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Summary

Geostatistics provides tools to model variables located in
space (usually three dimensional) and takes advantage of
their spatial structure (continuity) to improve the prediction
at locations that have not been sampled and to character-
ize their spatial texture as a way to assess the uncertainty
linked to the limited knowledge provided by the samples.

It is founded in statistical theory and shares many con-
cepts and methods with statistical inference, pattern recog-
nition and other related disciplines.

In this set of notes, we review the main concepts and try
to provide both intuitive explanations to the different con-
cepts and detailed implementation parameters and exam-
ples, to understand the mechanics to operate these tech-
niques.

We will cover concepts related to probabilistic theory,
statistical inference, spatial analysis, estimation and sim-
ulation. Further to these, we will explain some of the issues
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linked to constraining the models with geological knowledge,
extending these theories to the case of multiple variables,
expanding the notions of spatial continuity to pattern statis-
tics, link with classical statistical methods and with machine
learning and deep learning techniques.

1 Introduction

The use of geostatistics is better understood if seen as a
workflow where different methods are applied sequentially
to achieve a specific goal. These goals can be linked to es-
timating or to assessing uncertainty associated to one
or more variables at an unsampled location or over a vol-
ume. In the context of natural resources, we often want to
understand how a reservoir, ore deposit, or aquifer behaves
subject to a specific set of actions applied to it, which we
call a transfer function.

For instance, in an ore deposit, we want to extract the
rock, decide what goes to the processing plant and how to
process it, to maximize the revenues. The optimum extrac-
tion sequence will depend on the grades and other miner-
alogical properties of the rock. Thus, to define the best way
of mining the deposit, we need to understand how hetero-
geneous it is, and what is the spatial distribution of the dif-
ferent geological units or domains and the concentrations of
elements and minerals, as well as other important proper-
ties, within these domains. The final production of a specific
metal is the result of a sequence of decisions made from
the early exploration, through the rock extraction, to the
processing and metal recovery Figure [1 A proper charac-



terization of the in situ resources and then tracking of ma-
terials through the different processes is key to understand
and predict the performance of every operation. And this is
needed if we want to optimize the entire mining value chain.
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Figure 1: The steps in the mining value chain. Ideally, each stage should
provide feedback to all other stages and the entire sequence could be
optimized.

In the case of an oil reservoir, a well may be drilled to in-
ject water to move the oil and extract it at a nearby produc-
ing well. The production will depend on the heterogeneity
of the reservoir, which is characterized by the petrophysical
properties of the different rock types found, and their spa-
tial distribution. The notions covered in these notes apply to
any variable spatially distributed, where the heterogeneity
impacts a response variable. In the following pages, we will
focus on mining examples, but the techniques can easily be
imported to other applications in geosciences.



The typical sequence of a geostatistical study is:

Preparation of the database

Exploratory data analysis

Definition of domains

Spatial continuity analysis

Definition of neighborhood for sample search
Estimation or simulation

Post-process

In all these steps, the understanding of the geological
setting will constrain the modeling decisions. This means
that geostatistics cannot be applied as a black box,
but requires input of geological and mining knowledge, in-
terpretation of the results of each step, and necessary ad-
justments.

We will briefly review each one of these steps and present
a summary of their relationship with traditional and advanced
statistical techniques.

2 Preparation of the database

This seems like a silly aspect, but in most cases it is an
important step that takes some time, but that will save us
some problems down the path if we take care of all the pos-
sible problems early on.

Since the database will be used to perform numerical
modeling, it has to be clean and complete. Formats need
to be consistent and we need to make sure that the values
make sense. This will be checked during the exploratory
data analysis stage, but we can save some time if we know
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what is expected for the subsequent analyses. For most
geostatistical analysis, what we need is a data table where
columns are variables and rows are observations (or sam-
ples). This can be seen as a point dataset, where each ob-
servation is linked to a coordinate in space.

Typical questions to be aware of are:

Does the database comes as a set of relational tables?
Do you need to desurvey the data to get coordinates
of each sample point?

Is the database a 2D or a 3D set of points? Are all the
sample points within the expected volume? Are there

any missing coordinates?

Is there information in a regular grid? Are the sam-
ples scattered? Is there a drilling campaign with regu-
lar spacing?

Is there information for all the variables? For a single
variable, are all measurements done with the same an-

alytical procedure? Are they comparable?

Are there missing values? What are the codes for miss-
ing values?

Are there values below (or above) a detection limit?

How are they registered in the database?
Are there duplicated samples, that is locations where

more than one measurement has been taken? This is
frequent in quality control and quality assurance pro-
cedures. In this case, how are we going to handle the
duplicates? Are we only keeping the original measure-
ment for modeling?

Are there categorical variables recorded with alphanu-
merical codes? Are these classes exhaustive and mu-
tually exclusive? This means there is one and only one
of the classes at each location.
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e Are there ordinal categorical variables, that is where
the number represents intensity, but with no objective
scale? This is typical in geological logging of alterations

or mineralization, for example.
o ...

Be aware of the data you will be working with. Under-
stand the variables, the meaning of the categories and codes,
and make sure the data are correct. Check the ranges, the
categorical codes, the anomalous values or symbols. Cor-
rect everything as early as you can. Many of the questions
listed above require particular solutions that will not neces-
sarily be covered in these notes. However, when possible,
we will provide some guidance as to how to handle these
kinds of issues.

3 Exploratory data analysis

Exploratory data analysis (EDA) is one of the most funda-
mental tasks in any geostatistical modeling exercise. It is
the task where we get to know the data and understand its
possible limitations, complexities, and peculiarities.

During EDA, we will spend lots of time summarizing, sort-
ing, and visualizing the data. At this stage, we should spot
important flaws on the data, we should identify incorrect
measurements, outliers and the nuances of different data
types. This is usually when you can spot issues with data
manipulation, such as transference from one software to
another, where decimal places were truncated, or columns
were incorrectly formated.



Data comes in very different forms, for different projects.
In classical resource estimation, data often originates in an
exploration drilling campaign, that is, it consists of sam-
ples taken at particular coordinates in space, which include
analytical and interpretative data. Analytical data are ob-
tained from a chemical laboratory where concentrations of
different elements (potentially tens of elements) have been
quantitatively assessed. In addition to these measurements,
interpretative information is available for each sample. Other
measurements such as mineral proportions can be provided
through different methods.

Geological attributes are characterized by looking at the
lithologies present in each rock fragment belonging to the
sample, the alteration type (linked to the geological gene-
sis of the deposit), the mineralization zone, the texture or
fabric, the geotechnical properties, etc. Many of these fea-
tures can be deemed qualitative or semi-quantitative (which
is nothing more than an euphemism for imprecise), and are
prone to error, as they are often subjective interpretations:
a different geologist may “label” these attributes differently.
However, quantitative data (such as geochemical analyses)
can be used to quantitatively cluster these features and
provide a consistent representation of these “subjective”
classes.

In addition to these characteristics, many other attributes
can be included in the database. Mineralogical proportions
(either obtained qualitatively or quantitatively), intensities
of alteration and mineralization, color, joints frequency, RQD
(rock quality designation), hyperspectral response, density,
humidity, particle size distribution (or some related param-
eter), etc. Furthermore, the result of metallurgical tests
are often collected for geometallurgical modeling purposes.
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Typical measurements are hardness, grindability, recovery,
acid and reagent consumption, etc.

No matter what the variables are, these must be treated
numerically in order to become relevant information for build-
ing the model. In the case of numerical values coming
from continuous variables, processing is relatively straight-
forward. For numerical values that are categorical, where
no order relation exists among the codes, one option is to
code these variables as indicators valued 1 if the category
is present at one location or 0 if not [, With this approach,
a single categorical variable with K categories, will become
a K dimensional vector of (binary) indicators. Ordinal vari-
ables (variables with a relative order between the categories),
images, color, texture are much more difficult to incorpo-
rate into the models, although there are ways to “quantify”
them.

EDA proceeds usually by pooling all the data together,
and computing some summary statistics, building some ba-
sic visualizations (both in two and three dimensions), and
then splitting the data by value range or categories, by ap-
plying filters. Further to this, correlations between variables
are studied by visualizing scatter plots, and computing (lin-
ear) correlation coefficients. Proportions of categorical vari-
ables are also computed. Finally, the variation of the at-
tributes in space is also explored at this stage, by creating
spatial trend plots to see how means and variances change
with spatial coordinates. This gives a first idea to support
the decision of stationarity. Stationarity is necessary to pool
together the data for statistical inference and will be dis-
cussed in detail later.

lthese are sometimes callled dummy variables in machine learning



This process can become tedious and complex. Keeping
a systematic and orderly procedure will help us expedite the
process and clarify our conclusions. Using scripts to run re-
peated processes over multiple variables, or applying filters
is an important skill that is needed.

Recipe for EDA:

Identify all your variables

Ensure they are ready for statistical analysis
Summarize the statistics of all your variables
Visualize all your variables

Understand relationships between variables
Understand how different categories have differ-
ent behaviors

e Understand how variables change in different
zones of the space

The main takeaway of EDA is becoming familiar with the
data and having a preliminary understanding of the key rela-
tionships between variables. Having summaries, visualiza-
tions and preliminary statistics will facilitate interpretation
of the results as we move forward.

4 Definition of domains

The notion of a domain is quite vague. Depending on the
purpose of the model, domains will be defined to determine
the volumes over which data are pooled together and used
for estimation or simulation of blocks contained in those
same domains.



Notice that this requires two processes:

e The first one is a clustering process, where the sam-
ple data are analyzed to define “populations”. In most
cases, this is done by the exploration geologist based
mostly on a combination of geological attributes (con-
sistency of geological properties) and spatial continu-
ity (geological volumes are continuous). Several new
approaches have been proposed in recent years using
machine learning methods for clustering, that are ei-
ther combined with spatial criteria or modified, so that
the distance metrics used therein are linked to spatial
continuity and anisotropy.

e The second process is that of inferring the extent of
the domains beyond the samples. This is usually an
interpolation problem, where every point in the spatial
domain is assigned one of the groups (clusters or do-
mains) defined in the previous step. Of course, this
stage has uncertainty in the inference of the extent of
these domains. Uncertainty in these volumes should
be accounted for and carried downstream for decision
making.

For resource estimation, we look for volumes where the
properties of the rock are similar, in terms of the features
that control the grade. Typically, geological logging will in-
clude the lithology, mineralization zone and alteration type.
Sometimes, the structures are also featured. The relevant
grades are compared within these different units. For ex-
ample, we check the grade distribution in different litholo-
gies, to see if some lithologies concentrate the samples with
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higher grades. In that way, we can identify groups of geo-
logical characteristics that determine whether grades will
be high or low. Of course, this is a very ad hoc decision, and
no hard rules can be defined as how to proceed to define
the domains. Recall that these domains are our construct
of the grouping that the data has in this geological context,
but these are not “real”; they are just useful to constrain
the models we build. This actually tends to confuse people
that come from teh machine learning community a lot, since
there is no clear way we can validate the labels defined by
the clustering method. The quality of the domaining is thus
subjective and we will only see the consequences of it at the
end of the modeling process, when we validate or reconcile
the data with production information.

A general rule is that domains will depend on the geo-
logical characteristics that distinguish between mineralized
and non-mineralized rock. Furthermore, different degrees
of intensity of the mineralization can be considered, or the
fact that mineralized rock may require different metallurgi-
cal processes to recover the metal or element of interest. In
this case, we say our domains are geometallurgical. In some
cases, the hardness of the materials fed to the processing
plant will be relevant, as this may determine the recovery
and tehrefore the quality and cost of the final product. So,
domains really depend on the purpose of the model.

A very simple example for domaining is the difference
between oxides and sulfides in porphyry copper deposits.
Oxides and sulfides require different processes to recover a
metal, thus characterizing where the contact between ox-
ide and sulfide mineralization is, determines two domains.
In reality, things are not that simple and a transition zone
where mixed oxides and sulfides exist will complicate our
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decision. Furthermore, within the sulfides, different levels
of enrichment can be found, hence different mineralogies
are present in the rock, which determines different process-
ing conditions. Therefore these main mineralogical units will
also be divided in distinct domains. Finally, rock where the
metal has been leached (typically gravels) is often found
laying over the oxides. This zonation is typical for example
in porphyry copper deposits, and similar behaviors are ex-
pected in different types of deposit. This knowledge helps
guiding our decision about how to define the domains. Un-
fortunately, no two deposits are alike, so the definition of
domains must be well thought in every case, and will usu-
ally suffer some revisions and updates as new information is
gathered. In general each genetic model of ore deposit will
provide guidance regarding which distinct domains should
be recognized, but as previously said, these are not defini-
tive and should be defined looking at the specific conditions
of the deposit.

Conventionally, a single deterministic interpretation is
done, which locks the volumes of different ore types, but the
actual types will be unveiled during production and should
be used to feed back into the interpretation and update the
models. It is clear that the use of deterministic models is
risky, since the risk associated to the volumetric quantifica-
tion of different materials is not accounted for. In reality, the
volumes and tonnages extracted for each domain will vary,
as the deterministic model is not accurate. This may have
significant impact in the economic of the projects.

Now, once the domains have been defined, it is expected
that within each domain, all points behave in the same man-
ner. This is quite a stretch, but it stems from the fact that
these domains will be used to perform statistical inference
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and because of this, we must pool together samples for in-
ference (otherwise we cannot go beyond the data). Thus,
we do not want to “mix oranges and apples”. All points
within a domain should have the same (statistical) proper-
ties. We will kater see what this means when we introduce
the notion of stationarity, but for now, let’s just say that
wherever we look in the domain, we should see the same
properties for the distribution of the variable we are mod-
eling. In particular, one would expect to see the same av-
erage value and same dispersion around that average, as
well as the same spatial relationships between points (the
same “texture” of values) within the different areas of the
domain.

5 Spatial continuity analysis

A key consideration in geostatistics is to measure and take
advantage of spatial continuity. This builds from the very
intuitive idea that things that are close, should be similar.
When looking at grades or concentrations, for example, con-
sidering that these concentrations come from a geological
process, it makes sense to assume that grades will be sim-
ilar when looking at two points a short distance apart, and
that they will become more different (dissimilar), as that dis-
tance increases. This geological process can be a deposition
from a sedimentary process, or a hydrothermal flow.

This intuitive notion is conventionally captured mathe-
matically through three measures of spatial continuity that
we will review in more detail later.
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The three conventional measures of continuity are:

e The correlogram
e The (spatial) covariance
e The variogram (or semi-variogram)

We shall introduce these measures later on in detail, but
for now, it is important to state that the estimation tech-
niques that will be introduced (and in fact, most of the geo-
statistical techniques) will call for these functions to find the
estimates or the distribution parameters, when assessing
uncertainty.

These measures capture the relationship between pairs
of locations (hence, they are called two-point statistics).
However, in some cases it is necessary to look at the re-
lationship between multiple points to capture patterns that
are not “seen” by these two-point measures. These are
tools that are still under development, but that show a great
promise to improve the models and that are very closely
linked to pattern recognition, image analysis, and computer
vision.

The fact that spatial correlation exists, prevents us from
using traditional statistical tools. Most of these classical
statistical tools assume samples are drawn independently,
meaning that there is no correlation between them, when
in fact this correlation exists (unless samples are really far
apart). Hypothesis testing and many traditional techniques
must then be adapted to account for this correlation.
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6 Definition of neighborhood for
sample search

Predicting the expected value and also the expected uncer-
tainty associated to the value at an unsampled location are
the two main questions addressed by geostatistical tech-
niques. Samples taken in the domain are used as informa-
tion to make inference.

The question then arises: which samples should | use
to predict the value of the variable | am interested in, at a
particular location?

In theory, all samples within the domain are relevant,
since we assume that the properties of the variable are con-
stant over the domain (stationarity). However, intuition sug-
gests that we should use the closest samples, since, as we
discussed earlier, these are the ones more correlated to the
location; as samples are farther they become more dissim-
ilar to the value at the location we are trying to predict,
hence less relevant. So, for most estimation and simulation
techniques, we define a limited number of samples laying
on a neighborhood of the location under consideration. No-
tice that the selection must not be based on distance only,
but rather on correlation. When the rock has been folded
after the mineralization has occurred, one should consider
geodesic distances. Many new algorithms have been pro-
posed to deal with this by using a locally varying anisotropy
field. This means that the spatial correlation changes orien-
tation and potentially also intensity (spatial range) depend-
ing on the location. This is already a departure of the sta-
tionarity assumption made earlier, but the aim is to better
represent the reality.
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In resource estimation, we are interested in building a
block model, therefore, we need to estimate the grade at
each one of those blocks, so the neighborhood needs to be
defined for each block. Some basic rules of thumb are ap-
plied to define how far and which samples are considered to
estimate the grade at each particular location.

Considerations for defining the search neighborhood:

e Anisotropy must account for the fact that correla-
tion may be greater in one direction than in others

e Minimum number of samples to ensure we achieve
a reliable estimate

e Maximum number of samples to limit the compu-
tation time and avoid over smoothing

e Use of octants or maximum number of samples per
drillhole to ensure we interpolate rather than ex-
trapolate in any particular direction

These tricks in the definition of the neighborhoods for
sample search have been drawn over the years by experi-
ence, but we can find a reasonable theoretical explanation
for most of them.

7 Estimation or simulation

The model can represent the expected value (a prediction)
of the variable at every location, or it can try to capture the
heterogeneity or variability of its spatial distribution, trading
off the local accuracy for a better representation of the spa-
tial variability. This is achieved using stochastic simulation
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techniques.

In order to introduce these concepts, a simple example
can be considered.

A set of samples obtained from a drilling campaign over
a deposit, has been logged and 7 rock types have been
characterized and are displayed in Figure [2| In addition
to these logged rock types, copper grades are available in
every sample.

Figure 2: Example of samples

The extent of the geological units, defined here as the dif-
ferent rock types, is interpreted by the geology team. There
are many approaches for this that will be discussed later,
but for now, we will assume the following model is the “ge-
ological model” that the team has come up with (Figure 3)).
This model is important, as often the extent of categorical
domains (in this case the rock types) controls the spatial
distribution of the continuous variable of interest. Further-
more, as we fix the extent of these domains, we are locking
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the volumes and tonnages in each unit. In an ore deposit,
the lithological units, the alteration types, or the mineraliza-
tion zones (or a combination of these) control the extent of
grades of metals with economic value.
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Figure 3: Geological model resulting from the interpretation of the avail-
able information

This interpretation is perfectly consistent with the avail-
able samples. For simplicity, it was built using a nearest
neighbor approach, in this case, but in practice, the geolog-
ical interpretation is a much more arduous exercise. Now,
we know this is just an interpretation, therefore, the true
extent of the geological units may be different. Figure {4
shows a representation of the true unknown spatial distribu-
tion of the rock types. This is an intentionally exaggerated
example, but it is evident from a simple visual inspection
that our model does not represent the heterogeneity of the
true spatial distribution of rock types. However, the general
location of the units is correct. Notice that the true distribu-
tion and the model, both are perfectly consistent with the
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available sample data.
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Figure 4: True (unknown) distribution of geological units (rock types)

So, clearly, one goal is to predict as accurately as pos-
sible the rock type in each location. The geological model
achieves this reasonably well. Another goal, however, is to
understand the heterogeneity in the spatial distribution of
the units, to constrain the characterization of the grades.

This can be achieved by using simulation. Simulation
builds alternative models of the spatial distribution of the
categories, honoring the sample data at their locations, but
also capturing the spatial continuity of the categories. Re-
production of the global proportions of the different cate-
gories in the domain is also a requirement for these meth-
ods. Models will match sample data at their location and
will reflect more variability in areas far from data, since the
uncertainty is larger at those locations.

Figure [5 shows the reference sample locations over a
plan view and compares the interpretation with the actual
distribution of the rock types.
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Figure 5: Comparison over a plan view of the sample locations (left),
and the interpreted (center) and true (right) distributions of the rock
types.

Figure [6] shows two realizations of a stochastic simula-
tion to reproduce the spatial variability of the true distribu-
tion. It can be seen by visual inspection that the simulated
models look like the real distribution, although all three are
different.

The same can be done with continuous variables. We
can predict or estimate the value at every location, which
is going to smooth out some of its variability. Simulation
can provide alternate models that, again, trade off the local
accuracy to capture the spatial heterogeneity.

Figure |7/ shows a plan view with estimated grades. This
can be compared to three realizations obtained from simu-
lation shown in Figure [8|.

From this simple example, it is easy to see that in Geo-
sciences a model can be built to account for the character-
istics of categorical and continuous variables, using estima-
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Figure 6: Two realizations obtained by stochastic simulation (left and
center) compared with the true distribution of rock types (right).

tion (prediction) or simulation approaches.
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Four combinations can be used to generate the final
model:

Categories are predicted (deterministic) and con-
tinuous variables are estimated (deterministic):
this leads to a single model that does not account
for uncertainty.

Categories are predicted (deterministic) and con-
tinuous variables are simulated (stochastic): this
leads to multiple models that account for uncer-
tainty in the distribution of the continuous vari-
ables.

Categories are simulated (stochastic) and contin-
uous variables are estimated (deterministic): this
leads to multiple models that account for uncer-
tainty in the distribution of geological units, but not
of the continuous variables.

Categories are simulated (stochastic) and continu-
ous variables are simulated (stochastic): this leads
to multiple models that account for uncertainty in
the distribution of geological units, and of continu-
ous variables.

When simulating continuous variables, these are con-
strained to the extent of the domains, that is the statisti-
cal and spatial distributions of the continuous variables are
inferred for each domain defined by the geological model.
Boundaries between domains are usually considered hard,
that is information from one domain is not used to estimate
In some instances, however,
boundaries are soft, that is the information from one do-
main is shared to infer blocks in another domain, usually up

a block in another domain.
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to a maximum distance.

Figure 8: Three realizations obtained by stochastic simulation showing
the distribution of block grades.
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8 Post-process

The in situ model represents the statistical and spatial dis-
tribution of the properties we are interested in as they are
on the ground. However, in most cases, we are interested in
their response after a specific process is applied (the trans-
fer function). For example, in mining, blocks are extracted,
a selection is done to decide whether to process them or
not and, if processed, a series of physical and chemical pro-
cesses are applied to the materials to recover the metals of
interest. In petroleum, the oil in place is recovered by inject-
ing water and recovering the oil that flows through the per-
meable rocks. Similar examples can be found in problems
related to groundwater and environmental applications.

The prediction of these processes is the ultimate goal of
our modeling. We should be able to model and predict the
response of these processes as well.

The estimated or simulated models generated using geo-
statistical techniques will normally need some kind of post-
processing to be input into these process models. Typically,
the model will need to be defined at a specific support, so
a change-of-support is needed. In other cases, a threshold
is applied to classify the materials into different categories
(ore, low grade stock, waste).

We already discussed that estimated models do not re-
produce the variability of the true variable, because they
tend to smooth and only represent the trends found in the
true distribution, missing the short range variability. It is
easy to imagine that, if subject to the post-process discussed
earlier, for example, a change of support, it will not repre-
sent correctly the true distribution of block values (since it
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does not capture all the variability). Simulation, on the other
hand, does represent the statistical and spatial heterogene-
ity of the true variable. Therefore, post-processing each re-
alization should give a good representation of the behavior
of the true variable. This makes simulation more difficult to
apply, as each realization must be post-processed (increas-
ing the work required).

9 Bibliographical notes

There are many textbooks on the subject of geostatistics
and, in particular, in mining applications. An easy to read
introduction is “An Introduction to Applied Geostatistics” by
E.H. Isaaks and R.M. Srivastava [4]. “Geostatistics for Nat-
ural Resources Evaluation” by P. Goovaerts [3] is another
excellent textbook with more advanced topics. Two excel-
lent sources of additional information and case studies are
the book by M.E. Rossi and C.V. Deutsch, “Mineral Resource
Estimation” [5]], and the book “Applied Mining Geology” by
M. Abzalov [1]. The most comprehensive book in the matter
is “Geostatistics Modeling Spatial Uncertainty” by J.P. Chiles
and P. Delfiner [2]].
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block model,

clustering,
correlation,

detection limit,
duplicate,

expected value,
indicators,

local accuracy,
locally varying anisotropy,

missing values,
multiple points,

nearest neighbor,
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