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Summary

The practical implementation of estimation methods such
as kriging requires defining the search parameters for the
local definition of the neighborhood, and the conditions for
the samples used for the estimation.

In this chapter, we discuss the practical aspects of set-
ting up an estimation of a block model. We discuss how
the search neighborhood and the stationarity assumption
are linked, how the spacing of the samples is relevant to
improve estimation, and how the result shows a smoothing
effect.

We present some basic approaches to validate a block
model, by showing the typical steps of visual inspection,
statistical comparison and trend reproduction using swath
plots.


https://julianmortiz.com/

1 Introduction

Implementing an estimation plan requires defining many
parameters. Furthermore, several questions arise during
the preparation of the estimation plan, such as:

e Are the parameters the best parameters that we can
use to get a satisfactory block model?

e How can we compare two sets of parameters and choose
the best plan?

e How do we validate or check a block model once com-
pleted?

In this chapter we will introduce the different approaches
to answer these questions.

2 Estimation plans

An estimation plan is the collection of parameters used to
define how the estimation will run. In particular, this in-
cludes the definition of the search neighborhood for sam-
ples, the selection criteria for the samples inside the search
neighborhood, the estimation method, and the definition of
which samples will be considered (this refers to using infor-
mation from the domain of the estimation point or block, or
combining information from different domains).

Typically, an estimation plan will require the following pa-
rameters:

e Estimation method
e Search radii for samples around the estimation location
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e Minimum and maximum number of samples to use to
estimate each location

e Constraints regarding number of quadrants or octants
informed

e Constraints regarding maximum number of samples com-
ing from the same drillhole or well

e Sample domains used to estimate specific block do-
mains

e Constraints regarding the use of high valued samples

Notice that most estimation methods will not use all the
data in the domain to estimate each location, but will con-
strain the data to a local neighborhood. This is justified by
the fact that most variables have a variable mean over the
domain, that is, first order stationarity (over the mean) is
already hard to comply with, therefore, it is preferable to
assume the variable is stationary over local neighborhood
(quasi stationarity).

The size of the local neighborhood (defined by the search
radii) will be tailored to match the anisotropy found in the
continuity of the variable. However its extent will depend
on how rapidly the mean values change in case a trend is
present. Therefore, it is common to find search neighbor-
hoods that are “corrected” to avoid mixing data from areas
that are too different in mean to the estimation location.

The selection of the estimation method is really up to the
user. Ordinary kriging has shown consistently robust perfor-
mance under many different situations, provided there are
enough samples to condition the estimation. Simple kriging
is almost never used in practice, because of its stationarity
assumption, however it forms the basis of other methods
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and is at the core of simulation techniques. Other types of
kriging such as indicator kriging are sometimes used to deal
with specific issues of the data, such as imposing different
continuity for different ranges of values, or when continuity
of high values is important for the transfer function consid-
ered over the data. A good example is when high perme-
ability becomes a critical aspect of a project, such as with
nuclear waste repositories.

Notice that if sufficient conditioning data are available
and the variable has a range of continuity larger than the
data spacing, then simple and ordinary kriging will give vir-
tually the same result in interpolation areas. The man differ-
ences will be seen in areas where the data is extrapolated.
This is where the mean (global in simple kriging, or local in
ordinary kriging) has an impact.

The determination of the search radii will depend on the
spatial continuity and spacing of the data. The goal is to find
enough samples within the search neighborhood to gener-
ate a good estimation. The search radii tend to be defined
according to the variogram ranges, however in some cases,
we may want to have smaller radii (if we have enough sam-
ples) or larger (if we do not have enough samples and we
need to make a reasonable implicit inference of the local
mean in ordinary kriging).

The minimum and maximum number of samples for es-
timation also depends on the availability of samples. Typi-
cally, we will avoid estimating with less than 3 samples. ide-
ally, we should have a larger number of samples surround-
ing the location, so we interpolate rather than extrapolate
the value. A minimum of 8 samples is a reasonable num-
ber in 3D. For the maximum number of samples to be used,
we must keep in mind that the number of samples define
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the size of the kriging system of equations. Therefore, if we
have a block model with several million blocks to be esti-
mated, it may take a large amount of time to perform at
every location a kriging with a large number of samples.
Recall that matrix inversion scales as n3 (in other words,
the computational complexity is O(n?3), or in the most opti-
mized algorithms, close to O(n?%*%)), so increasing the num-
ber of samples by a factor of 2 increases computing time by
a factor of 8 (or slightly over 5 if the most optimized matrix
inversion is implemented).

The minimum number of quadrants or octants informed
is used to ensure that extrapolation is avoided. Usually, in-
formation from at least 3 to 5 octants is expected to perform
interpolation.

Additionally, the maximum number of samples per drill-
hole is also constrained to ensure not all the information
comes from a single drillhole. Depending on the setting for
the minimum and maximum number of samples to be used,
this maximum per drillhole can be defined.

The definition of the domains from where the samples
are drawn for estimating a block that belongs to a particular
domain in the block model is often specified by a matrix,
where the code associated to the sample, coming from the
geological logging is linked to particular codes for the blocks
in the model. Table [I) shows an example where some sam-
ples are assigned to a single code in the block model. For
example, samples with code 10 are assigned only to blocks
with code 100. In other cases, samples are assigned to more
than one code: samples coded 20 and 21 are assigned to
both codes 200 and 210 in the block model. For block code
300, samples from units 30, 31 and 32 are combined.

Now, the type of boundaries between domains is also re-
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Block model code
100 | 110 | 200 | 210 | 300 | 400
10 | Yes | No No No | No No
11 | No | Yes | No No No No
20 | No No | Yes | Yes | No No
21 | No No | Yes | Yes | No No
30 | No | No No No | Yes | No
31 | No No No No | Yes | No
32 | No No No No | Yes | No
40 | No No No No No | Yes

Sample code

Table 1: Example of correspondence between the sample code and the block code for
estimation

quired (see Table [2). The type of boundary is indicated
as hard, soft or transitional, and if transitional, the maxi-
mum search radius is indicated. This means that data from
another domain can be used up to that distance from the
boundary. For example, data from the units 200 and 210 can
be used to estimate blocks from units 100 and 110, using a
radius of up to 60m of the boundary between the respec-
tive domains. Notice that the reverse may not be treated
in this manner: samples from domains 100 and 110 can be
used to infer blocks from domains 200 and 210 but with a
smaller radius, that is, they have less influence than when
“crossing the boundary” in the opposite direction. This is
often done to share samples between geologically similar
units, but avoiding spreading high values into lower valued
units. Soft boundaries basically indicate that no restriction
is imposed over the samples of that domain and they can
all be used to estimate a block in the current domain: this
is what happens between units 100 and 110, and also be-



tween units 200 and 210. Hard boundaries indicate that no
samples from the other domain can be used to infer a block
in the current domain.

To block code

100 110 200 210 | 300 | 400
o | 100 - S T(30m) | T(30m) | H H
8110 s = [TGom) [TGom) | H | H
§ 200 | T(60m) | T(60m) - S H H
S | 210 | T(60m) | T(60m) S H H
300 H H H H T H
“l400| H H H H H | -

Table 2: Example of definition of boundaries for estimation

The final consideration for setting up the estimation plan
is how to deal with high values (or outliers). When a high
valued sample is identified within a domain, the options are:

¢ Remove from the data, if it is an error.

e Separate into a different population, if it is associated
with other high valued samples in space.

e Maintain it into the population and “correct” its value,
by capping to a maximum value selected. This is done
through different methods, such as selecting a quantile
associated to a break in the cumulative distribution (or
the probability plot), or a gap in the histogram. Other
methods in mining define the capping value depend-
ing on the metal quantity contained in deciles and per-
centiles, or evaluationg the “metal at risk”.

e Control the influence during estimation using “high yield
parameters”, which essentially limit their spatial influ-
ence with a smaller radius and/or by capping.
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3 Comparing estimation plans

Estimation plans can be compared before actually building
the entire block model, by cross validation methods.

The basic idea of cross validation is to test the plan per-
formance over locations with known values, that is, over
sample locations.

3.1 Cross validation

The first approach to check the performance of an estima-
tion plan is called cross validation. This is also known as
leave-one-out validation.

A set of parameters for an estimation plan is defined,
and then the plan is applied to estimate each one of the
locations {u;,i=1,..., N} where a sample is available. Ob-
viously, the corresponding sample Z(u;) is removed when
its location u; is estimated (otherwise kriging would return
the exact sample value and the estimation would seem per-
fect!). The remaining N—1 samples are kept to apply the es-
timation plan, although only those within the search neigh-
borhood that comply with the plan are used to estimate that
location. This is repeated for all the sample locations, so
the end result of this approach is a set of N original sam-
ples {Z(w;),i=1,..., N} and N estimated values at the exact
same locations {Z/:‘”.gmg(ui), (=1,...,N}.

The approach can be repeated with different estimation
plans to assess the performance of each set of parameters
and decide which one gives the desired results.



3.2 Jack-knife

The second approach to analyze an estimation plan is jack-
knife. It entails splitting the data into two subsets, and using
one subset to estimate the locations of the other. Then a
comparison of the results similar to that of cross-validation
can be done.

Jack-knife is sometimes done when different drilling cam-
paigns exist. In this case, care should be taken to ensure
that both campaigns are comparable, that is, samples are
unbiased and have the same precision. This has to do with
sampling procedures and sample quality, which is a require-
ment for any good model.

3.3 Statistical analysis of validation
results

If the estimation plan performs well, the estimated values
will resemble the actual sample values. Now, this is for-
mally measured through a statistical analysis of the errors.
For each sample location, we compute the error and stan-
dardized error:

Err(u) =2 ..., (u)—Z(u) (1)
Err(u;)
StdErr(u;) = (2)
Okriging (W;)
where Z,j”.gmg(u,-) has been obtained by cross validation or

jack-knife, and Okriging(W;) is the corresponding kriging stan-
dard deviation.



The following statistics are evaluated:

e Mean of the errors (global bias): if the estimation plan
is unbiased, the mean of the errors should be equal
to 0. This reflects global unbiasedness. Furthermore,
the errors can me mapped in space and contoured to
identify issues of stationarity and proportional effect.

e Variance of the errors (precision): if the estimation plan
performs well, the errors should have a small variance,
as compared to the actual magnitude of the samples.
The smaller the variance of the error, the more precise
is the estimation.

e Histogram of the errors (normality of the errors): the
histogram of the errors can be built to check if the er-
rors are normally distributed, and to identify unusually
high or low errors.

e Variance of standardized errors (variogram fit quality):
the standardized errors are the errors divided by the
kriging standard deviation. Their variance should be
equal to one, if the variogram fit is appropriate. Unusu-
ally high or low standardized errors should be checked
to understand the reason or such a significant depar-
ture. These can be identified as those with basolute
value larger than 3 (which in a normal distribution have
a probability of less than 0.3%) or 4 (which have a prob-
ability of less than 0.006%).

e Relationship between the estimated and the true value
(conditional bias): a scatter plot can be created to an-
alyze the relationship between the estimated and true
values. This allows inspecting the smoothing effect of
the estimation, potential outliers, and the correlation
coefficient can be determined.
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3.4 Selecting an estimation plan

Cross validation or jack-knife can help understanding the
performance of different estimation plans, but we now need
to select one to build the final model.

The different criteria refer to different aspects of the esti-
mator: bias, precision, and conditional bias. The estimation
plans may perform differently in these aspects, and in many
cases, one plan may not outperform the other in all the as-
pects. The modeler must prioritize which performance met-
rics are more important.

Cross validation has some drawbacks. It is overly opti-
mistic, as most of the time, very close samples will be avail-
able to the location estimated. In particular, the neighboring
samples within the same drillhole will be at a distance equal
to the composite length. Therefore, most points estimated
will be supported by two very close samples. Therefore,
the estimation will not vary much by changing the kriging
plan. One possibility to make it more realistic, is to con-
strain the samples to a minimum distance, so samples that
are immediate neighbors of the sample locations estimated
are excluded. Another option is to exclude the full drillhole
from the estimation (leave-drillhole-out validation), in which
case, we will be overly pessimistic, as the closest samples
will be unrealisticly far from each estimation location.

Jack-knife, on the other hand, also has some drawbacks.
Since the dataset is split into two subsets, it provides insight
in a case that is different than the one at hand, since the
sample density is different. Therefore, it gives a pessimistic
idea of how kriging will perform. Issues of data quality are
also important when two different datasets are used iin jack-
knife.
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4 Validation of block model

The final estimated block model must be validated against

the samples. Any other knowledge about the variable can

be used to analyze the final model, such as expected trends

or zonations, continuity or connectivity of values, etc.
Typical validations include:

¢ Visual inspection of the model: plan views and cross
section with the block values and the samples displayed
over the same slices and with the same color scale, can
help detecting gross errors in the model. One should
expect to see values close to the sample values in the
corresponding blocks where the samples are located.
Any unusual artifact can be identified by visual inspec-
tion. This validation is very important and should not
be skipped: always look at the model!

e Statistical comparison: summary statistics of the sam-
ples and block values should be presented and com-
pared. The means should be similar, since kriging is
an unbiased method. The variance of blocks should be
smaller than the variance of the samples, due to the
smoothing effect. Notice that for the purpose of com-
parison, two issues will arise. Firstly, samples should be
representative of the domain, therefore declustering
weights may be required to obtain the correct statis-
tics. Secondly, it is normal for the estimation method
to extrapolate far beyond the samples, and depending
on the method and local trends, this may bias the block
statistics. Therefore, it is recommended to make a
comparison constraining the volume over which blocks
and samples are used, to ensure they are comparable.
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e Swath plots: these are plots of conditional means of
both the sample values and the block estimated val-
ues for slices along the main coordinates (although ro-
tated coordinates can also be used). They help to ver-
ify if the block model follows the trends of the samples.
We should expect to have more variability in the sam-
ple conditional means, but the general trend should be
followed by the block estimated values. It is always
a good idea to report for each slice, the number of
samples available and the number of blocks estimated.
Larger differences will likely be more frequent in slices
with scarce samples.

Unsatisfactory results should not be disregarded. If there
is any concern about the model, it should be revised and
validated again. It is usual practice, to compare the kriging
estimates with other simpler interpolation methods such as
inverse distance and nearest neighbor estimation. The lat-
ter provides declustered statistics and the exact same set
of blocks can be included in the comparison.

5 Example

We now present an example of kriging, using the data shown
previously. We focus on unit 20 where most of the data are
and start by performing a cross validation.
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5.1 Cross validation analysis

Two plans are defined to illustrate the analyses done with
the results of cross validation.
The cross validation results include for each sample:

e Coordinates X, Y and Z.

e True sample value, Z(u;).

e Estimated value at sample location, Z;(u,-). Notice that
this estimated value is computed excluding the sample
at location u,.

e Estimation variance at the sample location, 012<(u,-).

e Error, which corresponds to the difference between the
estimated value and the true value:

Err=2Z;(w)—Z(u) (3)

From these statistics, we can compute, for each sample
location, the standardized error as the error divided by the
square root of the estimation variance:

Err
StdErr =

4
ox(u;) @

Leave-one-out cross validation

We start by comparing two plans leaving only the sample
out during cross-validation (see Table [3). We will later test
what happens if we remove the entire drillhole.

The results for Plan 1 are summarized in Figures [1] and
2, while Plan 2 is summarized in Figures [3|and [4]
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Parameter Plan 1 Plan 2

Method OK OK
Min samples 2 24
Max samples 4 48

Max per octant | not used | not used
Search radii 50m 150m

Table 3: Parameters for leave-one-out cross validation

Results show the expected behavior of the estimate. The
comparison is summarized in Tables [4] and [5] for Plans 1
and 2, respectively. The estimates are unbiased (mean er-
rors of 0.0037 and 0.0050) and in both cases the variance
is reduced due to the smoothing effect of kriging: the stan-
dard deviation of the true grades is 0.6608, while that of the
estimated from Plan 1 is 0.5554, and for Plan 2 0.5212. The
minimum and maximum estimates are closer to the mean
than in the distribution of true grades. The standard errors
are centered close to 0 and the standard deviations of the
standard errors are close to 1, which indicates a reasonable
fit of the variogram model. Some standard errors are very
large in absolute value and could be checked to ensure they
are due to an anomalous high grade value (which is hard
to estimate even from close samples, as these are always
lower values).

The correlation coefficient between the true and estimate
is quite high and there is little difference between the two
kriging plans. It is almost 0.8, which means about 64% of
the variability can be explained by the data and the krigng
model does not capture the remaining variability, and there-
fore, cannot predict the value with higher precision. No-
tice that the total sill of the varogram was 0.4367 and the
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nugget effect was 0.05, representing 11% of the total vari-
ance. Therefore, the variability can be described as:
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Cross validation kriging
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Figure 1. Leave-one-out cross validation results (histograms) for Plan 1 described in

Table E}
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Figure 2: Leave-one-out cross validation results (scatter plots) for Plan 1 described in

Table E]

‘ True ‘ Estimate ‘ Estvar ‘ Error ‘ StdErr ‘

Number of Data | 1635 1633 1633 1633 1633
Mean 1.1964 1.2006 0.1422 | 0.0037 | 0.0057
Std. Dev. 0.6608 0.5554 0.0542 | 0.3987 | 1.0623
Coef. of Var. 0.5523 0.4627 0.3813 | undef undef
Maximum 7.24 6.05 0.62 2.78 5.41
Upper Quartile 1.45 1.43 0.17 0.19 0.52
Median 1.08 1.11 0.12 0.02 0.04
Lower Quartile 0.78 0.84 0.12 -0.17 -0.45
Minimum 0.16 0.28 0.08 -3.88 -8.62
Correl. Coef. True vs Estimate 0.799
Correl. Coef. Estimate vs StdErr 0.073

Table 4: Basic statistics for leave-one-out cross-validation of Plan 1
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Cross validation kriging
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Figure 3: Leave-one-out cross validation results (histograms) for Plan 2 described in
Table 3]
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True vs Estimate - Cross Validation
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Figure 4: Leave-one-out cross validation results (scatter plots) for Plan 2 described in

Table E]

‘ True ‘ Estimate ‘ EstVar ‘ Error ‘ StdErr ‘

Number of Data | 1635 1635 1635 1635 1635
Mean 1.1964 1.2015 0.1344 | 0.0050 | 0.0096
Std. Dev. 0.6608 0.5212 0.0432 | 0.3982 | 1.0827
Coef. of Var. 0.5523 0.4338 0.3212 | undef | undef
Maximum 7.24 5.15 0.38 2.47 5.36
Upper Quartile 1.45 1.41 0.15 0.20 0.55
Median 1.08 1.11 0.12 0.03 0.07
Lower Quartile 0.78 0.87 0.11 -0.16 -0.45
Minimum 0.16 0.33 0.07 -4.11 -9.49
Correl. Coef. True vs Estimate 0.798
Correl. Coef. Estimate vs StdErr -0.005

Table 5: Basic statistics for leave-one-out cross-validation of Plan 2
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e Variability captured by kriging: 64%
e Variability not captured by kriging: 36%
e Variability due to nugget effect: 11%

In summary from the 89% of the variability, kriging cap-
tures 64% and 25% is not recovered.

Finally, the correlation coefficient between the estimate
and the standard error is close to 0, which indicates that the
standard error is independent of the estimate.

Leave-drillhole-out cross validation

Now, we perform cross-validation leaving out the entire drill-
hole corresponding to the sample location estimated. The
results for Plan 1 are summarized in Figures [5|and [6], while
Plan 2 is summarized in Figures [7]and (8]

Again, results are as expected. Tables [6] and [7] show
the leave-drillhole-out validations for Plans 1 and 2, respec-
tively.

As before, the estimates are unbiased (mean errors of
0.0053 and 0.0091) and in both cases the variance is re-
duced due to the smoothing effect of kriging: the standard
deviation of the true grades is 0.6608, while that of the es-
timated from Plan 1 is 0.5673, and for Plan 2 0.4307. Here,
we can see a significant smoothing effect when using
24 and 48 samples versus 2 and 4 samples. This occurs be-
cause the estimation is no longer conditioned by very close
data as in the leave-one-out validation cases.
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Cross validation kriging
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Figure 5: Leave-drillhole-out cross validation results (histograms) for Plan 1 described

in Table@
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Figure 6: Leave-drillhole-out cross validation results (scatter plots) for Plan 1 described
in Table [3]

’ ‘ True ‘ Estimate ‘ Estvar ‘ Error ‘ StdErr ‘

Number of Data | 1635 1612 1612 1612 1611
Mean 1.1964 1.2078 0.3273 | 0.0053 | 0.0074
Std. Dev. 0.6608 0.5673 0.1437 | 0.5688 | 1.0294
Coef. of Var. 0.5523 0.4697 0.4390 | undef | undef
Maximum 7.24 5.93 0.71 3.40 6.57
Upper Quartile 1.45 1.42 0.45 0.23 0.48
Median 1.08 1.11 0.35 0.02 0.03
Lower Quartile 0.78 0.86 0.19 -0.21 -0.39
Minimum 0.16 0.27 0.08 -5.18 -8.62
Correl. Coef. True vs Estimate 0.582
Correl. Coef. Estimate vs StdErr 0.310

Table 6: Basic statistics for leave-drillhole-out cross-validation of Plan 1
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Figure 7: Leave-drillhole-out cross validation results (histograms) for Plan 2 described

in Table@
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Figure 8: Leave-drillhole-out cross validation results (scatter plots) for Plan 2 described

in Tabl

e

’ ‘ True ‘ Estimate ‘ EstVar ‘ Error ‘ StdErr ‘

Number of Data | 1635 1635 1635 1635 1635
Mean 1.1964 1.2055 0.2614 | 0.0091 | 0.0136
Std. Dev. 0.6608 0.4307 0.0889 | 0.5352 | 1.0786
Coef. of Var. 0.5523 0.3573 0.3402 | undef undef
Maximum 7.24 5.31 0.42 2.24 5.30
Upper Quartile 1.45 1.39 0.34 0.28 0.56
Median 1.08 1.14 0.30 0.05 0.11
Lower Quartile 0.78 0.94 0.18 -0.20 -0.40
Minimum 0.16 0.41 0.08 -4.84 -9.49
Correl. Coef. True vs Estimate 0.590
Correl. Coef. Estimate vs StdErr 0.096

Table 7: Basic statistics for leave-drillhole-out cross-validation of Plan 2
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The correlation coefficients decrease between the true
and estimate values, reaching 0.582 and 0.590. Here, the
slight improvement in correlation in Plan 2, indicates that
using more data improves the precision of the estimation (at
a cost of more smoothing). This is also reflected in the lower
standard deviation of the errors. The correlation coefficient
between the estimate and the standard error is no longer
close to 0, when using few samples for estimation.

5.2 Kriging

We now move on to estimate a block model. We show re-
sults not yet constrained by the domain boundaries. For
illustration purposes, we start with a point estimation and
then present results of block kriging.

Point estimation

Point estimation implies that the estimated value has the
same support than the sample data. Typically the sample
data comes from drillholes, thus, the support will be a thin
and long cylinder in shape.

We perform a dense estimation over a 1m x 1m x 12m
grid. We still need to imagine that at the center of each one
of those “blocks” of 1m? in area and 12m in height, there
is a volume with the sample support where the estimation
has been done, hence the vertical resolution of the model is
12m as this is the minimum vertical support of the samples.

Several cases are computed to illustrate the effect of pa-
rameters in the estimation plan. These are presented in
Table [8, Notice that we did not change the angles of the
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search ellipsoid in any case. The first three cases use the
same search radii but require an increasing number of sam-
ples for estimation, starting from a minimum and maximum
of 2/4 samples to 8/16 and then to a demanding plan that
requires 24/48 samples (cases 1, 2, and 3). Then we fix the
samples required at 8/16 but change the search radii from
25m to 50m and to 150m. In all cases all other parame-
ters, including the variogram model and the use of other
constraints for selecting the sample data are kept constant.

| Parameter [ Case 1 [ Case 2 | Case 3 [ Case 4 | Case 5 | Case 6 |
Estimation method OK OK
Discretization I1x1x1 I1x1x1
Min samples 2 8 24 8 8 8
Max samples 4 16 48 16 16 16
Max per octant N/A N/A
Search radii 50m | 50m [ 50m 25m | 50m | 150m

Table 8: Parameters for 6 kriging plans

Representative plan views of all the cases are shown in
Figure [9]

It can be seen that as the kriging plan is more demand-
ing, fewer points get estimated, since many cannot find the
minimum required samples for estimation within the neigh-
borhood. It is also apparent that, as the number of samples
increases, the model tends to look smoother and does not
show the artifacts seen when few samples are used. No-
tice, in particular the circle at the bottom right in cases 1
and 2 and the discontinuities due to the abrupt change in
local mean, as one sample falls in or out the search neigh-
borhood.
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Point Kriging Bench 4
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Figure 9: Plan view of bench 4 of point kriging result for the 6 cases described in Table
Top: case 1 (left), case 2 (right). Center: case 3 and case 4. Bottom: case 5 and

case 6.
28



For cases 4 to 6, it is apparent that, as the search ra-
dius increases for a fixed minimum and maximum num-
ber of samples, more locations are estimated, as expected,
without significantly changing the estimated value. Slight
changes occur in locations where the estimation with a con-
strained search radius found a number below the maximum
number of samples, 16 in this case. As the radius is in-
creased, more samples may be added to the estimation,
but their weight will be relatively low.

Block estimation

Block kriging is run considering blocks of size 10m x 10m x
12m. The discretization is 4 x 4 x 1. The estimation param-
eters are summarized in Table [9.

| Parameter || Block kriging |
Estimation method OK
Discretization 4x4x1
Min samples 8
Max samples 16
Max per octant N/A
Search radii 150m

Table 9: Parameters for block kriging

Some of the plan views of the estimated model are pre-
sented in Figure [10]

5.3 Validation of the block model
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Block Kriging Bench 4 Block Kriging Bench 6
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Figure 10: Block kriging plan views.

Visual comparison

A location map of the samples within the slice correspond-
ing to bench 6 is created and compared to the block model
estimated in that bench. These images are shown in Figure
[L1] For clarity, they are superimposed in Figure [12]

30



Locations of Samples Bench 6

25650.

9 T
oo e
25550. ° o
oo o o
o -.: ®
° ° )
25450. P06 ®
° ° o ° ° o
ce o © o &
° ® o o
25350. o ° ) © o ° °
T @o © oo o ©%¢
® o
o _o_ o
go_© $0°%e o o
]
25250. ) So0de
° o o
e0 © © 4 o o
[} o o °°
*L L °
o : @ o
25150._] © %00 (oo
e o o e
oo ° °
2°° e
25050. . . .
24450.  24550.  24650.  24750.  24850.

2.000

1.000

25650.00]

North

Block Kriging Bench 6

24850.00

2.000

1.000

Figure 11: Location map of samples and block model obtained with kriging for bench
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Figure 12: Location map of samples and block model obtained with kriging for bench
6, superimposed.
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Statistical comparison

For the statistical comparison, we compute the histogram of
the estimated block grades (see Figure [13). A slight differ-
ence in means can be seen of about 0.04%Cu. Statistics are
provided in Table [10]

Copper grades in Category 20 .100__Estimated grades RT=20
- - Number of Data 1635 - Number of Data 28279

07007 mean 1.196 1 h number trimmed 521

= 1 std. dev. .661 1 ml

3 4 mean 1.157
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Figure 13: Histogram of samples and of estimated block grades.

Swath plots

We complete the analysis by presenting the swath plots.
These are computed using a nearest neighbor estimate (to
provide declustered statistics). The conditional means in
slices for the three coordinate directions (the swath plots)
are presented in Figures [15]and[16]

The main differences between the kriged model and the
nearest neighbor estimate occurs in the range of East coor-
dinates from 24700 to 24850, where few samples are avail-
able. The other swath plots show a very consistent result.
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Samples | Kriging Estimate

Number of Data 1635 28279
Not estimated 521
Mean 1.196 1.157

Std. Dev. 0.661 0.469
Coef. of Var. 0.552 0.406
Maximum 7.24 5.71
Upper Quartile 1.45 1.35
Median 1.08 1.09
Lower Quartile 0.78 0.88
Minimum 0.16 0.27

Table 10: Statistical comparison of samples vs estimated blocks.
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Figure 14: Swath plot in X direction.
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IndeXx

conditional bias,
cross validation,

domains,
estimation plan,

global bias,
hard boundary, [6]

jack-knife, [9]

leave-one-out validation,
local neighborhood,

maximum number of sam-
ples per drillhole,

minimum and maximum num-
ber of samples, [4]

minimum number of quad-
rants or octants, [5

outliers,

precision,

search neighborhood,
search radii, [4]
soft boundary, [6]

transitional boundary, [6]
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