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Summary

MultiGaussian and indicator kriging allow determining the
local uncertainty at every location. However, these meth-
ods do not permit quantifying uncertainty over a larger vol-
ume, or characterizing the expected variability in a sequence
of points that will be transferred to another process. In this
chapter, we introduce the concept of geostatistical simu-
lation and explain why it is necessary and how it is differ-
ent from estimation. We also introduce sequential Gaussian
simulation, which is one of the most used algorithms for
multiGaussian simulation, and is a natural extension from
multiGaussian kriging.
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1 Introduction

In many applications, the major objective has been, and still
is, to obtain the “best” estimate of the variable studied. To
achieve this objective, estimation methods have progressed
from geometric triangulation and polygonal approaches to
a variety of kriging algorithms. All of these estimation ap-
proaches produce a map of locally averaged values and in
the case of kriging, a map of the estimation variance at each
estimated location. The resultant models produced by these
estimation methods have several limitations. These limita-
tions include:

� The spatial variability and histogram of the estimates
is “smoothed” compared to that known from sample
data. This is known as the smoothing effect of kriging.

� The assessment of uncertainty (by means of the krig-
ing variance) is strongly controlled by the sampling con-
figuration without reference to the magnitude of the
sample grades that inform the estimated value. This
means that the kriging estimate is homoscedastic, that
is, the variance does not depend on the value of the
estimate. In practise, variables such as grades fol-
lowing a lognormal distribution show proportional ef-
fect, that is, the variability is proportional to the es-
timated grade. In mathematical terms this is called
heteroscedasticity.

� It is very difficult to obtain a quantification of the joint
uncertainty of a collection of blocks because the un-
certainty in each block is not independent of the un-
certainty in the adjoining block.
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In contrast to the estimation methods, geostatistical sim-
ulation provides maps of the variable that:

� Honor the sample data values.
� Reproduce the histogram.
� Reproduce the spatial variability of the variable of in-

terest.

In addition, simulation is a probabilistic procedure that
results in many different realizations of the same at-
tribute. Each realization honors sample values, geological
interpretation, data statistics and spatial continuity.

Unlike estimation, where a best map can be generated
under some definition of quality (for kriging it is the min-
imization of the mean square error), realizations are ac-
cepted or rejected based on their capacity to honor the
data, geology, histogram, variogram, and any secondary
information. Therefore, there is no single best realization,
since they are all considered equally likely to occur. The set
of equally probable realizations allows us obtain a distribu-
tion of the possible grade at that location. Similar proce-
dures exist for categories such as the geological unit. This
distribution of outcomes is interpreted as the uncertainty in
the variable. This allows to report an uncertainty value that
is conditioned by the surrounding sample values and geo-
logical attributes. The set of simulated values on a point
scale also allows us to consider the uncertainty of a col-
lection of related points or joint uncertainty. This means
a change of support can be performed, and simulations at
block support are obtained. The set of block support realiza-
tions represents the uncertainty of the variable at that sup-
port. For example, the net result of averaging the simulated
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point grades within an arbitrary shape for each simulation
is a distribution of the uncertainty of the expected grade for
that volume (e.g. stope or production period volume). This
cannot be obtained by kriging methods without assuming
independence between each volume.

In summary, conditional simulation provides a quantifi-
cation of the uncertainty surrounding an estimate. These
values may account for the support and information effects,
hence allowing quantification of uncertainty in any response
variable. Response variables that depend upon several in-
put variables can be correctly assessed with simulation and
their uncertainty, quantified. This is the case of the re-
sponse in mine planning, in geometallurgical studies or in
geotechnical classification.

2 An introductory mining example

This introductory example is based on a satellite zone of
mineralization at a gold mine in eastern Canada, that has
potential for development as an underground operation to
contribute additional tonnes and grade to the mill of the
operation. Uncertainty about the continuity of the gold min-
eralization leads to uncertainty in predictions of cash flows.

Several hundred surface and underground diamond drill
holes through the zone exist, confirming significant gold
mineralization (Figure 1). High grade assays mostly fall
along a few roughly planar structures that have been grouped
into a series of lenses within a broader altered and miner-
alized shear system (Figure 2). All of these lenses follow
the major foliation direction with an east-west strike and a
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northerly dip of 65 to 70°.

Figure 1: Drillhole intersections over a representative cross section of the deposit.

Figure 2: Grade trend as a function of the distance to the hanging wall.
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Three realizations, out of a hundred created with a geo-
statistical simulation method, are shown in Figure 3. It
can be seen that these realizations follow the general direc-
tion of continuity of the grades, honor the data, and show
realistic variability of the grades at neighboring locations.
Although they have the same general features, they are dif-
ferent. At every location, different values are simulated over
the realizations. The spread of these values is a reflection
on the uncertainty of the grade at that location. Closer to
conditioning data, simulated values tend to have less dis-
persion, reflecting higher confidence.

For comparison, an inverse distance weighting estimate
is depicted in Figure 4, which shows very different features.
The continuity is honored (imposed by the search plan), but
the map does not reflect any short range variability, and
provides very hard transitions between high and low grade
areas, due to the conditioning. A single map is obtained with
this method, without access to the expected variability.

Considering the expected variability provided by the re-
alizations from the geostatistical simulation method, the re-
serve grade within the production stopes is computed for
each realization and fed into a cash flow analysis. This re-
flects the chance of realizing the plan. The expected cash
flow from the inverse distance estimate is shown in Fig-
ure 5. A negative cash flow in the first period is compen-
sated with positive cash flows in subsequent years. Now,
if we look at the cash flows obtained for each realization,
we see that these may fluctuate and there is some chance
of not obtaining the expected value of the project (Figure
6). The net present value can be computed for every real-
ization and compared with the expected NPV. Furthermore,
if uncertainty is deemed too large, corrective actions can
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Figure 3: Three realizations obtained with a geostatistical simulation method.

be taken, such as additional drilling, or changes in the plan
to minimize risk by starting with areas where confidence is
higher and the fluctuation in the cash flow is lower. In this
case, the NPV may be as low as $4.8 million and as high
as $8.9 million (Figure 7). The decision maker should be
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Figure 4: A map of inverse distance weighting estimates.

aware of this uncertainty to proceed with the plan.

Figure 5: Expected cash flow obtained from the inverse distance estimates. This is
usually the basis for decision making and planning.
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Figure 6: Cash flow uncertainty - only 10 realizations are shown. The expected cash
flow from the inverse distance model is shown with red squares.

Figure 7: Net present value (NPV) uncertainty for the project.

The previous example is very straightforward, but illus-
trates that understanding the uncertainty in the estimate
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may change the decisions made.
There are many difficulties that appear as a consequence

of knowing the uncertainty. Communicating uncertainty and
risk is not straightforward. Making decisions accounting for
risk is also a very difficult task. In mining, designing the
outline of an open pit or a stope accounting for the uncer-
tainty on the grades is an extremely complex optimization
problem. The same happens in other fields: imagine trying
to decide what area needs to be decontaminated when you
have a limited budget and 100 models displaying different
possible spatial distributions of the pollutant.

Notice that it is not the same: “to decide accounting
for uncertainty” than “to assess the uncertainty given
a fixed mine plan”

3 Geostatistical simulation

3.1 Principles

The main idea of geostatistical simulation is to draw mul-
tiple realizations of a random function. All the realiza-
tions will share the spatial structure, which is often imposed
by the variogram, under the assumption that relationships
between pairs of points (so called two-point statistics) are
sufficient to capture the main features of the model.

Now, to make this useful, we create realizations from a
random function that shares the spatial continuity features
with our data. From the limited sample data available, we
can infer a histogram and variogram (and sometimes, we

10



can go beyond and infer patterns or multiple-point statis-
tics). This modeled three dimensional variogram character-
izes the spatial continuity of the random function. In addi-
tion to this, we want the random function to honor the data,
that is, we expect to recover the sample values at sample
locations.

Realizations from a simulation method are called condi-
tional, if they reproduce the sample values at sample loca-
tions. This means, that all realizations will share some com-
mon values. Since spatial correlation controls the dispersion
of values in space, if one node is fixed with a known value,
its surroundings will be correlated to that value. Therefore,
around each sample location, the spread of values will be
constrained, thus representing a lower uncertainty.

The true distribution of the regionalized variable can be
interpreted as one particular realization of the random
function. Therefore, the simulated realizations can be
interpreted as other possible scenarios.

Since we do not know exhaustively the true distribution,
we can use each realization as one possible truth, and ex-
pect that it will behave similarly to the true distribution,
since it shares its statistical and spatial statistics, and it re-
produces the sample values at sample locations.

Therefore, to assess the performance of the true
variable when subject to a process, we can instead,
assess the performance of each one of the realiza-
tions and use the output as a representation of the
uncertainty in the response.

We will now introduce the different methods and discuss
the assumptions underlying each method.
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3.2 Methods and assumptions

There are many approaches to simulation. The following is
a non-exhaustive list of the most relevant approaches.

� MultiGaussian methods:

– Sequential Gaussian simulation (continuous)
– Turning bands simulation (continuous)
– Matrix decomposition method, known as LU simu-

lation (continuous)

� Indicator methods:

– Sequential indicator simulation (categorical)
– Sequential indicator simulation (continuous)

� Mixed models (continuous models used to obtain cate-
gorical methods):

– Truncated Gaussian simulation (categorical)
– PluriGaussian simulation (categorical)

� Multiple-point simulation:

– Single Normal Equation (SNESIM) (categorical)
– FILTERSIM (categorical and continuous)
– Direct Sampling (categorical and continuous)

� Other methods

– Simulated annealing (categorical and continuous)
– Direct sequential simulation (continuous)
– P-field simulation (continuous)
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MultiGaussian methods rely obviously on a multiGaus-
sian assumption. Indicator methods do not rely on a dis-
tributional assumption, which generates some problems of
consistency. However, they show more flexibility and can
be a good solution for some problems.

Truncated Gaussian and pluriGaussian simulation are cat-
egorical methods, based on simulating one or more contin-
uous multiGaussian variables and then truncating the con-
tinuous result to categorize it into one or more classes. This
allows obtaining a large spectrum of continuity models for
the categorical variable. The main difficulties with these
methods is conditioning a continuous simulation to categor-
ical data and finding the spatial continuity with which the
continuous fields must be simulated so that, after trunca-
tion, the continuity of the categorical variable is honored.

Multiple-point simulation methods go beyond the use of
variograms. Instead, pattern statistics are inferred that ac-
count from multiple points at a time. This normally requires
the use of a training image or of some kind of abundant
and dense training data. These methods are very similar
to methods used in texture synthesis in computer vision,
therefore a wealth of methods have been researched in re-
cent years and continue showing great potential for practi-
cal applications.

Finally, the methods classified under “other methods” are
indirectly linked to a multiGaussian assumption (direct sim-
ulation and p-field simulation), or use an optimization-based
approach to simulate (simulated annealing).
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4 Sequential Gaussian simulation

4.1 Theoretical foundation

The sequential Gaussian simulation method is founded in
the multiGaussian assumption of the variable. This can be
interpreted as follows: the random function is composed
of random variables {Z(i),∀i ∈ D} that form a multivari-
ate Gaussian distribution. Another way of understanding
this idea is to think of any set of R variables (each vari-
able represents a random variable at a particular location
r,∀r = 1, ..., R). The scatter plots between these variables
are ellipsoids of R dimensions and form a joint multivariate
Gaussian distribution. Therefore, if any of the locations has
a known value (a sample, that simply means the variance of
that random variable collapses to 0), then, the conditional
multivariate distribution of the remaining R−1 locations can
be inferred using the multiGaussian hypothesis. That is, the
mean and variance can be obtained by regression (or, what
is the same, by simple kriging), and the distribution remains
an R − 1-dimensional multiGaussian distribution.

Under this premise, if we have N locations to simulate,
1, ...,N, we can model them as a standardized multiGaus-
sian distribution. The joint pdf is:

ƒY1...YN(y1, ..., yN) =
ep
�

− 1
2
(y − μ)T−1(y − μ)

�

Æ

(2π)N||
(1)

where Y is short notation for the random variable Y(i).
This can be simplified, since we work with standardized

variables.
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ƒY1...YN(y1, ..., yN) =
ep
�

− 1
2
yT−1y
�

Æ

(2π)N||
(2)

The correlation between two locations will be controlled
by the correlogram at their separation distance h.

Thus,

μ =









μ1
μ2
...
μN









=






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0
0
...
0








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









σ2
Y1

CY1Y2 · · · CY1YN
CY2Y1 σ2

y2
· · · CY2YN

... ... . . . ...
CYNY1 CYNY2 · · · σ2

YN











=









1 ρY1Y2 · · · ρY1YN
ρY2Y1 1 · · · ρY2YN

... ... . . . ...
ρYNY1 ρYNY2 · · · 1









=









1 ρ(h12) · · · ρ(h1N)
ρ(h21) 1 · · · ρ(h2N)

... ... . . . ...
ρ(hN1) ρ(hN2) · · · 1









The conditional distribution can be understood in terms
of Bayes law (notice that we simplified the notation, to keep
it short):

ƒY1...Yk |Yk+1...YN =
ƒY1...YN
ƒYk+1...YN

(3)

Now, if we look at a single conditioning variable,
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ƒY1...YN−1|YN =
ƒY1...YN
ƒYN

(4)

This idea can be applied sequentially to simulate a ran-
dom function:

� Start by imposing the conditioning data: Y(1), ..., Y(n)
� Simulate the first node Y(n+1) conditioned to the avail-

able data

– The conditional distribution of Y(n+1) is a Gaus-
sian distribution:

ƒYn+1|Y1...Yn =
ƒY1...Yn+1
ƒY1...Yn

with parameters

μ1|2 = μ1 + 
12
−1
22
(y2 − μ2)

11|2 = 11 − 12
−1
22
21 (5)

where Y1 is the 1-dimensional vector composed of
variable Y(n+1) and Y2 is the n-dimensional vec-
tor composed of variables Y(1), ..., Y(n).

– Simulate a value from the distribution of Y(n+1)
by Monte-Carlo simulation.

– Use the data to condition the subsequent nodes to
be simulated.

� Simulate the subsequent nodes Y(n+k) conditioned to
the available data and previously simulated nodes
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– The conditional distribution of Y(n+k) is a Gaus-
sian distribution:

ƒYn+k |Y1...Yn,Yn+1...Yn+k−1 =
ƒY1...Yn+k

ƒY1...Yn,Yn+1...Yn+k−1

with parameters as in Equation 5, now with Y1

being the 1-dimensional vector composed of vari-
able Y(n+k) and Y2 is the n + k − 1-dimensional
vector composed of variables Y(1), ..., Y(n+k−1).

– Simulate a value from the distribution of Y(n+k)
by Monte-Carlo simulation.

– Use the data to condition the subsequent nodes to
be simulated until the last node is simulated.

4.2 Steps

We have already covered most of the basic steps for se-
quential Gaussian simulation, when presenting multiGaus-
sian kriging. For simulation, a multiGaussian kriging is per-
formed at every location, providing the mean and variance
of the conditional distribution, from which a simulated value
is drawn. However, one additional consideration is required
to impose the spatial correlation between simulated points:
previously simulated values are used to condition sub-
sequent simulated values, to ensure their spatial cor-
relation is honored.

The implementation proceeds sequentially. At every node,
the sample values within a neighborhood as well as the
previously simulated nodes in the neighborhood, are used
to compute the kriging estimate and variance (in Gaussian
transformed units). To avoid artifacts due to the use of a
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regular grid of simulation points (and the screening effect
of kriging), a random path is created to visit the nodes in a
random order in each realization.

From the kriging estimate and variance of normal scores,
a simulated value can be computed by Monte Carlo simu-
lation, since under the multiGaussian assumption, we know
that the shape of the conditional distribution is Gaussian
and its mean and variance are the simple kriging estimate
and variance.

The steps to implement sequential Gaussian simulation
are:

1. Representative distribution: decluster the data to
obtain a representative distribution.

2. Normal score transform: transform the sample data
according to the transformation between the represen-
tative (declustered) distribution and a standard normal
distribution, to obtain the normal scores of the data.

3. Variogram of normal scores: compute the experi-
mental variogram of normal scores and fit a model.

4. Verify the multiGaussian assumption: there are
many approaches to check if the multiGaussian assump-
tion is reasonable. They include: checking the h-scatter
plots, comparing variograms of a truncated multiGaus-
sian variable with the experimental indicator variograms
of the continuous variable, computing variograms of
different order and checking some ratios, etc.

5. Perform the simulation:

(a) Visit a node: following the random path visit a
node and check that it is not informed by a sample.
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(b) Search for data and previously simulated points
in neighborhood: find the nearby normally trans-
formed sample data and any previously simulated
node in the search neighborhood.

(c) Perform simple kriging: compute the simple krig-
ing estimate and simple kriging variance of the
normally transformed values.

(d) Simulate a value from the conditional distri-
bution: Using a Gaussian distribution with mean
equal to the simple kriging estimate and variance
equal to the simple kriging variance, simulate a
value by Monte Carlo simulation. This entails draw-
ing a uniform random value in the interval (0,1)
and computing the inverse of the cdf of the follow-
ing distribution: N

�

y∗
SK
(0), σ2y,SK(0)

�

. Notice that

the uniform random number drawn represents the
cumulative probability, and the dimulated value is
the corresponding quantile.

6. Back transform the simulated values: using the
representative distribution and its relationship with the
standard Gaussian distribution, back-transform every
simulated node to the original units.

It is interesting (although we are not going to show it
here) that the collection of simulated values obtained at
the end of step 5, follows a standard Gaussian distribution.
Therefore, the back-transformation in step 6, brings back
the representative distribution in original units over the do-
main.

The result of the simulation process is a set of multiple
realizations, where each realization reflects the variability
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expected in space of the variable, and the set of realizations
summarize the uncertainty at every location.

Notice that this is a point-support result. The spatial
variability and the uncertainty at every location represents
points (or to be exact, the support of the samples used to
condition the simulation and to infer the variogram). No
change of support has been done until now.

4.3 Post-processing

The simulation results at point support can be treated as
equally probable scenarios of the true distribution of the
variable over the domain. None of them is a good repre-
sentation by itself, and each will perform poorly if it is used
as a predictor. However, the set will give valuable informa-
tion.

In most applications, it is not the point uncertainty what
is relevant, but the joint uncertainty when considering a
larger volume. In fact, if the goal were to obtain the point
uncertainty, multiGaussian kriging or multiple indicator krig-
ing would be appropriate approaches. When considering
many points forming a volume, however, we need to under-
stand their joint uncertainty, which accounts for the spatial
correlation between points.

Every point-support realization can be seen as one pos-
sible scenario (that already captures the spatial correlation
between points). If we apply an operation or a transfer func-
tion over the simulated domain, we can emulate the behav-
ior of the true (but unknown) distribution.

For example, we may be interested in knowing the uncer-
tainty of the grade at a mine, over a production period. The
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mine plan will state which volume is extracted. Each real-
ization can be processed to obtain the average grade over
that production period. Each one will give a slightly differ-
ent result. Pooling together the results of a large number
of realizations, the distribution of “averages over the pro-
duction period” can be obtained. The spread reflects the
uncertainty and the mean represents the expected grade of
the volume. Notice that this expected grade is probably not
the best estimation of the true grade, since simple kriging
was used. However, the approach let us infer the variability,
which was not possible with kriging (at least not accounting
for the proportional effect).

This same approach can be applied to any transfer func-
tion, not just a change of support.

4.4 Implementation details

In practice, there are several tricks that are convenient or
are needed to implement sequential Gaussian simulation.

Local neighborhood

First, the sequential approach builds conditional distribu-
tions with an increasing amount of conditioning information.
This happens because, for the first simulation location, only
the n samples (the hard data) will be used to determine the
conditional expectation and conditional variance of the dis-
tribution at the node location (through simple kriging of the
normal scores). However, the simulated value drawn from
the Gaussian distribution with the parameters inferred by
kriging, is used as conditioning for all subsequent nodes.
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So, for the second node to be simulated the conditioning in-
formation will consider the n hard data and the 1 previously
simulated node. Similarly, for the node k in the sequence,
all k − 1 previous nodes already have a value that will be
used to condition this location. Plus, we have the n hard
conditioning samples. The kriging system will have n+ k− 1
equations.

It is clear that, as the sequential simulation progresses,
we accumulate a potentially very large number of previ-
ously simulated nodes (a simulation grid may easily have
millions of nodes). Therefore, it becomes impractical to use
all the conditioning information. We therefore use a local
neighborhood, and impose some constraints in the number
of samples and previously simulated nodes that are used.
Since simulation relies more heavily on stationarity, it is rea-
sonable to use as much conditioning information as possi-
ble, as inference of the conditional mean and variance of
the distribution improves as more information is used. On
the other hand, since solving the kriging system is computa-
tionally costly and this cost increases exponentially with the
number of equations, we would prefer to keep this number
low, or what is the same, the number of conditioning data
small.

Notice that conditioning to previously simulated nodes
imposes the correlation between simulated locations,
to capture the spatial variability (from the variogram).
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Two searches: for data and for previously simulated
nodes

Simulation is done, in most cases, over a regular grid. This
simplifies the search for previously simulated nodes, since
only a limited number of nodes around the simulation node
can be checked to find the neighboring information. The
sample data, on the other hand, are not regularly spaced
and in most cases the sample locations will not coincide
with any node in the grid. Therefore, to search for sam-
ple data, the search needs to compute distances between
the samples and the simulation node, sort and determine
which ones are within the local neighborhood.

There are many search algorithms to improve the effi-
ciency of the search, but they are all quite heavy computa-
tionally, especially considering that this needs to be done
millions of times (it is done once at every node and for ev-
ery realization). A super-block search or a kD-tree can be
used to improve the search, but it is still a burden for the
computation of kriging.

If the simulation grid is dense enough, sometimes the
sample data are assigned to the nodes on the grid. The as-
sumption is that by displacing the samples to the closest
node, there is little loss of accuracy in the final model. This
is reasonable if the nodes are closely spaced with respect
to sparse samples. In this case, samples are easier to find
within the neighborhood, as only the nodes around the sim-
ulated node are to be searched. Samples are, in this case,
treated as previously simulated nodes.

Having to do two searches is computationally costly, there-
fore assigning data to nodes is a good approach to save
simulation time.
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Random path and multiple grids

Nowhere in the theoretical formulation of sequential simu-
lation is a requirement for the nodes to be randomly visited.
In theory, one could visit the nodes of the grid in order fol-
lowing a regular path and condition to the samples and pre-
viously simulated nodes (within the search neighborhood).
However, kriging may generate some artifacts due to the
screening effect. Therefore, a random path is used to avoid
these artifacts.

The random path is, however, not completely random,
since another trick is used to ensure long range continu-
ity is reproduced. It is easy to imagine that as simulation
progresses, more and more informed nodes become avail-
able to condition subsequent simulation nodes. Therefore,
in the search neighborhood, and considering that a maxi-
mum number of previously simulated nodes is used to limit
the size of the kriging system, only the closest previously
simulated nodes will be used for kriging. This implies that
the continuity will be imposed for short distances, but the
long range continuity may not be properly captured. The
multiple grids approach considers simulating first a coarse
grid of points and then refining the grid as simulation pro-
gresses, to ensure that at early stages of the simulation,
the long range continuity is locked by the simulated points
over the coarse grid. Within each grid (coarser to finer), the
nodes are visited randomly. In summary, by using multiple
grids, the path is structured from a coarse grid to a fine grid,
but nodes are visited randomly within each level.
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Simple or ordinary kriging?

We know that simple kriging relies heavily on the assump-
tion of stationarity of the mean. This makes it inflexible to
local changes in the mean of the variable. Could we use or-
dinary kriging to make it more robust to local changes? Un-
fortunately, the answer is: no. Simple kriging identifies the
conditional expectation and conditional variance in the case
of a multiGaussian variable. If we were to use ordinary krig-
ing, we would not be estimating properly these two param-
eters (conditional mean and conditional variance). In fact,
the kriging variance in ordinary kriging is always higher than
that of simple kriging. Therefore, the conditional Gaussian
distributions obtained will show more variability than their
“true” variability. When drawing values from that distribu-
tion by Monte Carlo simulation, we will be overestimating
the variability. This translates in a variance inflation in the
global result of the simulation and, as a consequence, the
global histogram is not reproduced and the model is biased.

Computational issues

Simulations are heavy in computational requirements. De-
pending on the implementation, the full array of simulated
values needs to be kept in RAM memory, so when simula-
tion grids are large, this becomes a problem. In terms of
CPU, they are also very demanding and therefore, they may
take some time to be completed. At each node a search, a
kriging and a simulation is done. This is repeated for all the
nodes and repeated again for multiple simulations. We will
not dwell about these details in these notes.
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