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Summary

No. All that matters is if it does what it is supposed to do.

1 Introduction

In this short note, I focus on the multiGaussian methods and
the debate of whether to use turning bands or sequential
Gaussian simulation (or any other multiGaussian method,
for that matter). I review what are random functions (you
can skip it if you just want the recipe), what simulation
methods exist in the multiGaussian case for continuous vari-
ables (you can also skip this if you just want to know what
these methods should do), and finally I address what to
expect from a good algorithm implementation of any multi-
Gaussian method.
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The bottom line is that the simulation method used to
create geostatistical realizations of a variable does not mat-
ter. You should stop asking what method is used or what
methods does such or such software have implemented.
What you should be asking is whether the method
works or not. And this means, whether the methods fol-
low what the theory says. Let me explain...

2 Random Function Models

Recall that in geostatistics, we need to make a leap of faith.
We take the regionalized variable, which is the actual vari-
able in the field we are interested in, and assume that at
every spatial location , the value of the regionalized vari-
able is a random variable Z() (notice that we capitalize
to emphasize the difference). This random variable is cor-
related with its neigbohrs in space, therefore, if we want
to characterize these random variables, and then simulate
them, we need to undertand the random function, that is,
the collection of random variables in the domain of interest:
{Z(), ∈ D}.

Geostatistical simulation methods are based on random
function models. For example, there are many methods that
are multiGaussian, that means they rely on a multiGaussian
assumption. But what does this mean? In the case of a
single variable Z, it means that there is an implicit assump-
tion that if you take values of that variable and find pairs
separated in space by a vector h (which means separated
by a certain distance, the module of the vector, |h|, and
where the head Z() and tail Z( + h) of the vector point
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in a certain direction), the collection of all the pairs found
{(Z(), Z( + h), ƒor  = 1, ..., N(h)} will follow a bivariate
Gaussian distribution (Figure 1). In other words, if you plot
all these pairs, the scatter plot will show isodensity lines
that follow an ellipsoidal shape. The correlation of this plot
is related to the spatial continuity for that vector (it actually
is the correlogram value for that vector, ρ(h)).

Figure 1: Example of a bivariate Gaussian plot with the relationship
between points separated by a certain distance h.

But the multiGaussian assumption means more that bi-
variate relationships. It also means that if you take triplets
(Z(), Z( + h1), Z( + h2)), these will follow a trivariate
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Gaussian distribution (the scatter plot will show ellipsoidal
isodensity surfaces in three dimensions) (Figure 2). And
this is also true for four, five and more points, but we can-
not draw those cases.

Figure 2: Example of a trivariate Gaussian plot with the relationship
between points separated by distances h1 and h2.

3 Simulation Algorithms

There are many multiGaussian simulation algorithms. Some
are exact and some are approximate. As everything in life,
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you cannot get everything: an exact method works in small
cases and is limited by the number of nodes to simulate. An
approximate method, can work on large number of nodes to
simulate, but... it only gives an approximate result.

Among the multiGaussian methods, turning bands sim-
ulation and sequential Gaussian simulation are popular op-
tions that are implemented in commercial software. How-
ever, there are many more metods that rely on the multi-
Gaussian assumption, as listed in Chiles and Delfiner book
(see [1], Table 7.1), including:

� Sequential Gaussian: this method was originated from
the need to simulate indicators, which was then ex-
panded to the use of multiGaussian random functions.
The original code was developed by Gomez-Hernandez
and Srivastava [4]. A nice history of how this method
came to life is provided by the same authors in a paper,
part of a special issue in honor to Andre Journel [5].

� Matrix decomposition: this method is exact, but it is
limited by the number of nodes and conditioning val-
ues considered, as it requires a matrix decomposition.
It was originally introduced by Davis [2]. It is not used
in practical applications in mining, although may be im-
plemented as part of block simulation algorithms with-
out you knowing.

� Turning bands: originally introduced by Matheron [8],
and implemented in the book “Mining Geostatistics” by
Journel and Huijbregts [7], this method relies on the
generation of one-dimensional simulations over ran-
domly oriented lines that are then projected and “aver-
aged” in space over simulation node locations.
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� Autoregressive: this model works only in 2D [1] and is
not used in practical applications in mining.

� Moving average: this method works because averages
tend to a normal distribution. The idea is to determine
the appropriate weights assigned to nodes in a spa-
tial configuration. Then, a convolution between points
with white noise (i.e. pure random noise) and these
weights is applied to obtain a “mocing average”, which
becomes the simulated random values. These moving
averages reproduce a certain covariance matrix, which
is a result of the weights used in the first place. The
fact that the method is a simple product of weights and
simulated values at simulation nodes makes it very ef-
ficient [9].

� Continuous spectral: a stationary random function can
be seen as a mixture of independent sinusoidal compo-
nents at different frequencies [1]. Therefore, a random
function can be simulated by considering an orthog-
onal random spectral measure, which requires simu-
lating two real-valued variables that comply with cer-
tain conditions. This approach only works efficiently
for some covariance functions, namely those parabolic
near the origin, and it is not seen implemented in com-
mercial software.

4 What to check?

As mentioned before, the methods described earlier have
the same underlying assumption of multiGaussianity and
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should (in theory) achieve similar results. However, practi-
cality usually mean that the implementation does not follow
exactly what theory says.

For instance, in sequential simulation, one should use all
the sample data and previously simulated values to ensure
that the reproduction of the conditional probabilities from
which we draw the subsequent simulated values is correct.
In practice, we truncate to a maximum number of samples
and/or previously simulated values. This has an impact on
the histogram and variogram reproduction.

In turning bands, convergence is theoretically achieved
with infinite randomly oriented lines. In practice, we just use
a large number of approximately randomly-oriented simu-
lated lines to project on the grid, so the result is approx-
imate. Again this has impact on the histogram and vari-
ogram reproduction and on the ergodicity of the method
(how each realization converges to the expected statistics
of the random function model).

Furthermore, in practice, there may be trends in the data,
thus the assumption (or decision) of stationarity may not
work well. This means the modeller may decide limiting the
neighborhood to avoid smearing the different high and low
value zones.

So, what should you worry about? Simple. Simulations
should reproduce the conditioning data at their locations,
reproduce the global histogram and the variogram.

Two important aspects must be considered:

1. Gaussianity: in most cases, the original distribution
is not Gaussian, so a normal score transformation is
used. The resulting univariate distribution is guaran-
teed to be Gaussian, but the bivariate, trivariate and
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multivariate (multi-point, really) distributions should be
checked. Drawing h-scatter plots as depicted in Fig-
ures 1 and 2 can help identify any significant depar-
ture from this assumption. There are other approaches
to check for multiGaussianity, but in practice they are
seldom used. One important note is that small depar-
tures from the precise expected histogram (a Gaus-
sian distribution with mean 0 and vaiance 1), may gen-
erate biases in the back-transformation step. These
departures may occur even when the average statis-
tics match exactly the target values. Due to the fluc-
tuations and the non-linear nature of the process of
back-transformation (especially for distributions with
very long tails, such as in the case of precious met-
als) the compounded effect of the realizations back-
transformation may end up in a bias mean of the distri-
bution in original units. Some post-processing may be
needed in these cases.

2. Support: the information used for inferring the ran-
dom function features is at sample support (point sup-
port). The histogram and variogram of normal scores
reflect the statistical distribution and spatial correla-
tion of point support samples. Simulation outcomes
should therefore be checked at point support, before
any change of support to block values has been done.

One would expect that trends are also followed in the
resulting realizations (although simulations are not very ro-
bust to departures from stationarity, so detrending may be
required as a pre-process). Swath plots should be checked
and reflect the flustuations in the local mean, and also the
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expected uncertainty increase far from data and low uncer-
tainty near conditioning locations.

In summary, a simulation is good if:

� It reproduces the conditioning data at their loca-
tions: all realizations should be “fixed” at conditioning
locations and fluctuate away from conditioning points
(see Figure 3 where conditioning data reproduction is
checked).

� It reproduces the global histogram in Gaussian
units at point support. The point-support histogram
of the simulated values prior to back-transformation
(i.e. the histogram of the simulated normal score val-
ues) is standard Gaussian on average. Some realiza-
tions will have a mean that is not exactly zero, and
a variance that is not exactly one, but the average
mean of the realizations should be very close to zero
and the average variance of the realizations should be
very close to one.

� It also reproduces the global histogram in orig-
inal units at point support. The back-transformed
point-support histogram of the simulated values repro-
duces the original declustered histogram (see Figure
4).

� It reproduces the normal scores point-support
variogram model. The variogram at point-support of
the simulated values prior to back-transformation (i.e.
the variogram of the simulated normal score values)
should, on average, match the model inputted in the
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algorithm (Figure 5). It should be noted that the con-
ditioning data will enforce the continuity, therefore if a
poor model of the experimental variogram is used, the
conditioning data will take control and the resulting var-
iogram of simulated values will be closer to that of the
conditioning data, particularly if these are abundant.

� It reproduces the point-support variogram in orig-
inal units. The variogram at point-support of the simu-
lated values in original units, after back-transformation,
should match the data variogram. Notice that we can
compare it with the experimental variogram of the orig-
inal viarable or with the variogram model we may have
for estimation. Small mismatches in histogram repro-
duction will be reflected as departures in the sill repro-
duction, since it is linked to the variance of the data.

Figure 3: Check of reproduction of conditioning values at their locations.
Departures are explained by the assignment of data to nodes.
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Figure 4: Check of histogram reproduction. Left: average of realization
means; Right: average of realization variances.

Figure 5: Check of variogram reproduction of normal scores in two di-
rections.

If the software you use to simulate only provides block
support back-transformed values, it will be hard to check
if the quality of the simulation and the choice of param-
eters used is addequate. One approach to “validate” the
approach is to feed the algorithm the data already normal
score transformed and perform the simulation at point sup-
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port (i.e. without discretization of the blocks). In this way,
you can run a few realizations, check conditioning, histogram
and variogram reproduction and, when you are satisfied
with the results, you can re-run the realizations with the
original data, so that the algorithm performs the transfor-
mation and the averaging. If your software does not allow
for point support simulation, it is very hard to check that the
realizations are converging to the expected statistics (his-
togram and variogram).

5 What makes an algorithm good?

An algorithm can be qualified as good if:

� It is easy to use.

� All relevant parameters can be changed by the user.

� Runs in reasonable time.

� Provides results with the expected statistics (histogram
and variogram reproduction).

6 The small print

Obviously, making the point that the algorithm does not
matter had the aim to provoke some discussion. In reality,
algorithms have different pros and cons.

For instance, sequential Gaussian simulation is fairly easy
to explain and teach and can be presented as a recursive
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application of Bayes’ law to update conditional distributions
from which simulation values are drawn (see [10]). The
main drawback is that the conditioning data must be trun-
cated to make it practical. Otherwise, the kriging system
needed would increase with every new simulated node in
the domain, becoming very slow and, at some point, impos-
sible to solve. Despite this, it can be made very efficient by
parallelization of the code [12, 13, 11].

On the other hand, turning bands is more difficult to un-
derstand and explain. Its derivation requires more advance
mathematics and its convergence to multiGaussianity is based
on the central limit theorem [6]. But, because the approach
uses one dimensional lines to simulate a three dimensional
field, it can be parallelized and made very efficient [3, 14].

In conclusion, only trust your algorithm if you can check
the results.
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