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Summary

The multiGaussian approach discussed previously provides
a parametric approach to infer the conditional distribution at
unsampled locations. An alternative to that model is given
by the indicator framework.

In the indicator framework, the original variable is con-
verted into a vector of indicators and each new variable
(each indicator) is characterized and modeled separately.

For continuous variables, the indicators represent the prob-
ability of not exceeding a threshold. Therefore, they dis-
cretize the cdf. Once each indicator has been estimated
by kriging, after inferring and modeling its 3D variogram,
the kriged indicators can be interpreted as an estimate of
the probability of not exceeding the corresponding thresh-
old, and an “estimated cdf” can be constructed. This local
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cdf provides information about the local uncertainty of the
variable.

The approach can be adapted to categorical variables as
well. A vector of indicator variables can replace the categor-
ical value at every location. Each indicator represents the
probability of a specific category prevailing at that location.
Assuming the categories are exhaustive and mutually exclu-
sive, then the indicator represents the probability of finding
a specific category at each location. Again, we can charac-
terize these categorical indicators by computing and mod-
eling their 3D variogram. Then kriging can be performed to
estimate the probability of each category prevailing at un-
sampled locations. These categories must sum to one (this
is imposed as a post-processing correction). Then a single
category can be selected from the local cumulative mass
function.

Although more flexible than the multiGaussian approach,
the indicator framework is much more laborious, and often
brings practical challenges. We discuss some of these de-
tails in this chapter.

1 Introduction

The non-parametric formalism of indicators was introduced
in 1983 by A. G. Journel [6, 7, 8]. Many authors have pre-
sented this approach in great detail (e.g. see [2, 5]). This
method avoids the need of a multiGaussian assumption at
the bivariate level and therefore avoids the so called “prob-
lem of maximum entropy” implicit in that assumption. This
means that when using a multiGaussian assumption, the
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spatial correlation of extreme high and low values is zero.
The indicator approach permits the random variable to

have different spatial continuity for high and low values; the
Gaussian formalism assumes spatial continuity is symmetric
with respect to the median.

Modeling of the conditional distribution of a continuous
variable can be done by discretizing the distribution with a
threshold and estimating the probability of exceeding that
threshold. This idea is at the core of indicator methods. Ba-
sically, the original variable is transformed into a probability:
the probability of not exceeding a threshold. Then this prob-
ability is estimated at other unsampled locations. To recover
the full local conditional distribution, the process is repeated
for a collection of thresholds, and the entire distribution is
represented by a vector of indicators.

In the case of categorical variables, a similar notion is
used. As in the continuous case, the categorical variable
is transformed into a vector of indicators, each one repre-
senting the prevalence of a particular category. Since we
assume categories are exhaustive and mutually exclusive,
that is, one and only one category exists at every location,
then, these indicators represent probabilities of finding each
category at that location. The local conditional probability
mass function of the categorical variable, can be character-
ized by using these indicators.

The indicator coding is different for continuous and cat-
egorical variables. The vector of indicators at one location
may have several values equal to 1 in the case of a con-
tinuous variable (or none, if the sample value is above the
highest threshold). Meanwhile, in the categorical case, only
one indicator will take a value of one (since only one cate-
gory prevails at any one location).
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After coding (in both the continuous and categorical case),
the process is the usual: a variogram is computed and mod-
eled for each indicator and kriging is performed to estimate
the indicator value (which corresponds to a probability of
not exceeding a threshold or probability of prevalence of a
particular category). Notice that the kriging variances are
not used in the subsequent steps. Results need to be post-
processed to obtain the final conditional distribution from
where a predicted value can be inferred.

Several important advantages are derived from this basic
idea of directly estimating the probabilities [1, 9, 11]:

1. The correlation at different thresholds can be used.
2. Secondary information can be coded in the same way,

which gives a great flexibility to this approach.
3. Change of support can be performed, that is, the condi-

tional distribution inferred at point support can be cor-
rected to represent a block support distribution.

4. Recoverable reserves of blocks can be calculated, in
resource estimation for mineral deposits.

Although very flexible, the implementation of some of
these advantages of the method are difficult:

� The coding of soft data, that is, data that are not pre-
cise, but are correlated with the attribute of interest
(for example, a geophysical variable, which tells us
something about a mineralization) as if they were hard
data is useful, but secondary information cannot be
used as primary, even though the coding is the same.
A Linear Model of Coregionalization or Markov Model
has to be used to integrate these diverse data types.
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� The use of data at different support is also a difficult
task, since the correlation between the variables changes
at different supports [10].

As usual in geostatistics, the random function formalism
is required for statistical inference. The observed values
for a given variable and the unknown exhaustive values are
assumed to be a realization of a random function that repre-
sents the phenomenon under study. Random functions are
noted with capital letters, e.g. Z(), while their realizations
are noted with lower case, e.g. z().

2 Indicator Coding

2.1 Continuous case

Selecting the thresholds

The basic idea is to code the data as probability values [3].
This coding takes into account the rank ordering of the data.
Different types of data can be coded with the same format,
which gives a great flexibility to integrate data from differ-
ent sources, at different supports and of different precision.

If the full conditional distribution needs to be recovered
at every unsampled location, we need to use a set of thresh-
olds to numerically discretize the cumulative distribution
function of the variable.

If a single threshold is used and indicator kriging is used
to estimate this indicator at unsampled locations, the result-
ing model will only tell us the probability of not exceeding
that particular threshold at unsampled locations. This may
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be useful if we want to assess if a contamination threshold
or a cutoff grade has been exceeded.

In general, we will want to know the full conditional dis-
tribution at unsampled locations. For this, the first step is
to select a number of thresholds zk, k = 1, ..., K, to perform
what is known as multiple indicator kriging (or MIK).

The choice of the number of thresholds is critical for good
performance of this approach: too few thresholds imply a
poor discretization of the ccdfs; a large number would re-
duce this problem, but larger computation and inference
efforts would be needed and important order relations de-
viations are expected [2, 4]. Goovaerts recommends be-
tween 5 and 15 thresholds [5], Deutsch suggests a number
between 7 and 11 [3]. A good practice is to match thresh-
olds with critical values of the problem under study, and dis-
tribute them uniformly through the distribution, i.e. thresh-
olds can be chosen at regular quantiles.

How many threshold should we use? It really de-
pends on the amount of sample data available. Usually, the
number of thresholds will be between 5 (for a very coarse
representation of a cdf) to 20. In most cases, K will be
close to 10. A good strategy is to define the thresholds us-
ing evenly distributed quantiles. For example, the deciles
of the distribution can be used. If the variable has a long
tail of high values, as is the case with many commodities
in mineral resources, then the tail can be characterized by
adding a few more thresholds, for example at the 95, 98 and
99 percentiles, to get a good idea of the probability of not
exceeding these high values (these may actually be quite
relevant to the project!).

Again, care should be taken to ensure we determine the
thresholds as quantiles of the representative distribution, so
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declustering is often the first step in the analysis.

Coding the data

Once the thresholds have been selected, the data are coded
as:

(α; zk) = Prob{z(α) ≤ zk} ∀k = 1, ..., K

Notice the change in notation. We replaced the subscript
 for the location  by α to avoid confusion with the indicator
variable  and its realization .

At every data location, there is now a vector of K indica-
tor values. If there were N data at the beginning, then there
are N · K indicator values after coding the data.

Hard Data

Samples with negligible sample errors are called hard data.
The coding for hard data is the most intuitive. We define the
indicator at location α as:

(α; zk) =
§

1, if z(α) ≤ zk
0, otherwise k = 1, ..., K (1)

where z(α) is the value at the data location α. This can
be interpreted as a probability:

(α; zk) = Prob{z(α) ≤ zk} = Fα(zk)
That means that we assign a value of 1 for a given thresh-

old zk at the data location α if the data value is lesser than
or equal to the threshold, and we assign 0, otherwise. This is
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the probability of the data value being lesser than or equal
to zk.

Consider the samples of a continuous variable displayed
in Figure 1 (left). The coding for 4 thresholds (0.5, 1.0,
1.5, 2.0) is displayed in the same figure (right).

Figure 1: Example showing a continuous variable and some sample values (left) and
the indicator coding for four thresholds (right).

2.2 Categorical case

In the case of categorical data, the variable can take one of
K categories exhaustive and mutually exclusive.

There is of course, no need to determine thresholds, since
we no longer have a continuous probability distribution func-
tion. We now have a probability mass function for K classes.
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Coding the data

As with continuous variable, in the categorical case, the
data are coded as probabilities:

(α; sk) = Prob{s(α) = sk} ∀k = 1, ..., K

Here, the categorical random variable is S and can take
one of the K categories: s1, ..., sK.

At every data location, there is now a vector of K cate-
gorical indicator values.

Hard Data

The coding for hard data is:

(α; sk) =
§

1, if s(α) = sk
0, otherwise k = 1, ..., K (2)

where s(α) is the value at the data location α.
Notice that unlike in the case of continuous variables,

here the vector of categorical indicators only has one value
1, and all the other values are 0. In the case of a continuous
variable, the indicators are nested (due to the order relation
between thresholds), thus it is possible to have many 1s in
the vector of continuous indicators.

3 Indicator variograms

Indicator variograms are no different than the conventional
variograms, but given the nature of the indicator variables,
they have some particular features that we will now review.
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3.1 Properties of an indicator variable

Indicators have some properties that can be useful to un-
derstand the variograms later on.

Expected value of an indicator

The expected value of an indicator variable is:

E{(; zk)} = F(zk) = pk (3)

This means that the average value of an indicator is equal
to the cumulative probability of the threshold used, which
corresponds to the declustered cumulative probability for
that threshold.

For a categorical data:

E{(; sk)} =m(sk) = pk (4)

where m(sk) is the mass of category sk.

Variance of an indicator

We can compute the variance of an indicator with the usual
expression:

Vr{(; zk)} = E{(; zk)2} − (E{(; zk)})2 (5)

But we already know that E{(; zk)} = pk. We should
also notice that an indicator to any power has the same
value as the original indicator. Therefore: E{(; zk)2} =
E{(; zk)} = pk (the indicator only can take values 0 or 1).
Therefore, we can write:
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Vr{(; zk)} = pk − p2k = pk(1 − pk) (6)

This is valid for both continuous and categorical data.

3.2 Computing the variogram

Computing the variogram is done in the usual manner. Sam-
ples are searched separated by a given lag distance in a
particular direction and tolerances are used to account for
scattered data.

The computation of the variogram is done replacing the
original variable by its indicator transform. In the continu-
ous case:

γ(h; zk) =
1

2N(h)

N(h)
∑

α=1

((α; zk) − (α + h; zk))
2 (7)

In the categorical case:

γ(h; sk) =
1

2N(h)

N(h)
∑

α=1

((α; sk) − (α + h; sk))
2 (8)

Samples used to compute the variogram can only take
values 0 or 1, therefore, the sill of the variogram is related
to the variance of the indicator for that particular threshold
or category. And since the variance of an indicator is linked
to the proportion for the threshold or the category, the the-
oretical variance (the one that represents the sill of the var-
iogram in the stationary case) is defined by: σ2


= pk(1− pk).

Interpretation and modeling follows the same rules as
with conventional variograms. The only consideration is
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that, for continuous variables, variograms should change
smoothly from one threshold to the next, which in turn will
help minimizing order relation problems in the results.

4 Multiple indicator kriging (MIK):
continuous variables

The distribution of uncertainty of the regionalized variable
can be inferred by kriging the indicator function at every
threshold. Multiple indicator kriging is nothing more than
Simple or Ordinary Kriging applied to each one of the in-
dicator transforms defined by the thresholds. Each one of
those sets of data can be used to estimate the value of the
indicator at an unsampled location, i.e. the probability of
having z() ≤ zk. Notice that the indicator kriging variances
are not relevant, as they represent errors over an inferred
probability, and are not used in any further step.

This process leads to a discretization of the inferred ccdf,
as depicted in Figure 2. Each point in the inferred dis-
cretized conditional distribution is the result of kriging at
that threshold.

A short explanation of different techniques applied to in-
dicators is presented hereafter.

4.1 Simple Indicator Kriging

To perform Simple Indicator Kriging, the stationary mean of
each indicator random function is required. This mean is
given directly by the cdf of the random function Z():
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Figure 2: The discretized ccdf inferred by indicator kriging.

E{(; zk)} = 1 · Prob{Z() ≤ zk} + 0 · Prob{Z() > zk}
= Prob{Z() ≤ zk} = F(zk)

The stationary Simple Kriging estimate of the indicator at
that threshold is written:

[ (; zk)]∗SK = [Prob{Z() ≤ zk|(n)}]∗SK

=
∑n

α=1
λSK
α
(; zk) · (α; zk)

+
�

1 −
∑n

α=1
λSK
α
(; zk)
�

F(zk)

(9)

where the weights λSK
α
(; zk) are the unique solution of the

Simple Kriging system:
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n
∑

β=1

λSK
β
(; zk) · C(β − α; zk) = C( − α; zk) (10)

∀α = 1, ..., n

Notice that an indicator covariance function C(β−α; zk)
or, assuming stationarity, C(h; zk), has to be inferred for
each threshold in equation (10).

4.2 Ordinary Indicator Kriging

Ordinary Kriging differs from Simple Kriging in that the mean
is unknown and therefore, the unbiasedness condition of the
sum of the weights equal to one, is used.

The Ordinary Indicator Kriging estimate is written:

[ (; zk)]∗OK = [Prob{Z() ≤ zk|(n)}]∗OK

=
∑n

α=1
λOK
α
(; zk) · (α; zk)

(11)

where the weights λOK
α
(; zk) are the unique solution of the

Ordinary Kriging system (12):

n
∑

β=1

λOK
β
(; zk) · C(β − α; zk) + μOK(; zk) = C( − α; zk)

∀α = 1, ..., n

n
∑

β=1

λOK
β
= 1 (12)
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Again, indicator covariances have to be inferred for each
threshold.

4.3 Median Indicator Kriging

In Simple and Ordinary Indicator Kriging, K variogram or
covariance functions must be modeled. In the continuous
case, the inference of the variograms at extreme low or high
thresholds is, in general, difficult since 0’s and 1’s are not
in the same proportions, generating a noisier experimental
variogram. For thresholds close to the median where the
number of 0’s and 1’s is roughly the same, the inference of
the variogram is easier.

Recall the variogram formula:

γ(h; zk) =
1

2N(h)

N(h)
∑

α=1

((α; zk) − (α + h; zk))
2

The sum of squared differences increases only when one
of the terms of the summation is 1 and the other is 0. If both
are 0, then (0 − 0)2 does not contribute to the sum, and if
both are 1, the (1−1)2 neither contributes. In summary, the
indicator variogram reflects the transitions between thresh-
old classes (Figure 3).

Median Indicator Kriging can be applied if the K indi-
cator random functions (; zk) are intrinsically correlated,
i.e. all indicator variograms (and cross variograms) are pro-
portional to a common variogram model, or equivalently,
all correlograms are equal. This random function model is
known as the mosaic model [7]:
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Figure 3: H-scatterplot of Z and the corresponding threshold and indicator coding. The
indicator variogram captures the colored areas, where transitions occur across the
threshold.

ρz(h) = ρ(h; zk) = ρ(h; zk, zk′ ),∀zk, zk′ (13)

The single correlogram required can be estimated using
the sample z correlogram or the sample indicator correlo-
gram at the median cutoff zk = M, where F(M) = 0.5. The
advantage of using the experimental indicator correlogram
is that there are no outliers, because of the transformation
and therefore, the inference of the variogram (correlogram)
function is easier.

If all indicators are defined for all data location, then at
every location to be estimated (or simulated) only one krig-
ing system must be solved for all thresholds. The weights
will not change for a different cutoff since the data configu-
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ration and variogram will remain the same.

4.4 Correcting for Order Relations
Deviations

The estimated probabilities [ (; zk)]∗, k = 1, ..., K gener-
ated through indicator kriging must satisfy the conditions of
a cumulative distribution: they have to be non-decreasing
between 0 and 1 [3, 2, 5, 7].

The kriged indicator value can lie outside the interval
[0,1] because the kriged estimate is a non-convex linear
combination of the conditioning data and therefore these
weights can be negative. Lack of data in some classes
and differences in the variogram models from one threshold
to the next are important factors to have a non-increasing
function [2].

The a posteriori forward and downward correction of the
ccdfs works well in general, as documented by Deutsch and
Journel [2] (Figure 4). Although more difficult in its imple-
mentation, constraining the kriging system, so that it sat-
isfies the order relations by construction is also a solution
[5].

4.5 Interpolation and Extrapolation of the
Conditional Cumulative Distribution
Functions

Since the number of data is limited, the distribution of local
uncertainty is discretized using only a few thresholds. The
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Figure 4: Forward and downward correction for order relation deviations. The model
used is the one showed as a thick line.

continuous ccdf at every location  is then represented by
a set of points [ (; zk)]∗ with k = 1, ..., K, that lie in [0,1].

It is therefore necessary to interpolate the values be-
tween thresholds, and extrapolate the values beyond the
smallest and largest values, z1 and zK. This decision has a
large impact in the final statistics of the model being esti-
mated or simulated, so it has to be analyzed carefully. The
interpolation between thresholds is often the less important.
It is commonly sufficient to interpolate linearly between the
indicator values at thresholds zk−1 and zk.

When extrapolating the tails, a minimum and maximum
possible values should be considered and the extrapolation
should not be done linearly, since this would imply a uni-
form distribution between the minimum value and z1,and
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between zK and the maximum value, which is often not re-
alistic. Power and hyperbolic models are used to extrapolate
the ccdfs beyond the lower and higher indicator values. An-
other possibility is to consider the global cdf and scale it to
extrapolate the tails of the ccdfs.

The different methods to interpolate and extrapolate are
listed below:

� Linear model: Assuming a uniform distribution be-
tween the cdf for two thresholds, or between a lower
limit and the first threshold or the higher threshold and
an upper limit (maximum value), the cdf value is given
by:

[F(z)] ner = F∗(zk−1) +
�

z − zk−1
zk − zk−1

�

· [F∗(zk) − F∗(zk−1)]

∀z ∈ (zk−1, zk]

� Power model: Depending on the value of the param-
eter , the power model can take a wide range of
shapes (Figure 5). The cdf is calculated as:

[F(z)]poer = F∗(zk−1) +
�

z − zk−1
zk − zk−1

�

· [F∗(zk) − F∗(zk−1)]

∀z ∈ (zk−1, zk]

It can be used to extrapolate the lower and upper tails
of the cdf. This is done by replacing zk−1 and zk by zmn
and z1, and using a power  > 1 for the lower tail, or
replacing zk−1 and zk by zK and zm and using a power
 < 1 for the upper tail.
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Figure 5: Power model for cdf interpolation and extrapolation, given different values
of the parameter .

� Hyperbolic model: This cdf model is useful to extrap-
olate the upper tail. As with the power model, the pa-
rameter  permits to control the shape of the function
(Figure 6). The cdf is calculated as:

[F(z)]hyperboc = 1 −
z
k
· [1 − F∗(zk)]

z
∀z > zk

� Rescaling the global cdf: This can be used to extrap-
olate the tails of the ccdf’s. The ccdf’s tails will have
the same shape than those of the global distribution.
However, a reliable global distribution is needed.
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Figure 6: Hyperbolic model for cdf extrapolation, given different values of the param-
eter .

4.6 Post-processing the conditional
distribution

The conditional cumulative distribution function obtained by
multiple indicator kriging (Figure 7) provides all the pos-
sible information at every unsampled location. From it, we
can compute an estimate, determine the local variance, com-
pute confidence intervals, etc.

All of these computations are done by numerical integra-
tion. They can be computed by calculating the quantiles of
the distribution for a set of regularly distributed uniform val-
ues, representing the cumulated probability (Figure 8). No-
tice that where the cdf is steeper, this leads to closer quan-
tiles. The same can be achieved by performing Monte Carlo
simulation with a large enough number of points (Figure 9):
a uniform random number in (0,1) is generated and the cor-
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Figure 7: The inferred local distribution from multiple indicator kriging.

responding quaqntile is read. This is repeated many times
until statistics converge to the precision required.

Figure 8: Numerical integration by uniformly sampling the distribution.
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Figure 9: Numerical integration by Monte Carlo simulation.

5 Categorical variables: indicator
kriging

In the case of categorical variables, the kriging estimates
for each indicator at a particular unsampled location let us
build the conditional probability mass function. “Predicting”
the value at that location can be done, but no single solu-
tion to the problem exist and the best approach will depend
on requirements such as if the proportions in the predicted
values are to be honored.

It is easy to see that if the most frequent class is selected
in each node, then categories with small probabilities will
tend to disappear and will end up underrepresented in the
final model.
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