solution, to make a final ho-
mogeneous alginate/cell suspension. The employed
ratio was 1.3 ml alginate/2.5x10° cells, with this
suspension being subsequently extruded through a
microdroplet generator. The alginate microdroplets
were collected on 100 mM CaCl, solution, which
immediately turned the microdroplets into gel
microbeads. These were sequentially coated with
0.12% (w/v), and 0.06% (w/v) poly-l-ornithine (Sig-
ma-Aldrich, St: Louis, MO, USA), the beads were
then de-gelled with 55 mM sodium citrate at pH =
7, and finally, coated with 0.1% (v/v) ultrapurified
alginate. The final preparation was incubated for
additional 24 h, for sterility assay®’. Microencapsu-
lated hUCMS were incubated overnight with 300
U/ml IFN-y (Sigma-Aldrich), that was removed at
the end of the treatment, before setting-up the co-
culture with Peripheral blood mononuclear cells
(PBMCs), or before transplantation. Viability test-
ing, with ethidium bromide and fluorescein diace-
tate (Sigma-Aldrich) was performed after microen-
capsulation, upon treatment with IFN-y, and before
TX (Fig. 1).

Encapsulation overcomes the need for host’s
immunosuppression, hence offering an additional
benefit in terms of immunosuppressive drug-spar-
ing approach. Microcapsules permit access to spa-
tial cell distribution, within a three-dimensional
architecture, which is favorable, since it mimics an
extracellular matrix-like microenvironment, result-
ing very helpful for cell survival and function®®.
Moreover, alginate microcapsules themselves may
interact with activated PBMCs whose proliferation
is blunted'. This observation appears in striking
contrast with several other studies, reporting that
alginate capsules may trigger immune reactivity
per se. This may be due to the fact that while un-
purified alginates can induce immune responses
due to their high protein and endotoxin content,
highly purified alginates can inhibit lymphocyte
reactivity, due to exposure of saturated alginic acid
radicals (guluronate/mannuronate) on the capsular
membrane®. The latter concept has been confirmed
by our Center, with the demonstration of modula-
tory effects by empty capsules's.

IMMUNOREGULATORY PROPERTIES OF CPS/HUCMS

Use of a microencapsulation technology with bio-
compatible materials provides for a dynamic and im-
munoisolating microenvironment, where molecules
secreted by hUCMS can reach and modulate immune
cells of the host, while immune cells cannot physi-
cally get in contact with hUCMS. Our in vitro stud-
ies suggest that microencapsulated hUCMS exhibit at
least two major effects on T cells, effects that could
be relevant for the treatment of T1D: i. reduction of
effector Thl cells; ii. expansion of Tregs which leads,
at least partially, to rebalance of the Teff/Treg ratio.
The lack of suppressive action on TID-Th17 cells may
indicate that this cell subset is insensitive to hUCMS
immunomodulatory functions. On the other hand, ef-
fector immune cells may be themselves resistant to
the modulatory/suppressive action of cell-based thera-
pies. In this context, it was recently demonstrated that
in systemic lupus erythematosus (SLE)*, Tregs are
defective and T effector cells are deranged, as they
cannot be suppressed by Tregs from SLE patients
or normal individuals. Based on these observations,
the iv. administration of free hUCMS for therapeu-
tic purposes may not be an optimal solution for au-
toimmune disorders, and failure to achieve efficacy
does not necessarily mean that hUCMS are not ef-
fective per se. In fact, we demonstrated that preven-
tion of hUCMS contact with the patient’s immune
cells, by microcapsules, can overcome this problem
and provide an efficient modulation of the immune
cells via soluble mediators'>'®. These in vitro observa-
tions seem to be confirmed by our ongoing in vivo
experiments in NOD mice with spontaneous DM®,
Microencapsulated hUCMS were transplanted into
the peritoneum of NOD mice with glycemia of 250
to 300 mg/dl and abnormal intraperitoneal glucose
tolerance test (IPGTT). The transplantation restored
normoglycemia throughout 7 months post transplan-
tation. 7 months after transplantation, T cell immuno-
phenotyping from retrieved lymphoid organs showed
that the levels of CD4"FOXP3"CD25"e" Treg cells
were comparable to normal, but not to overtly dia-
betic control NOD mice (where no Tregs were detect-
able). Hence, induction of acquired central tolerance
towards autoreactive T cell clones is made possible
by administration of microencapsulated hUCMS.
Moreover, in vitro, the inverse correlation between
the suppressive effects on T cells and the number of
hUCMSC cells encapsulated, supports the operative
use of very low dosages of encapsulated hUCMS to
obtain therapeutic effects'>'.
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Fig. 1. Process of encapsulation of
isolated hUCMS within alginate-ba-
sed microcapsules. After encapsula-
tion, hUCMS tend to form spheroids
that fully retain viability, whether or
not IFNy is added to culture.

CRITIQUE AND OUTLOOK

We have demonstrated that hUCMSC are endowed
with robust immunomodulatory functions, which
may interrupt the disease process of autoimmune
disorders such as T1D. From what above reported,
the best way to exploit such properties relies on mi-
croencapsulation. In several pre-clinical, as well as
pilot clinical studies, it emerged that naked hUCMS
hold more limited immunoregulatory potential, and
may not perform as expected. On the contrary, as
shown by our in vitro, and ongoing in vivo pre-clin-
ical studies in diabetic models, microencapsulated
hUCMS are extremely powerful in modulating the
host’s immune system. This resulted in blocking
the autoimmune B-cell directed immune destruc-
tion, with preservation of the residual B-cell mass.
At least two possible of limitations for the use
of this approach in T1D are envisionable: 1) hUC-

MSC have not yet been proven to induce the re-
generation of B-cells; 2) encapsulated-hUCMSC
cell therapy for T1D may have predominantly
immunomodulatory functions, which could par-
tially limit application to the early stages of the
disease - when B-cell destruction is not complete,
and marginal numbers of B cells are still viable.
The observations in NOD mice, corroborating
the in vitro findings, are paving the way toward
pilot clinical trials of microencapsulated hUCMS
transplantation into patients with recent onset of
T1D. This form of cell therapy appears feasible
and could spare initiation of exogenous insulin
supplementation therapy regimens.
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