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Summary

The estimation of a variable in space from nearby samples
and the inference of its uncertainty call for a probabilis-
tic framework. Geostatistics relies on the idea of random
variables (and random functions) to characterize the un-
known values at unsampled locations. In this section, we
review the key concepts in probability and statistics that
are required to lay out the probabilistic framework used in
geostatistics. We will recall concepts such as population,
sample, random variable, probability distribution, indepen-
dence, and many others.
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1 Statistics, population and sample

Statistics is concerned with principles and methods to col-
lect, organize, summarize, display and analyze data, to ob-
tain valid (and general) conclusions and take reasonable de-
cisions based on that analysis. We see its use in everyday
life, such as weather forecasts, insurance policy pricing, po-
litical polls, etc. Statistics is at the core of the spatial anal-
yses required to quantify resources and reserves in mining
applications. In this note, we provide the basic definitions
used in statistics that are required to expand these concepts
to the analysis of spatial data.

When dealing with data, one needs to keep in mind where
the data come from. We define the population as the ex-
haustive set of measurements or logged features taken over
a domain of interest. That is, the population is the collec-
tion of all the observations possible for the problem at hand.
Obviously, we almost never have access to the population
and sometimes, its definition is not completely clear. There-
fore, we use a sample, which is a set of measurements or
observations that we can actually collect. The hope is that
the sample represents the population fairly.

We use statistics to analyze the information provided in
the sample to make inference about a population, in the
context of prediction and also uncertainty quantification.
Statistics can also be used to design the sampling process.
In an everyday example, we can think of a national election,
where the population is everyone with the right to vote. We
may be interested in their preference for President. How-
ever, it is impossible to survey everyone in the population
to forecast the result of an election, as this would be too ex-
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pensive and time consuming. Therefore, a samkple is taken,
where a small group of people deemed representative of
the population is surveyed and based on their preferences,
a forecast is prepared, which will be subject to an error that
depends on the sample size, as well as the sample selec-
tion process. To define the sample, several considerations
must be accounted for. We would like the sample to rep-
resent the different groups in the population, therefore, we
may try to distribute the observations within different age,
socio-economic and geograhic strata to represent the diver-
sity of the entire population. Finding how to weight those
strata is challenging and is part of the sample design.

Populations can be characterized with parameters, which
are summary numbers that describe the population. Often-
times, we do not have access to the population to know the
parameter (for example, the mean), therefore we need to
estimate it. A statistic, on the other hand, is a number that
describes the sample. Statistical techniques can be called
descriptive, if their purpose is to describe the data. We talk
about inferential statistics, when the goal is to draw general
conclusions from the data about the population. Statistics
are a mean to make inference about the population param-
eters.
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Key Concepts:

Statistics: The body of science concerned with princi-
ples and methods to collect, organize, summarize,
display and analyze data, to obtain valid (and gen-
eral) conclusions and take reasonable decisions
based on that analysis.

Population: The exhaustive set of measurements or
logged characteristics taken over a domain of in-
terest.

Sample: The set of measurements or observations
that we collect from the population.

Parameter: A summary number that describes the
population.

Statistic: A summary number that describes the sam-
ple. It is used as a means to infer the population
parameter.

Descriptive or inferential statistics: Statistics can
be used to describe the data (descriptive statis-
tics), or to draw general conclusions from the data
about the population (inferential statistics).

Inference: The process of reaching a conclusion about
the population from the evidence provided by the
sample.
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2 The data

2.1 Types of data

Data may come in different formats and measure or charac-
terize attributes of different types. We can distinguish the
following data types:

� Qualitative or Categorical: this refers to a variable where
the attribute is assigned to one of a number of cate-
gories, as counts or proportions. Discrete variables can
refer to ordered or unordered categories. As an exam-
ple, we can think of the number of truck loads during a
shift in a mine (only integer numbers are possible), or
the risk rating of a company (which can take discrete
values coded with letters and a number, for example
Aa1, Aa2, Aa3, A1, A2, A3, Baa1, Baa2, Baa3, etc). In
particular, discrete data can be:

– Nominal: these data are labelled with a character-
string (although the labels can also be numerical
codes) with a fixed number of categories. These
are usually qualitative attributes that describe some
feature of the observation that cannot be mea-
sured. A good example of this is the There is no
order between the categories or distances to de-
scribe similarity. An example of nominal variable
is a geological attribute such as the lithology of a
rock volume.

– Binary: binary variables are a special case of nom-
inal data, where the data can only take two cat-
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egories, typically complementary, such as yes or
no, present or absent, etc.

– Ordinal: these are also character-string labels, but
that have a logical order. The risk rating described
above are an example. Color intensities are an-
other example. These ordinal variables are pre-
sented in a ranking scale. It should be noted that
the categories are not necessarily equidistant, there-
fore, we should not assume that the difference be-
tween the first and second label is the same as
that between the second and third category.

– Continuous variables grouped into bins: in this case,
there may be a small number of large bins defin-
ing few classes (high, medium and high), or may
be smaller bins to “reduce” a continuous variable.
Since the underlying variable is continuous, some
assumption can be made about the distance be-
tween the data from different bins.

– Integer variables where a distance can be used to
measure the difference between observations, but
due to the nature of the variable, it can only take
integer values. Typical examples are counts, such
as the number of truck loads mentioned earlier.

� Quantitative: this refers to the case where variables
take numerical values that have a measure of distance
associated, allowing comparisons and measuring simi-
larity.

– Discrete or Counted: in this case, the scale of mea-
surement is not continuous and the variable can
only take values in a discrete set.
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– Continuous: this refers to a variable that is mea-
sured in a continuous scale, that is, where the ob-
servation can take any value within one or more
ranges of numbers. A simple example is the length
of a line or the concentration of zinc in an ore con-
centrate.

2.2 Univariate data description

The data available can be described in different ways, de-
pending on their nature.

2.2.1 Qualitative data

Qualitative data can be summarized by computing the fre-
quencies of each category, and calculating the proportion
which is:

proportion =
count in category

total count
(1)

These data can be displayed as a pie chart, where each
sector of the chart is colored differently for easy identifica-
tion and its area represents the proportion corresponding to
each category. Pie charts only work when few categories are
displayed, so you may need to combine small categories.
Ordering the categories by proportion also helps visualizing
and processing the information in the pie chart. An alterna-
tive to graphically display these data is to use a bar chart,
where the height of each bar is equal to the proportion or
the frequency of the category.
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2.2.2 Quantitative data

Quantitative data can be summarized with different mea-
sures. First, there are measures of central tendency, which
describe the typical values in the distribution:

� Mean: it is the average of the data. The sample mean
is a statistic that helps infer the population mean which
is a parameter. The sample mean is:

̄ =
1

n

n
∑

=1

 (2)

where 1, 2, ..., n is the sample of size n from the pop-
ulation. The mean is sensitive to outliers, that is values
that are extreme in the distribution. It is a sensitive
measure.

� Median: it represents the middle value of the ordered
data. This means that 50% of the data fall below the
median and 50% at or above this value. The median is
not sensitive to outliers, therefore it is called a resistant
measure.

� Mode: it is the value that occurs more frequently in the
data. In some cases, there is more than one mode.

There are also measures of position, which help under-
standing the range where a given percentage of the data
fall. These require the data to be solrted prior to computing
the measure:

� Percentiles (or more generally quantiles): they repre-
sent the value at which a given percent (or proportion)
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of the data fall under that value. The pth percentile is
the value such that p% of the data is below the per-
centile and (100 − p)% is at or above the value. Per-
centiles are often associated to integer numbers, so
the notion of a quantile is introduced to generalize this.
For instance, the quantile q0.3251 is the value such
that 32.51% of the data is below that value and the
remaining 67.49% is at or above it.

� Quartiles: quatriles are particular percentiles of inter-
est. Usually, we identify the lower quartile as the 25th

percentile (or q0.25), the median (q0.50) and the upper
quartile (q0.75)

Additionally, the data can be described with measures of
variability, that look a measuring the spread of the distribu-
tion:

� Range: it is the difference between the highest and
lowest value in the data. The range is highly sensitive
to outliers.

� Interquartile range (IQR): it is the difference between
the upper and lower quartile. The IQR is thus a resis-
tant measure.

� Variance and Standard deviation: the variance is the
main measure of variability in statistics, although in
practice, the standard deviation and coefficient of vari-
ation (see the next item) are preferred. The variance
is the average squared difference with respect to the
mean. It has the units of the original variable squared,
which makes it awkward and somehow difficult to use.
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The standard deviation is just the square root of the
variance, thus it has the same units of the original data
and can be used as an error.

– Population variance: this is the population param-
eter.

σ2 =
1

N

N
∑

=1

( − μ)2 (3)

where μ is the population mean and 1, 2, ..., N
are all the observations possible in the population,
which has size N.

– Sample variance: this is the statistic that estimates
the population variance, when a sample of size n
is available.

s2 =
1

n − 1

n
∑

=1

( − ̄)2 (4)

Here the sum is divided by n− 1 to ensure the esti-
mator of the population variance is unbiased. No-
tice that it also requires an estimate of the popula-
tion mean.

– Population standard deviation: it is the square root
of the population variance.

σ =
p

σ2 (5)

– Sample standard deviation: it is the square root of
the sample variance.

s =
p

s2 (6)
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� Coefficient of variation (CV): it is computed as the stan-
dard deviation divided by the mean, providing a unit-
free statistic that allows us to compare the spread of
different variables in relation to their “center”.

CV =
s

̄
(7)

There are many ways to summarize the data distribution
and its features using graphs.

The most straightforward way to present the data dis-
tribution is showing a histogram, which looks similar to a
bar chart, but is used for quantitative data. To create a his-
togram, data are grouped into bins or class intervals and the
frequency (or the relative frequency) is plotted in the y-axis,
with the bar width equal to the class interval in the x-axis.

Another way to summarize the distribution is to create
a boxplot, which depicts the quartiles of the distribution
(lower or first quartile Q1, second quatile or median Q2 and
upper or third quartile Q3) and the minimum and maximum
values. The three quartiles are signaled by vertical lines
within a box, and the extremes are horizontal lines extend-
ing left and right. It is common to also display the outliers
as dots, in which case, the minimum and maximum values
are replaced by a lower and upper limits, calculated as:

Lower limit = Q1 − 1.5 · QR (8)

Upper limit = Q3 + 1.5 · QR (9)

Finally, we should mention that there are other statistics
and parameters that characterize the shape of the data dis-
tributions:
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� Skewness: this parameter (and its corresponding statis-
tic) indicates whether the distribution is symmetric or
skewed. It is calculated as the ratio between the aver-
age deviation of the observations with respect to the
mean to the power three and the standard deviation to
the power of three. It is a unit-free parameter:

g1 =
1
N

∑N
=1
( − μ)3

�
r

1
N

∑N
=1
( − μ)2
�3
=

1
N

∑N
=1
( − μ)3

σ3
(10)

If the distribution is unimodal, a negative value means
the distribution has a long tail to the left, that is few
low values and the majority of the observations are
concentrated in high values. A value of zero means
the distribution is perfectly symmetric. A positive value
indicates a long tail to the right, with most values con-
centrated in the lower values and few observations tak-
ing high values.

� Kurtosis: this parameter measures how heavy are the
tails with respect to the center of the distribution. It is
used to compare symmetric distributions with the nor-
mal distribution:

4 =
1
N

∑N
=1
( − μ)4

�

1
N

∑N
=1
( − μ)2
�2
=

1
N

∑N
=1
( − μ)4

σ4
(11)

Kurtosis is often used to compare the shape with a nor-
mal distribution by calculating the excess kurtosis, sim-
ply subtracting 3 to the kurtosis, since a normal distri-
bution has a kurtosis of 3.
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2.2.3 Observations over time

When the observations are associated to time, we can build
other displays to analyze the data, including time series
plots and statistical control charts. A time series plot is
simply a plot of the observation value ordered by time (x-
axis). A control chart typically includes three reference val-
ues: the mean of the observations which is shown as a solid
horizontal line, and two additional dotted lines representing
the control limits at the average plus and minus two stan-
dard deviations (̄ − 2s and ̄ + 2s). These control limits
are defined because under some circumstances the interval
between the control lines represents approximately a 95%
interval, thus, points falling outside these limits can be con-
sidered unusual.

2.2.4 Representative data

One key assumption about the data that belong to the sam-
ple is that they represent the population. However, in prac-
tice, there are many issues with data collection, which may
lead to a bias.

To ensure that the sample is representative, a probabilis-
tic method should be used for collecting the samples:

� Simple random sampling: the selection is made such
that each possible member of the population has an
equal chance of being selected. There is also an as-
sumption that no element that does not belong to the
population is ever selected (contamination).

� Stratified random sampling: here the population is bro-
ken into a number of groups or strata and then random
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sampling is performed within each group.

� Regular sampling: this means the selection is done
with a consistent rule about the “spacing” of the sam-
ple. For example, we select the 1st, 1001st, 2001st,
etc. observation for our sample.

2.3 Bivariate data description

It is common that observations include more than one vari-
able. Therefore, it is interesting to see what the relationship
between the different variables is. We start by analizing
pairs of variables in what is called bivariate analysis.

2.3.1 Qualitative data

If we are dealing with two qualitative attrbutes, we can sum-
marize their relationship in a contingency table. In this ta-
ble we record the frequencies of particular categories for the
first and second atrribute. If we use relative frequencies, we
get a total sum of 1, and the sums per row or column are
the marginal frequencies, that is the frequencies of a single
attribute, without considering the other. These tables can
be used to test hypothesis about the effect of one variable
over another.

2.3.2 Quantitative data

In the case of quantitative data, a typical summary is pro-
vided thorugh a scatter plot, where each attribute is associ-
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ated with one axis of the plot, thus each obervation (, y)
can be represented with a point in this plot.

The notion of variance can be extended by defining the
covariance between the two attributes. This is defined as:

C(X, Y) =
1

N

N
∑

=1

( − μX) · (y − μY) (12)

where μX and μY are the means of the populations of X and
Y.

The linear correlation coefficient also summarizes this bi-
variate relationship, and provides a measure for the degree
of linear relationship between the two attributes. It is de-
fined as the ratio between the covariance and the product
of the standard deviations of the two variables:

ρ(X, Y) =
C(X, Y)

σX · σY
=

∑N
=1
( − μX) · (y − μY)

r

∑N
=1
( − μX)2 ·
∑N

=1
(y − μY)2

(13)

The sample correlation coefficient is noted with r.
The covariance in the numerator can take negative val-

ues, while the denominator cannot. The correlation coef-
ficient is bound to the interval [−1,1]. ρ(X, Y) = 1 if the
relationship between X and Y is perfectly linear and has a
positive slope, that is, larger X values imply larger Y values
(and in this case the increase is perfectly proportional). Sim-
ilarly, a ρ(X, Y) = −1 implies a perfectly linear relationship
but with negative slope (Y decreases when X increases). A
correlation coefficient of 0 means there is no linear relation-
ship between X and Y, which does not should be interpreted
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as lack of relationship. We are just saying that if it exists,
this relationship is not linear.

The correlation coefficient may be misleading when data
appear in two clusters, or when there are some outliers. It
is also important to mention that correlation does not im-
ply causation and that it is quite frequent to find spurious
correlations.

2.3.3 Linear regression

We can use the idea of correlation to try to create a pre-
dictive model based on a linear relationship bewteen two
variables. Linear regression fits a linear model to the rela-
tionship between two variables: X (independent variable)
acts as input variable to predict Y (dependent variable).

The model is fit by finding the best line to the cloud of
points (, y), ƒor = 1, ..., n. The best line is defined as the
line that minimizes the sum of squared errors between the
true and the predicted values for the  in the sample data.

This leads to a linear model with two parameters: the
intercept β̂0 and the slope β̂1:

ŷ = β̂0 + β̂1 (14)

where:
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Slope β̂1 =
C(X, Y)

s2


= r(X, Y) ·
sY

sX

=

∑n
=1
( − ̄) · (y − ȳ)
∑n

=1
( − ̄)2

Intercept β̂0 = ȳ − β̂1 · ̄

Key Concepts:

Qualitative or categorical data: Refers to counts or
proportions of a variable assigned to one of a num-
ber of categories. These can be nominal (labelled
without a particular order), binary (taking one of
two possible complementary values), or ordinal
(labelled, where the categories have an order).
These data can be displayed in a pie chart or a
bar chart.

Quantitative data: Referes to variables taking nu-
merical values that represent a measured at-
tribute. These can be discrete or counted, or con-
tinuous. These data can be described with a his-
togram or a boxplot.
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Description of quantitative data: These data can
be described through measures of central ten-
dency, such as the mean, the median and the
mode, measures of position, such as quantiles and
quartiles, and measures of variability or spread,
such as the range, interquartile range, variance
and standard deviation, and coefficient of varia-
tion. There are also measures of shape, such as
the skewness and kurtosis coefficients.

Observations over time: When observations are
linked to time, they can be analyzed with time
series plots and control charts.

Representative data: Data collection may be subject
to bias. This can be avoided by using a probabilitic
method such as simple random sampling, strati-
fied random sampling or regular sampling.

Bivariate data: The relationship between two qualita-
tive variables can be summarized in contingency
tables. For quantitative variables, the scatter plot
serves to depict the relationship.

Correlation coefficient: This statistic summarizes
the linear relationship between two variables, by
measuring the defree of linear relationship be-
tween the two attributes. it is cimputed as the
covariance between the variables divided by the
standard deviation of each variable.
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Linear regression: Provides a linear model to predict
the dependent variable conditioned to the inde-
pendent variable, through a linear fit that mini-
mizes the sum of squared errors between the true
and the predicted values of the dependent vari-
able.

3 Probability

3.1 Random variable and sample space

A random variable is a variable that takes values according
to a probability distribution. It provides a description of the
values that the variable can take. The probability distribu-
tion indicates how likely each value is.

Random variables can be continuous or categorical. The
description provided by the probability distribution depends
on the type of variable we are dealing with. In the case of
a categorical variable, the probability distribution can be a
list of the probability of the variable taking each one of its
discrete values, or can be a function that describes these
probabilities (some categorical random variables can have
infinite outcomes, so listing all of the probabilities may not
be possible). In the case of a continuous variable, the proba-
bility distribution is a function that describes the “probability
densities” for each value of the variable.

Formally, a random variable X is a real-valued function
defined on a sample space S. In other words, X associates a
numerical value with each event (a collection of outcomes)
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of an experiment. We can use set operations on these events.
Some important concepts are:

� Union: The union of two events A and B, noted A ∪
B, contains all the outcomes of A and B (this includes
those that occur in both).

� Intersection: The intersection of two events A and B,
noted A ∩ B, contains only the outcomes that occur in
both A and B.

� Complement: The complement of an event A, noted as
Ā, AC or A′, contains all outcomes in the sample space
that are not in A. Therefore P(A) = 1 − P(Ā).

� Mutually exclusive: Two events A and B are mutually
exclusive or disjoint, if there are no outcomes in their
intersection.

� Empty set: The empty set is an event that contains no
outcome and is denoted as ∅.

Based on these definition, we can deduce that:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

or if A and B are mutually exclusive:

P(A ∪ B) = P(A) + P(B)

There are typical examples to illustrate the concept of a
probabilistic experiment:

1. Experiment: Throwing a coin once. Random variable:
number of heads ontained. Possible outcomes: 0 or 1.
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2. Experiment: Throwing a coin n times. Random vari-
able: number of heads obtained. Possible outcomes:
0, 1, 2,..., or n.

3. Experiment: Throwing a dice. Random variable: top
face value. Possible outcomes: 1, 2, 3, 4, 5, or 6.

4. Experiment: Snapping turtles crossing a street in an
hour. Random variable: number of turtles. Possible
outcomes: 0, 1, 2,..., ∞.

5. Experiment: Taking MINE 467. Random variable: Final
grade. Possible outcomes: Any value from 0 to 100%.

Now, in each case, the random variable has a probability
distribution associated to the outcomes. Probabilities must
comply with some rules (axioms). For example, they cannot
be negative and cannot be larger than 1. Also, for a proba-
bility distribution to be valid, the sum of the probabilities for
all possible outcomes must be 1.

We review these properties in the next section.

3.2 Distribution functions

3.2.1 Definitions and properties

The probability distribution of a random variable can be char-
acterized by its cumulative distribution function (cdf) (notice
that we simplify the notation by dropping the subscript X):

∀ ∈ R, FX() = F() = Prob(X < ) (15)
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From the cumulative distribution function, we can infer
the probability density function (pdf) for continuous vari-
ables:

∀ ∈ R, ƒX() = ƒ () =
dF()

d
(16)

= md→0
Prob( < X <  + d)

d
(17)

For categorical variables we use the probability mass func-
tion (pmf):

∀ ∈ N, PX() = P() = Prob(X = ) (18)

Probabilities must satisfy some properties:

1. 0 ≤ P(A) ≤ 1, for all events A

2. P(A) =
∑

all events  in A P()

3. P(S) =
∑

all events  in S P() = 1

The cdf has the following properties:

� F is a non-decreasing function: if  < b, then F() ≤
F(b).

� mb→∞F(b) = 1

� mb→−∞F(b) = 0

� Prob( < X ≤ b) = F(b) − F(), ∀ < b

The pdf, on the other hand, has the following properties:
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� Prob(−∞ < X <∞) =
∫∞

−∞ ƒ ()d = 1

� Prob( < X ≤ b) =
∫ b


ƒ ()d = F(b) − F()

� Prob(X = ) =
∫ 


ƒ ()d = 0

� Prob(X ≤ b) =
∫ b

−∞ ƒ ()d = F(b)

�

dF()
d = ƒ ()

It is clear from the previous definitions that the cdf and
the pdf are equivalent. If you know one, you can deduce the
other.

3.2.2 Interpretations

Probabilities can be assigned following different interpreta-
tions:

1. Classical interpretation (equally likely elementary out-
comes):

P(A) =
number of outcomes in A

number of possible outcomes in S

2. Belief or subjective interpretation: here the interpre-
tation is that the probability reflects some subjective
belief which may change among individuals.

3. Empirical interpretation: probabilities are interpreted
as the long-run relative frequency of an outcome, that
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is, over a large number of repetition of an experiment

P(A) ≈
number of outcomes in A

number of experiments attempted

3.2.3 Conditional Probability and Independence

Sometimes one event B may have an effect on the proba-
bility of another event A. In that case, the probability of A
must be modified to account for the new information (that
event B has occured). The concept of conditional probability
refers to the probability of one event occurring, given that
another event is known to have occurred. This probability is
noted as P(A|B). A conditional probability can be computed
as:

P(A|B) =
P(A ∩ B)

P(B)
(19)

from which we can deduce the probability of the intersection
of dependent events:

P(A ∩ B) = P(B) · P(A|B) (20)

The probability of an event without reference to any con-
ditioning event is called the marginal probability.

It shoud be noted that in most cases P(A|B) ̸= P(B|A).
We can then define independence between events A and

B, as follows:
P(A|B) = P(A) (21)

This is equivalent to P(B|A) = P(B) and to P(A∩B) = P(A) ·
P(B). The interpretation is that the probability of A occurring
does not change based on the knowledge of the outcome of
B.
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3.2.4 Bayes’ Theorem

Bayes’ theorem allows us to calculate the conditional prob-
ability of an event considering prior knowledge of related
conditional events.

For two events A and B, we can write:

P(A|B) =
P(B|A) · P(A)

P(B|A) · P(A) + P(B|Ā) · P(Ā)
(22)

This relationship can be easily computed by realizing that
the denominator P(B|A) · P(A) + P(B|Ā) · P(Ā) is equivalent to
P(B), which can be shown by realizing that P(B|A) · P(A) =
P(B∩A) and P(B|Ā) ·P(Ā) = P(B∩ Ā), thus P(B∩A)+P(B∩ Ā) =
P(B).

This fact can be used to do Bayesian inversion, that is
inverting the conditional probability P(A|B) into P(B|A) by
knowing the prior probabilities P(A) and P(B).

This can be generalized to the case of multiple mutually
exclusive events A1, A2, ..., Ak:

P(A|B) =
P(B|A) · P(A)
∑

 P(B|A) · P(A)
(23)

3.2.5 Moments

The probability distribution of a random variable can be sum-
marized by looking at different moments (or statistics) of
the distribution. For example:

� Expected value

– Continuous case: μ = E(X) =
∫∞

−∞  ƒ () d
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– Categorical case: μ = E(X) =
∑

∈N  P()

� Variance

– Continuous case: σ2 = Vr(X) =
∫∞

−∞(−μ)
2 ƒ () d

– Categorical case: σ2 = Vr(X) =
∑

∈N( − μ)2 P()

It is interesting to notice that probability and frequency
are related. When an experiment is repeated many times,
the frequencies will approach the probability distribution.
Therefore, a histogram that uses relative frequencies is an
experimental representation of the density of the underly-
ing variable and the moments of the random variable can
be inferred experimentally from the statistics of that ex-
perimental distribution. Similarly, the cumulative histogram
represents the cumulative distribution function.

Finally, it is important to point out some properties of
the expected value and variance. These properties facilitate
calculations for some probability distributions.

If X is a random variable with expected value m and vari-
ance σ2, then:

� E(X+ b) = E(X)+ b = m+ b, that is, the expectation
is a linear operator.

� Vr(X + b) = 2Vr(X) = 2σ2, this can be deduced
from the properties of the expected value.

3.3 Probability distributions

We now look at some simple distributions and apply some
of these concepts.
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3.3.1 Discrete uniform

Consider a fair dice. The outcome is the number obtained
in the face that looks up. Since the dice is fair, each one of
the outcomes has equal probability. The possible outcomes
are 1, 2, 3, 4, 5, and 6.

The probability distribution of throwing a dice is therefore
a discrete uniform distribution between 1 and 6.

The following table provides the outcomes and probabil-
ities:

Table 1: Fair dice outcomes and probabilities.

Outcome 1 2 3 4 5 6
Probability 1

6
1
6

1
6

1
6

1
6

1
6

The expected value is:

m = E(X) =
∑

∈N

P()

= 1 ·
1

6
+ 2 ·

1

6
+ 3 ·

1

6
+ 4 ·

1

6
+ 5 ·

1

6
+ 6 ·

1

6
= 3.5
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The variance is:

σ2 = Vr(X) =
∑

∈N

( −m)2P()

= (1 − 3.5)2 ·
1

6
+ (2 − 3.5)2 ·

1

6
+ (3 − 3.5)2 ·

1

6

+ (4 − 3.5)2 ·
1

6
+ (5 − 3.5)2 ·

1

6
+ (6 − 3.5)2 ·

1

6
= 2.9167

3.3.2 Bernouilli distribution

Let us consider now a binary random variable X, where one
of the outcomes has a probability p of occurring. We can
call this event “success”. The complement of this event (we
can call it “failure”) has a probability 1 − p.

This random variable has a Bernouilli distribution, where
the mean and variance are given by:

μ = E(X) = p (24)

σ2 = Vr(X) = p(1 − p) (25)

We can also call this variable an indicator variable.

3.3.3 Binomial distribution

When an event is repeated multiple times, and each time
the result is independent of the previous experiments, this is
noted as “independent and identically distributed” random
variables (or i.i.d.).
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We can now consider n Bernouilli trials X drawn inde-
pendently. The probability of X defined as the number of
successes in n identical trials follows a binomial distribution
with parameters:

μ = E(X) = np (26)

σ2 = Vr(X) = np(1 − p) (27)

σ = SD(X) =
Æ

np(1 − p) (28)

The probability mass distribution for X is:

ƒ () = P(X = ) =
n!

!(n − )!
p(1 − p)n− for  = 1,2, ..., n

(29)
Recall that the factorial operation is ! =  ·(−1) · ... ·2 ·1

and 0! = 1.

3.3.4 Continuous uniform

Consider now the case of a continuous random variable that
can take values according to a uniform distribution within
the range [0,1].

The expected value and variance are:
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mZ = E(Z) =
∫ ∞

−∞
z ƒ (z)dz (30)

=
∫ 1

0
z
1

1
dz (31)

=
z2

2

�

�

�

�

1

0
=
1

2
(32)

σ2
Z
= Vr(Z) =
∫ ∞

−∞
(z −m)2 ƒ (z)dz (33)

=
∫ 1

0
(z −

1

2
)2

1

1
dz (34)

=
1

12
(35)

We should be able to compute the same parameters in
the case that the uniform distribution can take values within
an arbitrary range [, b].

3.3.5 Normally distributed variable

Consider a variable that is normally distributed, that is, one
that follows the Gaussian distribution:

ƒ (z) =
1

σ
p
2π

ep−
1
2(

z−μ
σ )

2

(36)

The deduction of the mean and variance from the proba-
bility distribution function is not simple, so we will just state
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that the mean and variance are the two parameters in the
pdf expression:

μZ = E(Z) = μ (37)

σ2
Z
= Vr(Z) = σ2 (38)

This means that the probability distribution of a normal
random variable requires only two parameters to be fully
defined. The mean defines its center, and the variance de-
termines its spread. It is noted N(μ, σ2)The distribution is
symmetric and ranges from −∞ to +∞, although values in
the tails beyond μ ± 3σ have a very low probability.

A particular and important case of the normal distribu-
tion is the so called standard normal distribution (or N(0,1)),
which has a mean of 0 and variance of 1.

ƒ (y) =
1
p
2π

ep−
1
2y

2
(39)

We mentioned that dealing with the pdf of the normal dis-
tribution is tricky when solving integrals to calculate its pa-
rameters or probabilities of not exceeding a particular value.
Recall that we can compute this probability is equivalent to
calculating the cdf for that particular value:

P(Z ≤ z) = P(Z < z) =
∫ z

−∞
ƒ (z) dz

=
∫ z

−∞

1

σ
p
2π

ep−
1
2(

z−μ
σ )

2

dz
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In order to compute this value, we can standardize the
variable and reset its mean to 0 and its variance o 1, by
defining:

Y =
Z − μ

σ
(40)

Notice that this operation can be done with any random
variable, even if it is not normally distributed. The result-
ing variable will have a mean of 0 and variance of 1, but
will only follow a standard normal distribution, if the original
variable was normally distributed.

We can compute the probability of not exceeding a value
for the standard normal distribution:

P(Y ≤ y) = P(Y < y) =
∫ y

−∞
ƒ (y) dy

=
∫ y

−∞

1
p
2π

ep−
1
2y

2
dy

Again, this integral cannot be easily obtained, therefore,
the probabilities are tabulated for the standard normal dis-
tribution, which allows us to infer P(Z ≤ z) for any normal
distribution with parameters μ and σ2, by using the stan-
dardization presented earlier.

A general rule for distributions that are close to normal,
is to use the compute probability intervals associated to the
parameters of the distribution. Typically, the following ap-
proximations are used:

� 68% of the observations are within the range defined
by the mean plus or minus one standard deviation.
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� 95% of the observations are within the range defined
by the mean plus or minus two standard deviations.

� 99.7% of the observations are within the range defined
by the mean plus or minus three standard deviations.

3.3.6 Other important probability distributions

Student’s t-distribution
This distribution is similar to the normal distribution,
but with heavier tails. This distribution depends on a
single parameter called degrees of freedom and stems
from the estimation of the mean of a normallu dis-
tributed variable, from a small sample of size n. The
random variable Tn−1 =

X̄−μ
s/
p
n

has a t-distribution with
n − 1 degrees of freedom. The expression for the pdf
and cdf are quite complex, but the relevant tables to
determine the probability values are easily obtained in
books or software.

Chi-square distribution
This distribution (also noted χ2 distribution) is a right-
skewed distribution that also depends on a single pa-
rameter called degree of freedom. It arises as the dis-
tribution of a random variable defined as the sum of
squares of n independent standard normal random vari-
ables. The random variable χ2

n−1 =
(n−1)s2

σ2
has a χ2 dis-

tribution with n − 1 degrees of freedom. We also omit
the expressions for the pdf and cdf.

F distribution
This distribution is also right-skewed, but depends on
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two parameters (both referred as degrees of freedom).
It is used in ANOVA (analysis of variance).

Poisson distribution
This distribution serves to describe rare events, that is,
events that have a small probability of occurrence. It
defines the probability of a number of these events oc-
cur in a fixed interval of time, assuming they occur with
a constant rate and are independent of the last occur-
rence. Its pdf is: ƒ () = eλλ

! , where  is the number
of occurrences and the parameter λ is the mean and
variance of the variable.
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Key Concepts:

Event: A collection of outcomes.

Random variable: It is a variable that takes values
according to a probability distribution. It asso-
ciates a numerical value with each event of an ex-
periment.

Probability mass function (pmf): It is a mathemat-
ical function, noted ƒ () that provides the proba-
bility for possible outcomes of a discrete random
variable. In this case ƒ () = Prob(X = ).

Probability density function (pdf): It is a mathe-
matical function, also noted ƒ (), that provides the
probability for possible outcomes of a continuous
random variable. In this case ƒ () ̸= Prob(X = ).

Cumulative distribution function (cdf): It is noted
F() and represents the probability that the ran-
dom variable X is less than or equal to the value x:
F() = Prob(X ≤ )

Sample space: This is the set of possible outcomes of
a random experiment.

Set operations: Events of a random experiment can
be combines through several set operations such
as union, intersection, and complement.
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Conditional probability: It refers to the probability of
one event occurring, given that another event is
known to have occurred.

Independence: The lack of dependence between
events occurs when the conditioning event does
not affect the probability of the event considered.

Bayes’ theorem: It allows us to calculate the con-
ditional probability of an event considering prior
knowledge of related conditional events.

P(A|B) =
P(B|A) · P(A)
∑

 P(B|A) · P(A)

Probability distributions: There are some important
distributions, including uniform, Bernouilli, bino-
mial, and the normal distribution.

4 Sampling distributions

As stated before, a parameter is a numerical feature of the
population. However, we do not have access to the en-
tire population and we only can obtain a limited sample.
From this sample, we can calculate statistics that may help
us make inference of the parameters of the population. A
statistic has a probability distribution. This distribution is
called a sampling distribution. Since the sample may change
from one experiment to the next, by repeating the experi-
ment, we can obtain multiple results for the statistic. In
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general, we will consider a random sample of a fixed sixe
from the population.

One important parameter we want to infer is the popula-
tion mean. This parameter can be approximated using the
sample mean:

X̄ =
X1 + X2 + · · · + Xn

n
(41)

If the variable X is drawn from a distribution with popu-
lation mean μ and population variance σ2, that is, if these
are independent and identically distributed events, then the
mean X̄ of a sample of size n has a distribution (the sam-
pling distribution) with the following parameters:

E(X̄) =μ (42)

Vr(X̄) =
σ2

n
(43)

In words, the sample mean is centered in the popula-
tion mean (so it is useful to infer this parameter of the pop-
ulation) and its spread bcomes smaller as the number of
observations increases, that is, the distribuion of the sam-
ple mean is more concentrated around the population mean
than the population distribution.

Now, if the observations X are drawn from a normal dis-
tribution, then, the distribution of the sample average is also
normal, with mean μ and variance σ2

n , that is, N(μ, σ2/n).
Now an interesting fact is that whatever the distribution

of the population we are drawing the samples from, the dis-
tribution of the sample mean is approximately normal, when
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the sample size is large. This is known as the Central Limit
Theorem. This implies that:

Z =
X̄ − μ

σ/
p
n
∼ N(0,1) (44)

We will consider a sample large, when n > 30.
When a statistic is used to estimate a population param-

eter, it is called a point estimator, or simply an estimator.
The statndard deviation of this estimator is called standard
error, SE. The sample mean is a point estimator of the pop-
ulation mean. In order to know its accuracy in estimating
the population mean, we need to determine the standard
error of X̄. Since we know that the standard deviation of X̄
is
p

σ2/n = σ/
p
n.

This standard error can be used to determine the prob-
ability that the error will be between some values. For in-
stance, we can say that there is approximately a 95% prob-
ability that the error will be within ±2SE of the population
mean. An estimate will usually (and should) be reported
with an associated error. It should be explicit what error is
reported: the SE, 2SE or some other error associated to a
probability.

5 Bibliographical notes

The concepts covered in this chapter are just a small por-
tion of what can be found in any probability and statistics
book. It should be noted that most statistics books deal with
mathematical statistics and do not emphasize data analy-
sis. An excellent textbook that covers probability concepts
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is “A first course in probability” by S. Ross [2]. For mathe-
matical statistics, many introductory books can be recom-
mended, however a more comprehensive approach can be
found in “Applied multivariate statistical analysis” by R.A.
Johnson and D.W.Wichern [1].
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