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Summary

The multiGaussian and the indicator approaches are used to
determine local point uncertainty over one of the domains
of the deposit used previously to illustrate the concepts. We
show the implementation steps and discuss the differences
in the results. We discuss the importance of tail extrapola-
tion in the indicator framework.

Particular attention is given to the difference in uncer-
tainty in the models by looking at the conditional variances,
and their relationships with the estimates.

1 Example

1.1 MultiGaussian kriging
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Steps

To implement multiGaussian kriging, we need:

� Representative distribution: the raw data distribu-
tion needs to be declustered.

� Normal scores transformation: the original raw data
must be converted into a standard Gaussian distribu-
tion through a quantile transformation. The quantiles
are assessed over the representative (declustered) dis-
tribution.

� Variogram of normal scores: since the estimation is
done over the normally transformed data, the spatial
continuity is required for the transformed data. An ex-
perimental variogram of the normal scores is inferred
and modeled. The main features of the spatial continu-
ity should be the same as those of the original variable
(before transformation). Therefore, the same anisotropy
directions can be used. However, the variogram of nor-
mal scores will be smoother and better behaved than
the one of the raw variable, since the effect of out-
liers will be considerably reduced, giving more reliable
experimental variogram values. The anisotropy ratios
tend to be reduced, that is, the normal scores vari-
ogram looks more isotropic than that of the original
variable.

� Point kriging of the normal scores: in theory, the
simple kriging estimate and variance of normal scores
correspond to the conditional expectation and condi-
tional variance at the unsampled location, under the
multiGaussian assumption. Only point support estima-
tion can be used, since the transformation from the
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original data to the normally transformed values is a
non-linear function, thus an average in normally trans-
formed units will not match the corresponding average
in original units, after back-transformation.

� Back-transformation: the conditional distribution of
the normally transformed values is a Gaussian distribu-
tion centered at the simple kriging estimate and with
a spread corresponding to the simple kriging variance.
A quantile back-transformation can be done to recover
the conditional distribution in original units.

� Post-processing: the conditional distributions in orig-
inal units can be post-processed to obtain an estimate
(in original units), its conditional variance and any other
statistics, since we have the full local histogram.

Normal score transformation of declustered
histogram

The declustered histogram of copper grades is used to build
the transformation table where the quantiles are matched
to those of a standard Gaussian distribution.

The samples are then transformed and a normal score
is assigned to each sample. Notice that these samples are
still clustered in space, so if we were to build the histogram
of normal scores, it would be over representing some areas
with more samples (likely higher grade areas that translate
into higher normal scores). Declustering weights should be
used to build the representative histogram of the normal
scores, which by design is a standard normal histogram.

Figure 1 shows the declustered grade histogram and the
corresponding declustered normal scores histogram. It can
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be seen that the former follows a perfect normal distribu-
tion with mean 0 and variance 1, when accounting for the
declustering weights.

Figure 1: Declustered grade histogram and declustered normal scores histogram.

Variogram of normal scores

The parameters used previously to compute the experimen-
tal variogram of the grades are used now for the normal
scores. The result in the main directions of anisotropy is
quite smooth and easier to model than in the case of the
original variable.

Figure 2 shows the model for the variogram of normal
scores and the fit over the experimental curves in the prin-
cipal directions. Table 1 shows the parameters for the var-
iogram model of the normal scores.
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Figure 2: Experimental variogram of normal scores and model in three principal direc-
tions.

Type Sill Angle 1 Angle 2 Angle 3 Range Y” Range X” Range Z”

Nugget 0.15
Exponential 0.50 30 0 0 70 90 180
Exponential 0.35 30 0 0 200 1200 240

Table 1: Parameters of the variogram model of normal scores

Simple kriging of normal scores

Simple kriging is applied over a point-support grid, because
change of support cannot be done over the transformed
variable. The transformation is non-linear (Figure 3), there-
fore, an average on Gaussian transformed values will not
match the corresponding average of their back-transformed
grades.

In this case, multiGaussian kriging is executed using a
minimum of 8 and maximum of 16 samples within a neigh-
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borhood with a radius of 100 m. Notice that because of the
need to make a global transformation of the histogram, a
stronger assumption of stationarity is implicit. The condi-
tional expectation and variance will be obtained exactly by
simple kriging of the normal scores, as long as their distri-
bution is multiGaussian and stationarity holds.

The result (before back-transformation) is presented in
Figure 4 for the estimates and for the estimation variance.
It can be seen that the values range from approximately -3
to +3, and that the variance reflects the amount of infor-
mation available. The sample locations appear clearly in
the map of estimation variances. Also, we can see that the
variances range from 0 to 1, since the prior variance of the
normal scores is 1.

Figure 3: Non-linear relationship between grades and normal score transforms.
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Figure 4: Normal score estimates and variance by simple kriging.

Back-transformed estimates and variances

At every point in the estimation grid, a mean and variance
of the conditional distribution in Gaussian units is available.
Under the multiGaussian assumption, the conditional dis-
tribution is Gaussian in shape, thus by knowing the mean
and the variance we know it completely. We can back-
transform as many quantiles as required to obtain the back-
transformed conditional distribution (now in grade units).

Resulting maps depicting the estimated value (mean) and
conditional variance are shown at the top in Figure 5. For
comparison, the ordinary kriging estimate and variance maps
at point support obtained previously are displayed at the
bottom of the same figure. It can be seen that the esti-
mates follow similar trends and are not significantly differ-
ent, except in areas where extrapolation occurs. MultiGaus-
sian kriging is based on simple kriging, thus tends to bring
extrapolated values back to the mean, while the ordinary
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kriging estimates rely on the average obtained in the local
neighborhood. More interesting is the behavior of the vari-
ances. In multiGaussian kriging, the variance (after back-
transformation) is proportional to the estimate.

Histograms of estimates and variances are presented prior
to back-transformation and after back-transformation in Fig-
ure 6. Notice that the estimated values in Gaussian units
are smoother than the prior (global) distribution, which had
a variance of 1. Also, it is apparent that the distribution of
estimates is not exactly Gaussian in shape. Estimation vari-
ances in Gaussian units are bimodal. This is probably due
to the data configuration. Regarding the back-transformed
estimates and variances, it can be seen that the estimate
is smoother than the original grade distribution and more
symmetric. The kriging variance histogram shows a long
tail of high variance values.

Estimates and variances in grade units obtained with multi-
Gaussian kriging and with ordinary kriging are compared in
the scatter plots provided in Figure 7. A slight global bias
is apparent between the estimates, which is probably due
to the areas where the grades are extrapolated. When look-
ing at the global statistics, these are summarized in Table
2, we can see that ordinary kriging averages approximately
2% lower than the statistics obtained by cell declustering
(which are not very reliable in the first place). MultiGaus-
sian kriging assumes global stationarity on the mean, thus
if significant extrapolation areas exist, it may generate in-
correct results. Nonetheless, the bias is not significant.

On the other hand, we can see in Figure 7 that the ordi-
nary kriging variance and multiGaussian kriging conditional
variance are not correlated in a simple manner. The global
correlation coefficient is close to zero, indicating that these
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Method Mean Std. Dev. Bias

Declustered distribution 1.186 0.658 –
Ordinary kriging 1.163 0.476 -1.9%

MGK (simple kriging) 1.146 0.385 -3.4%

Table 2: Mean and standard deviation of declustered distribution and estimated points
with ordinary kriging and multiGaussian kriging in unit 20.

two measures of “uncertainty”, are completely different. As
seen in Figure 4, the conditional variance is proportional
to the estimated value, while the ordinary kriging variance
is not dependent on the estimated values and only reflects
the amount of information in the neighborhood.

Comments

The proportional effect can be understood by looking at the
scatter plots between estimated values and estimation vari-
ance. Figure 8 shows the scatter plots before and after
back-transformation. Before back-transformation the esti-
mate and variance are unrelated, while after back-transfor-
mation, the estimated grade is clearly related to the con-
ditional variance in grades units. In fact, since the distri-
bution is close to a lognormal, this relationship is quadratic
(and linear between the estimate and the kriging standard
deviation).
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Figure 5: Maps of estimates and estimation variances for multiGaussian kriging and
for ordinary kriging (obtained previously).
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Figure 6: Histograms of estimates and estimation variances for multiGaussian kriging
values in Gaussian units (before back-transformation), at the top, and in grade units
(after back-transformation), at the bottom.
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Figure 7: Comparison of estimates and estimation variances for multiGaussian kriging
and for ordinary kriging (obtained previously).

Figure 8: Proportional effect. Left: the relationship between estimate and variance in
Gaussian units, showing no relationship. Right: the relationship between estimate and
variance in grade units, after back-transformation, showing the proportional effect.
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1.2 Multiple indicator kriging

Steps

To implement multiple indicator kriging, we need:

� Representative distribution: a declustered distribu-
tion is needed prior to the definition of the thresholds
used to define the indicators.

� Definition of thresholds: the number of thresholds
and their values need to be determined. They are usu-
ally defined to evenly sample the global distribution,
and a few thresholds are added to account for relevant
values (cutoffs in mineral resource estimation, or criti-
cal thresholds in pollution studies) and to characterize
the tail of the distribution. Thresholds can be defined
at regular quantiles (for example over the deciles of
the distribution) and some additional thresholds may
help discretizing the tail. Notice that as thresholds get
extreme (lower or higher), their spatial structure tends
to be difficult to discern during the variogram analysis,
so unless a good amount of sample data is available, it
is not advisable to select thresholds too extreme.

� Indicator variogram analysis: a kriging run is per-
formed for each indicator, therefore, the spatial conti-
nuity of each indicator is needed. Variogram models
must be created for all the indicator variables. Good
practice is to have all variogram models with the same
base structures and change the sills and ranges smoothly
from one threhold to the next avoiding abrupt changes.

� Point support indicator kriging: kriging is performed
independently for each threshold. Simple or ordinary
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kriging can be used. Estimation must be done at point
support.

� Post-processing of the conditional distributions:
the resulting indicator estimates discretize the condi-
tional distribution at every location. These points must
be interpolated and extrapolated to complete the con-
ditional distribution. This may require correcting for or-
der relation problems. Once this has been done, the
full conditional distribution can be used to obtain the
local mean, variance and any other statistics required,
by numerical integration.

Determining the thresholds

The thresholds for the case study are defined at regular in-
tervals in probability (deciles) and three additional thresh-
olds are considered to characterize the tail of high values.
These are summarized in Table 3.

Number
Cumulated

Threshold
Probability

1 0.10 0.55
2 0.20 0.72
3 0.30 0.83
4 0.40 0.95
5 0.50 1.07
6 0.60 1.21
7 0.70 1.36
8 0.80 1.55
9 0.90 1.898

10 0.95 2.18
11 0.98 2.681
12 0.99 3.682

Table 3: Definition of thresholds for multiple indicator kriging in unit 20.
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Indicator variograms calculation and modeling

Indicator variograms are computed in the three principal di-
rections of anisotropy defined previously. For every thresh-
old, the grades are transformed to a binary indicator and the
corresponding variogram is computed. Notice that the ex-
perimental variograms are standardized to a sill of 1, which
makes the modeling stage easier. Recall that the variance of
the indicator variable is known and this should correspond
to the sill of the indicator variogram (under the assumption
of stationarity).

The models are summarized in Table 4. The experimen-
tal variograms and the fitted models are shown in Figure
9.

Number
Cumul.

Threshold
Nugget Exponential Exponential

Prob. Effect Sill Angles Ranges Sill Angles Ranges

1 0.10 0.55 0.15 0.35 30/0/0 20/30/20 0.50 30/0/0 700/1300/180

2 0.20 0.72 0.15 0.45 30/0/0 20/30/15 0.40 30/0/0 280/520/180

3 0.30 0.83 0.15 0.35 30/0/0 40/45/15 0.50 30/0/0 120/220/180

4 0.40 0.95 0.18 0.32 30/0/0 50/60/15 0.50 30/0/0 100/180/180

5 0.50 1.07 0.18 0.32 30/0/0 50/80/25 0.50 30/0/0 100/160/180

6 0.60 1.21 0.15 0.35 30/0/0 70/70/15 0.50 30/0/0 100/140/200

7 0.70 1.36 0.15 0.35 30/0/0 70/70/15 0.50 30/0/0 100/140/200

8 0.80 1.55 0.15 0.35 30/0/0 55/70/45 0.50 30/0/0 85/140/160

9 0.90 1.898 0.15 0.35 30/0/0 10/20/45 0.50 30/0/0 50/110/160

10 0.95 2.18 0.15 0.35 30/0/0 10/10/35 0.50 30/0/0 40/80/200

11 0.98 2.681 0.15 0.35 30/0/0 10/10/45 0.50 30/0/0 40/80/200

12 0.99 3.682 0.15 0.35 30/0/0 10/10/55 0.50 30/0/0 40/80/200

Table 4: Indicator variogram model parameters
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Figure 9: Experimental indicator variograms and models for unit 20.

It can be seen from the variograms, that high thresholds
tend to generate very unreliable variograms. The models fit
for the last few thresholds are really based on the model for
lower thresholds. The fitting is poor, since the experimental
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variograms do not behave as expected. More effort could
be put to improve the experimental variograms and the fit
of the models.

Multiple indicator kriging

Multiple indicator kriging is essentially K independent runs
of kriging, each with different data (the coding changes for
each threshold) and different variogram (the model changes,
as presented before). Typically, search parameters are kept
constant for all thresholds. MIK is run over the same point
support grid used previously for ordinary and multiGaussian
kriging. A minimum and maximum of 8 and 16 samples are
used, considering a isotropic search with radius of 100m.
Ordinary kriging is used for each indicator and the median
shortcut is not used, so each threshold uses its correspond-
ing variogram model.

The output of multiple indicator kriging is a set of K mod-
els that predict the probability of not exceeding each one of
the thresholds. The maps range from 0 to 1, as they repre-
sent probabilities. These are presented in Figure 10. There
are some obvious artifacts due to the search parameters
and extrapolation at the margins of the field.

Post-processing to obtain the estimate and
conditional variance

The resulting probabilities at different thresholds provide an
approximation of the local conditional distributions at every
location of the grid. Parameters for “filling the blanks” are
required, to complete the conditional distributions. Further-

17



Figure 10: Maps for a representative planview of indicator kriging for each of the
twelve thresholds (unit 20).

more, order relation problems need to be fixed, in case they
exist. These problems arise from the fact that each kriging
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is run independently, when in reality, adjacent thresholds
should be closely correlated.

Parameters for conditional distribution interpolation be-
tween thresholds and extrapolation beyond the first and last
thresholds to a set minimum and maximum values, are pre-
sented in Table 5.

Case Model Parameter
Interpolation Linear —

Extrapolation lower tail Linear 0.0
Extrapolation higher tail Linear 7.5

Table 5: Parameters for conditional distribution interpolation and extrapolation.

With these parameters, the conditional distributions at
every point in the estimation grid can be numerically in-
tegrated to obtain the mean and the conditional variance.
Other statistics can also be obtained similarly, such as con-
fidence intervals, median, quartiles, etc. The numerical in-
tegration is performed considering a discretization of 200
quantiles, both for the mean and variance. The resulting
maps, after post-processing the indicator kriging output, are
presented in Figure 11 and compared to the corresponding
ordinary kriging results.

In many cases, the model used for extrapolation of the
higher tail may bias the result. Too heavy a tail may cre-
ate an overestimation of the global mean. It is important
to check the statistics and calibrate the result, if needed,
to match the known declustered mean. Notice that this re-
quires re-running the post-processing, but not necessarily
modifying the indicator kriging run. Statistics for the esti-
mate and variance are summarized in the histograms dis-
played in Figure 12. For comparison, Table 2 is updated
and provided below (Table 6).
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Figure 11: Maps for a representative planview of the MIK mean and variance (top) and
the corresponding ordinary kriging results (bottom) for unit 20.

Method Mean Std. Dev. Bias

Declustered distribution 1.186 0.658 –
Ordinary kriging 1.163 0.476 -1.9%

MGK (simple kriging) 1.146 0.385 -3.4%
MIK (ordinary kriging) 1.140 0.463 -3.9%

Table 6: Mean and standard deviation of declustered distribution and estimated points
with ordinary kriging, multiGaussian kriging and multiple indicator kriging in unit 20.
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Figure 12: Histograms of the MIK mean and variance for unit 20.

Calibration

To show the sensitivity to the parameters of the tail extrap-
olation, a hyperbolic model is used with power 1.0 for the
high tail. Results are displayed in Figure 13. The global
bias is slightly reduced. If deemed necessary, further ef-
forts to reduce the bias could be done.

Figure 13: Histograms of the MIK mean and variance for unit 20, after changing tail
extrapolation.
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1.3 Comparison

To conclude this example, some comparisons are presented.
Figure 14 shows the scatter plots between estimates and
between variances for MIK and MGK, and between MIK and
OK. It is interesting to see the good match in the estimates,
except for high grades, where ordinary kriging (in the Y
axis) seems to give higher grades. Also, there is a cluster
of points with clear differences around indicator estimates
near 1%Cu that should be investigated. The relationship
between variances is non-linear, as with MGK and with high
dispersion. When comparing MIK and MGK (bottom scatter
plots in the same figure), we can see again a good match
in the estimates and some relation between the conditional
variances. This can be explained by the fact that both meth-
ods model uncertainty differently, thus leading to different
results. As both capture the proportional effect (Figure 15),
some positive correlation is apparent in the variances.

1.4 Discussion

MultiGaussian kriging and multiple indicator kriging are two
methods to assess the local point uncertainty. They rely on
different assumptions therefore yield different results.

The main difference in assumption of the methods is that
under the multiGaussian assumption, a single variogram
model determines the behavior for all thresholds. In fact,
this behavior is symmetric with respect to the median, thus,
implicitly, in a multiGaussian model the indicator variogram
at quantiles p is the same than the one obtained at a quan-
tile 1 − p.
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Figure 14: Scatter plots between estimates and variances for different methods.

In some applications this may seem unrealistic. For ex-
ample, when the continuity of high permeability has a large
ranges, while that of low permeability shows less correla-
tion, then these thresholds should be modeled differently.
In such a case, a multiGaussian assumption may be a poor
choice, particularly if the high (or low) permeability conti-
nuity is critical for the model developed, as in the case of
characterizing a possible nuclear waste repository.

In practice, multiGaussian kriging has seldom been used,
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Figure 15: Comparison of proportional effect captured with MIK and MGK.

although its theoretical foundation is solid. Indicators, have
been used to model grade distributions in precious metals
deposits, but they suffer from many problems that require
careful attention to many details.
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