## Extra Content for Foundation GCSE



### 127. Calculating Arc Lengths, Angles, and Areas of Sectors

#### **Practice Questions**

- 1. What is the formula for the arc length of a circle?
- 2. What is the formula for the area of a sector?
- 3. Find the arc length of a circle with a radius of 10 cm and a sector angle of 60°.
- 4. A sector has a radius of 8 cm and an angle of 90°. Find its area.
- 5. A circle has a radius of 5 cm. Find the arc length for a 120° sector.
- 6. A sector has an area of 25 cm<sup>2</sup> and a radius of 10 cm. Find the angle of the sector.
- 7. A pizza has a diameter of 30 cm. A slice is 45°. Find the area of the slice.
- 8. A circular pond has a radius of 12 m. Find the arc length for a 150° sector.
- 9. A wheel has a radius of 50 cm. How far does a point on the edge move when the wheel rotates by 72°?
- 10. A circular plate has a sector with an area of 20 cm<sup>2</sup> and an angle of 40°. Find the radius.

#### **Scenario Questions**

- 1. A fairground ride moves along a circular track with a radius of 15 m. If it rotates 30°, how far does it travel along the track?
- 2. A clock's minute hand is 12 cm long. How far does the tip of the hand move in 10 minutes?
- 3. A carousel has a radius of 8 m. If it turns through 90°, find the arc length traveled.
- 4. A road sign is a circular sector with an angle of 60° and a radius of 50 cm. Find the area of the sign.
- 5. A bike wheel with a 40 cm radius rotates by 45°. How far does a point on the rim move?
- A fountain is circular with a radius of 10 m. A quarter of it is covered in plants. Find the area covered by plants.
- 7. A pizza has a 16 cm radius, and a slice is 30°. Find the area of the slice.
- 8. A sector-shaped garden has a radius of 5 m and an area of 20 m<sup>2</sup>. Find the sector angle.
- 9. A fan rotates 60°. The blade is 20 cm long. How far does the tip move?
- A park walkway is part of a circular track with a radius of 25 m and covers a 120° sector. Find the arc length.

# **Extra Content for Foundation GCSE**



## 127. Calculating Arc Lengths, Angles, and Areas of Sectors

### **Practice Questions**

1. 
$$L = \left(\frac{\theta}{360}\right) imes \pi imes d$$

2. 
$$A=\left(rac{ heta}{360}
ight) imes\pi r^2$$

3. 
$$\frac{10\pi}{3}$$
 cm

4. 
$$16\pi \text{ cm}^2$$

5. 
$$\frac{10\pi}{3}$$
 cm

6. 
$$\frac{90}{\pi}^{\circ}$$
 (or approximately  $28.65^{\circ}$ )

7. 
$$\frac{225\pi}{8}$$
 cm<sup>2</sup>

8. 
$$10\pi$$
 m

9. 
$$20\pi$$
 cm



### Scenario Questions

1. 
$$\frac{5\pi}{2}$$
 m

2. 
$$4\pi$$
 cm

3. 
$$4\pi$$
 m

4. 
$$\frac{1250\pi}{3}$$
 cm<sup>2</sup>

5. 
$$10\pi~{\rm cm}$$

6. 
$$25\pi~\mathrm{m}^2$$

7. 
$$\frac{64\pi}{3}$$
 cm<sup>2</sup>

8. 
$$\frac{288}{\pi}^{\circ}$$
 (or approximately  $91.67^{\circ}$ )

9. 
$$\frac{20\pi}{3}$$
 cm

10. 
$$\frac{50\pi}{3}$$
 m