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The Law of Large Numbers prescribes the randomness ratio as convergent and increasingly accurate in

proportion to collected data. Probability rate invariance is therefore a primary axiom from which
Statistics and Quantum Mechanical formulations are determined.

This study begins by defining a mathematical model from which binomial random combinations can be
reviewed. The Symmetry Set follows as decidedly fundamental. A randomizing binomial system contains
4 elements, when viewed two at a time, 8 permutations result. Each (n set) multiple participates as one

r2(1-r)n

discrete element. The set count [

invariant window results. All set sequences, counts and p: g ratios should match the formula.
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Invariant Window [r(1 —1)]

qp = pq set count equivalence means that for g > p, the g multiple sets will permute to p single sets. The
total number of combinations remains equal for both p and g sets (n =1, 2,...), for all values of the rate
(r). Randomizing (mixing) systems take many forms; as simple as coin flips or as complex as actuarial
tables. This study expects event summations for any large run of data to correspond to anticipated
sample rates. However, it is the contention of the study that combinational sequences and variant rates
exist and can be predicted within large runs of random outcomes. Statistical and binomial distributions
often provide counterintuitive expectations for typically small set numerical prepositions. But, the
overriding proposition that random events exist with no rhyme, reason or pattern outside the mean
event rate per outcome, effectively defines probability invariance.

Vertical Tumbler (open randomization)

The study began with the construction of a four-foot vertical tumbler. One complete revolution cycles 30
Ping-Pong balls through 16 (group mixing) baffles. Fifteen balls were marked red and the outcomes were
recorded sequentially, as one ball appears in each catch, for each half-cycle. A sample of 5,000 outcomes

1 . R . .
atthep = 5 = q rate was recorded. Data sequences provide the combination set information to produce

the Symmetry Set stacks and the following was observed (see figure 2). Form 1.1 is used to calculate
invariant expectations.

Forml.l:{n: 113 4 12 112 12 }0 = white

OX0OXXX0000X00X0XX0XxX) X =red

Given p = q for the experimental rate, the data provided p : q at (2496 : 2504) events. The near exact
rate of 0.4992 : 0.5008 was obtained.

Calc Data : : Data Calc
78.131 85 <S5.)5+ (5) (5) S,)5+> 80 178.13
78.13 82 0000 (4) (4) X XXX 77 78.13
156.25 157 000 (3) (3) XX X 153 156.25

312.50> 305 00 2) 2) X X 329 <3125
625.00 591 581  625.00
0 1 1 X
125000 1220 @ (1) (1) ®P)1520 125000
Uy)5000 n n
P)50:50 q"p? q*p"

Since the probability rate of (50/50) was used, the ‘summation stack’ counts for both combination sets
will be combined to review the cumulative results (see below).



1.2 ~ 1 (12+)
Sym-set 12 -~ 1 (11)
(combined data) 49 ~ 2 ( 10)
pP=gq 24 ~ 5 (9
multiple stacks 9.8 < 12 (8) (1) 1250.0 > 1172 singlesets A (.062
195 < 28 (7) (2+) 1250.0 < 1268 multiple sets A (). ()14
39.1 >29 (6) 2500 > 2440 A(0.048
Us) 5000 78.1 < 87 (95)
Pg) 50:50 1563 < 159 calc data

(
312.0 ~ 310 (
625.0 < 634 (
1250.0 > 1172(1)

4)
3)
2)

2500.0 > 2440

The p: q data rate is accurate to 4/10,000ths of the experimental rate. And yet, a significant variation
exists in the single and multiple set counts.

Data Sequence Brackets - Experimental data is collected using (x : 0) format. All events are bracketed by
(alternating) singles : (alternating) multiples (see figure 2)
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The 5000 event vertical tumbler (p = q) data resulted in the following Alternating Single (As) summation

x/o

18712

19/11

stack (combined p, q):

p,qAs Progressive Regressive
data calc data calc
1) 315 > 312.5 1300 3125
2) 161 > 156.3 {139 156.3
3) 74 < 78.1 65 78.1
4) 36 < 39.1 29 39.1
5) 14 < 19.5 15 19.5
6) 9 < 9.8 6 9.8
7) 3 < 4.9 3 4.9
8) 3 < 2.4 557 2.4
9+) 615 2.4 2.4
625.0 625.0
data calc
[xxoxx (1) 315 = 312.5 A0.01
100}00 (2) 161 = 156.3 A0.03
=YY (3+) 139 < 156.3 A0.11




In the As stack, a uniform pattern with greater than calculated counts for terms (1 & 2) and consistently
lower counts for (3+) sets has emerged. Note the (data : calc) reversal for the combined (single set :
multiple set) term counts for the Multiple Stacks: Single: Multiples — M (Lo : Hi), As “:-.i : Lo)

S m m

It is considered that the perturbed set coefficient for the As and M sequences will create naturally
occurring permutations. That is to say, since all Alternating Multiples (Am) are bracketing or
“bookending’ all Alternating singles (As), one after the other in step-by-step cadence, variant patterns
should exist. The Alternating Multiple stack (combined p, q) is reviewed for similarly variant term

counts.

In the Am ‘stack’ (below), the term 1 count is significantly lower than the calculated value. The 2+ term
counts appear uniformly matched with the expected values. The lower terms should reflect greater

accuracy for the given smaller sample runs.

p,qAm data progression calc

1) 297 < 312.5

2) 158 ~ 156.3

3) 80 ~ 78.1 J" XOoOoXx

4) 39 ~ 39.1 (

5) 20 - 19.5 |oxxo

6) 4 < 9.8 data calc

7) 10 > 4.9 (1) 207 < 3125 A0.050
8) 5 > 2.4 (2+#)318 = 3128 A0.017
9+) 2 ~ 2.4

615 625.0

Symmetry set permutations - It is noteworthy that combinatorics provides = (nCp)P!, creating 6
combinations from 4 elements, two at a time, thus, (4C2)2!= 12, giving 12 permutations:

{ABCD} —

S M,S

The incongruity of the symmetry set prescribes singles as discrete from
multiples. A single permuting to a multiple reflects a multiple set. Therefore,
variant observations are only expected to involve 8 permutations, 4Pz # 12.
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Open, Closed and (p # q) Contained Randomizing Systems - The significantly large deviation in term
counts and stack patterns suggests an underlying connectivity in event ‘set’ sequences. For example, in
the (Am) stacks, the ‘multiple sets’ are operating as distinct elements, which are mixing and stacking
uniformly in agreement with the calculated values. In the Vertical Tumbler the elements are ‘remixed’
with each outcome—open randomization. This means that any patterns that may exist might be
identified uniquely across time and outcome. Experiments will be conducted to observe potential
variance with p # q and cases in which many elements are mixed and observed in resulting tracks of
events—closed randomization.

Data for the Vertical Tumbler which was reset with 9 red (x) ping pong balls and 18 white (0) was
collected for an additional 5000 runs. The experimental ratio of g : égenerated 1649 (x) and 3351 (0), a

ratio of P) 0.3298: 0.6702 or 17'7/10 000 ths accuracy. The observed ratio is used for the compared
calculated values for the six sequence stacks p, qM,, ,p, g4, , 0, qAs

(p) origin (U/ ;) laterals (VT) 5k data ;ij Ez; g:zjzi (q) origin (U/ 1) laterals
{x x(g)x X} {o g o} Prog }()Zl;?cg I:Si:tcfl)(l‘ {00(;1)00} {x(oq_o)x} Prog l(Dlg(l)cg Fs;ilc:tc(llr
Term 0) a4 PA- Mean | (120.2 =U, p3q) | 0) PAc qA- | Mean | (496.4:U,q%p)
1) 32 29 30.5<39.6p 80.6q 1) 317 303 310.0 < 332.7q 163.7p
2) 60 53 56.5 > 54.0q / 26.6p 2) 54 56 55.0 > 54.0p / 109.7q
3) 7 15 11.0>88p / 17.8q 3) 63 70 66.5 < 73.5q |/ 36.2p
4) 15 12 13.5>119q / 53p 4) 13 10 115~119p / 24.3q
5) 1 0.5~19p / 3.9q 5) 14 19 16.5~16.3q / 8.0p
6) 1 3 2.0~2.6q / 1.3p 6) 4 8 6.0 ~2.6p / 5.4q
7) 1 0.5~0.43p / 0.87q 7) 3 2 25~3.6q / 18p
8) 1 1 1~0871/ 0871 8) -~ ~06p / 12q
A0.04 117 114 1155 120.2 9) 1 05 12ql / 12pl
10) 1 0.5
A0.055 469 469 469.0 496.4
data calc data calc
1) 305 < 1) 39.6 A 0.230 1) 310.0 < 1)332.7 A0.068
2+) 85 > 2+) 80.6 A0.056 2+) 159.0 < 2+) 163.7 A0.029




qMn (0 0) (U, q*p = 740.7) pMn (x x) (U, p*q = 364.5
prog calc prog calc
2) 232 244.3 2) 230 244.3
3) 139 163.7 3) 102 80.6
4) 125 109.7 4) 21 26.6
5) 79 73.5 5) 10 8.8
6) 48 49.3 6) 5 2.9
7) 38 33.0 7) 1 0.9
8) 22 22.1 0.47 1 <§)
9) 12 14.8 369 364.5
10) 8 9.9
11) 12 6.7
124)| 11 L13.5(§)
726 740.7
data calc data calc
2) 232 < 2) 2443 A0.05 2) 230 < 2) 244.3 A0.05
3) 139 < 3) 163.7 AO0.15 3) 102 > 3) 80.6 AO0.27
4+) 355 > 4+) 332.6 A0.07 4+) 37 < 4+4) 39.6 A0.07

data calc

"'(x) £707 < 740.7

1

\(0) * 350 < 364.5 =

U, ¢*pA0.045 [single element

U, prgA0.040 et

The symmetry set represents a 4 cornered stepping key for event sequences. The count or coefficient
value for (r™) should provide a uniform code for the observed outcomes. Notice the rate reversal for the
single pq counts.

ct P ct
q{qM {oo, XX} pM} p{ sum equivalence } (gM) q § z p(pM)
plgSlo xJpS) qlforp(S,M),q(S,M)) (@S)p Z= q(®S)

’\ flips 71

The invariant window has produced p-many Single q’s and g-many Single p’s. Notice the counts for the
single (x)* 707 and (0)* 350. The lower probability event (x) has become the greater and (o) the lesser.
Term equivalence is expected for lateral stacks commencing from ‘like’ pq set origins. Consider the side-
by-side terms for { g As - ,pAm <« }and {pAs «,qAm - }.

As with the 50 / 50 Vertical Tumbler data, a significant variance occurs between observed and calculated
counts. The largest ‘delta’ occurs in the first or second term.
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Card Flip (closed randomization

6 decks of cards with three red cards removed from each deck will be used for the following experiments.
The cards are shuffled consistently and the (Am, As, M) stacks will be analyzed as the previous data. The
string of data that results has the distinction of being a single mix—closed randomness. This data is not a
remix of all elements with each outcome such as generated by the Vertical Tumbler—open randomness:

(Card Flips) 5k data 0.4694 (x): 0.5306 (o)

s [sso [rrog| 09[R0 oo | uaen [ rog | (inf [P
T%Em qAs - | pAm « | Mean | (274.4 =U, p3q) 0) | pAs « | gAm — | Mean | (350.6 = U,q3p)
1) 132 125 | 128.5| 1288p / 1456q | 1) 199 197 |198.0| 186.0q / 164.6p
2) 73 76 74.5 77.3q / 68.3p 2) 76 74 75.0 | 77.3p / 87.3q
3) 38 33 35.5 32.1p / 36.3q 3) 51 42 46.5 | 46.3q / 41.0p
4) 16 22 19.0 19.2q / 17.0p 4) 12 17 14.5 19.2p / 21.8¢q
5) 5 9 7.0 8.0p / 9.0q 5) 10 16 13.0 11.5q / 10.2p
6) 2 4 3.0 48q / 4.2p 6) 8 3 5.5 48p / 5.4q
7+) 3 6 4.5 142 /4.2 7+) 2 2 2.0 154 /541
269 275 | 272.0 274.4 . 358 351 354.5 350.6
data calc data calc
1) 1285 = 1) 1288 1) 1980 > 1)186.0 AO0.065
2+) 143.5~ 2+) 145.6 2+)156.5 < 2+)164.6 A0.049




qMn (0 0) (U0:q2120.78) pMn (x x) (U, p*q = 584.54
data calc data calc
2) 289 < 310.2p 2) 297 < 310.2q
3) 186 > 164.6q | 3) 125 > 145.6p |
4) 77 < 873 4) 74 > 68.3
5) 44 < 463 5) 41 > 32.1
6) 20 < 24.6 6) 17 > 15.1
7) 17 > 13.1 7) 10 > 7.1
8) 9 > 69 8) 5 > 3.3
9) 5 > 37 9+) | 3 > 2.9(5) |
10) 1 > 19 572 584.5
11) 3 > 1.0
12) 1 > 06
1349 1 > 0.6(%) |
653 660.1
data calc data calc

2) 289 < 2) 310.2 A0.68 2) 297 < 2) 3102 A0.042
3) 186 < 3) 164.6 A0.13 3) 125 < 3) 145.6 A0.141
4+)178 > 4+) 186.0 A0.043  4+) 150 > 4+) 128.8 A0.165

Symmetry Set Permutation - An overlapping pattern of variant counts and ratios have occurred in the
foregoing data. The different randomizing systems express a compliance with the common properties of
the 6 bounded random sequences (pgAm, pqAs,pqM). And yet, a repetitive and distinct discrepancy is
manifest in the first or lower term counts and the summation of the subsequent higher terms, for both
open and closed randomness. As determined, a ‘mirrored’ equivalence is expected for the four
upper/lower stacks.

Fig. 3
Consider a graphic of the bounded sets and the event option that occurs, given the mirrored like counts
(above). The event which determines whether the illustrated sequence transits from a (pAm1) to a
(pAm2), an upper lateral transition or executes an opposite transition to become a (qAs1), a lower lateral
transition, is as follows (below):

(¢)0.53 gM 24 : 1 pM24)047( p)
0[0)(0)YULT .1‘ x
@](0) oT x|

(Qevt (2)
(2)047(¢S5: LT 2851053 ¢q)

54(CF) 2)0.4694(x):0.5306( o)



yZo T
{oxoxx..(o)5

(O) evt.

| (@) cued permutable cvent

The examination for an expected permutation will begin by increasing the card flip data to 10,000
outcomes. The opposite transition shift to the lateral transitions will be charted.

U,) 10k CF p) 0.4694:0.5306

term term
(0)Upp { (0) x 0 [x]} o) POt (Mo ten ) @U,g {@ox o}
= U,p°q = U,q°p
(1) Upp {(0)x 0 x x ... [0]} (DUpq{(x)ox00...[x]}
2 2
Uop {pq (p /q> q} = U,p*q Uoq*p = U,q {qp (q /p>p}
data | pAm | calc 0.47 0.53 data | gAm | calc

U,p*q | (1) | 258 257.6 | oxxo X00X 376 | = |[3721 | (1) | Uyq*p

Q

Q

U,p3q® | (2) | 156 154.5 | o0xx00Xx x00xx0 |163¢| > |1545| (2) | U,q*p?

U,p*q® | (3+) | 136 136.7 | 0XX00XX... | X00XX00... | 162¢ | < | 174.7 | (3+) | U,q*p?

Q

U,p3q | (0) | 550 548.7 701 701.3 | (0) | U,q3p
data | gAs | calc 0.47 0.53 data | pAs | calc

Uyp*q | (1) | 252 | < |257.6| xxoxx ooxoo | 368 | < [3721| (1) | Uyq*p

Up3q® | (2) | 152f| < |154.5| xxoxoo ooxoxx | 147 | < |1545 | (2) | U,q3p3

U,p*q? | (3+) | 146f| > | 136.7 | xX0X0X... | ooxoxo... | 179 | > |174.7 | (3+) | U,q*p?

U,p3q | (0) | 550 548.7 694 701.3 | (0) | U,q3p
fterm flipping e equal values - viewed as seeking reversal

Notice the reversal flip (146f €->152f) and the equal values (162¢ = 163¢) for the term 2 and 3+ stacks.
This suggests an expected permutation should occur and may originate from both p, gAs.



Symmetry Set Mirrored Anomaly - The permutation (figure 3) identifies (pAm1) as the final ‘common
set’ prior to the stack shift, the Q event. The next event determines if a (pAm?2) set element has occurred
or identifies the Q event as the (qAs1) stack element. In both cases the (pAm1) has preceded the Q event.
In the case of (qAs1), the next event is the [p] post event [x], which defines the first term in the lower
lateral alternating (q) stack sequence.

The head start for the (pAm) stack along with the mirrored rate decrease for the (qAs1) element (that
being the gS key) might be viewed as producing a bias for the upper (pAm) stack. The total count for the
four key mirrored sets { gSpMpSqM } are necessarily balanced. This should produce transit rate
invariance for the upper and lower alternating stacks. The permutation being considered appears to be
the reverse of that suggested by the rate bias for (nAm2) since low term counts exceeding the
calculations have been observed for (qAs1) -- that being the first Single (q) event (0) in the (qAs) stack.

Timing Cadence Anomaly - At Q forward, two event steps produce 87.5% of (pAm2) or 100% of the
(qAs2) terms for (p = % =q)

Fig. 5
pA 2 complete I ]
e (7 ~time ~ /))
head start \, event o)
o 5 . q . — = 4
pU)paAm)(xx..) 000 [x] (p)e(9]p)| r| =P =%

q As2 complete

— - F 1
P(L)qAs) xx..(0)x|o] (f/) f)[ f]‘ =pq'=%

*The ¢.4.s2 sequence event rate is equal to the 2.4/%2 rate for the second term completion

When viewed from the head start through the post event the outcome events are asynchronous but the
rates are equivalent. For each element of the Am, the given multiple term is of undetermined length. The
geometric factor (7, = r/l _ , = 1) represents the composite rate for a multiple (M2+) at least 2
elements in length. The square factor prescribes {(0)o ...} = ¢q (% ) H{@)x ...} =p (S) .

(qAs) q¢ + aqp + q’p + q°p?

(pAm) p (g) + pq (%) + p?q (g) + p?q? (%) .

1 1
- + —=+...=1

t o3 16

Loy
2
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*The Alternating Multiple sets sequence correspondingly to the Alternating Single sets which is the
expectation for the four set transit.

As and Am occur asynchronously. For {pAm2 (qM3 +)},{(xx)ooo. . .[x]} = pq? (%) p=pq3 = %

For (qA4s3),{ (o0 )x o0 [x] } = ¢*p? = 1—16 . The matching rate may continue indefinitely, but notice the

(pAm?2) remains static in the second term. Since multiple elements are defined according to the
geometric expansion, the rate match for Am sequences with (M3+) elements is questionable.

Fig. 6

1

1
4 8

1
"= 2

qAds) xx  (0)[x] (ox)[o] (oxo0)[x]...

term: 1 2 3
As1 As2 As3
q q° q’
qM ) (xx)o 00 000 e x] (Am2) complete

Mn terms viewed at} (2) = P) Am = As (3+) = P) Am < As

Naturally, long (Am) multiple elements cannot occur synchronously and maintain a balanced count for
the (As) sequence sets. The initial formulations prescribe multiples as reducible by the square factor

(term ) r™ = 2" The square event can be viewed as corresponding to real time (single : multiple)
. 1 : : : .
outcomes thereby sequencing at the > rate. The varied rate for (Am : As) transit questions the notion of

invariant rates for single events and the counts within multiple sets. In other words, for the (Am) and
(As) stacks to be synchronized a corresponding pattern must exist within the multiple length sets which
is variantly returning the outcome to the opposite event. These corresponding breaks may lend to an
increased count or bias for low term (As) events.

Distance Set Count Anomaly - The tendency for the first or lower term counts to exceed the calculations
can be viewed as distancing the given combinations. For example the Card Flip data for P) 0.4694 :
0.5306 is reviewed for the multiple stacks:
qMn pMn

distance progressive recessive progressive recessive
symbols: (o0)o (2) 289 > 1364 (2) 297 1 1275 (xx)o
>forward (ooo0)x (3) 186* 1 1178 (3) 125 > {150* (xxx)x
1 stay (0oo0o0. .) (4+) 178 (4+) 150 (xxxx. .)

653 572

The progressive set value compared to the recessive value prescribes the probable expectations. The
given multiple sets for (pM2) {x x} can be considered more likely than (pM3+) {x x x. . .}. This means
that a predominant pattern exists in which {x x} is immediately followed by a (q) event { o }, thus
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producing {x x (0)}. This expectation might be considered likely since (q) is the higher probability. The

data suggests a rate of (% = 0.519) . Consider (pM3) {x x x} . This set does not demonstrate the stay

(1) count as does (pM2). On the contrary, (pM3) displays a bias to continue forward (>) to

(pM4) {x x x (x). . .}. The (p) expectation is occurring at a rate of C—jz = 0.545). This variant rate is in
excess of the converse (q)* rate. Consider the multiple (gM2) {o o}. This set displays the tendency to
continue forward (>) to (M3 +){ 0 0 (0). . .}. Again, this might be considered an invariant expectation

but consider term 3 (qM3) {0 0 0}. This set displays a bias to stay L at (qM3), which requires the

186

sequence {o o o (x) }. This variant (p) rate is (ﬁ = 0.511) . Again, the set is sequencing (p) at a variant

rate nearly equal to the (q)* rate.

Symmetry Set Paradox - The forgoing anomalies lead to the following conclusion. There exists within
randomization (contained mixing systems) a tapestry of connected, dimensionally interactive patterns
which exceed the invariant rates. The variety of systems, rates and permutable sequences establish
randomization as detached from the tether of the defining invariant principle. The perspective which
considers each outcome to be discrete and explicitly dependent on the binomial event does not appear
adequate. The variant sequences and rates are expected across the entire domain of probability from

G to 0) and the G to 1) counterpart.

To demonstrate the given permutation sequence, figure 3, the card flip data was increased to
U, = 50,000. The following variant data were obtained for the symmetry set stacks:

P) 0.4694:0.5306
Var A = 0.0002 (gM) 6607.8 6609 = <5892 58454 (pM) VarA = 0.0080
VarA=0.0109 (gS) 58454 5909~ =6620 6607.8 (pS) VarA=0.0018

50k Card Flip data

X
For this data, the given permutation{oxoxx. . . o @} was observed to occur 1465 times. Calculation

predicted 1455.86. The sequence data for the (p) event was 759 for{o x 0 x x . . . 0[x]} and for the (q)
event was 706 for{fox o x x. . . o [0]}. The data has demonstrated a ‘flip’ in the rate.

759 (x)} 0.5181 0.4694 {687.7 (x)

Var.dat { B, # P
ar.data 17605y 04819 P * P 05306 (7773 (0)

} Inv. calc.

Thought Experiment — As the biased deck of cards (23 red / 26 black) is flipped and the variant rate for
the sequenced cued card emerges, it begs the question as to whether the ordered event represents
information. If the predictable sequence defies entropy, then it must be asked whether randomness is
synonymous with chaos. Does the connectivity of a permutable sequence mean the cards know what
color they are? The timing/distance anomalies suggest that the pattern from the data for excess M sets of
3 or 4 red and black cards should remain, even for a deck of 52 cards. For multiple sets p = g, the
geometric even/odd or go/stay oscillation might be expected to dampen. But the cadence anomaly is a
response to the undetermined multiple term counts. Randomness itself introduces variance into the
otherwise uniform term expansion.
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Holosity — Observed Event Continuity

e The {pAm}{qAs} permutation demonstrates the flip reversal rate for the data. The converse

sequence will also be examined.

{pAm}{qAs} P) 0'5232 {gAm}H{pAs} 50k Card Flip data
706 (@) 0.518] & (2)[0.4529

% oxoxx..(0)[0]04719

seq.count = 1465

|

X XOXO0O0..

2

seq.count =1667

(x)[2] 0.5471

rate flip observed rate dilation observed

e The distance ‘set count’ anomaly demonstrates the ‘even/odd’ go/stay bias for the given observed

multiple (p/q) term. For example, {00 x X XXX 0X0XX00X000 XXXXXX. . .}
Ms Mg,

represents a multiple set distance of dx)3 for the (pqMs). Several (k) samplings of card flips were
n-—2
made with p ~ q. gn® = % are tested and observed. p = G) ;9 =1—p;log, G) = dx. The

multiple count issue for unknown term expansion seems to be identifiable in one pattern.
Logarithmic dampening appears uniform for the return of set counts within predictable (M,, )

distances. The 1L coefficient thereby provides continuous information variantly as events

proceed.
M, M; Mg,
p dx prog. rec. prog. rec. prog. rec.
r= ql 0 35 111 (2.4) 7 71 5 83
83
1 28 £ <73| 14 57 3 80
2 20 63 7 50 4 76
3 15 48 6 44 (5.2) 6 70
4 13 35 5 *39 <39] 8 62
(ret 5 12 23 8 31 4 58
urn 6 2 21 4 27 5 53 (10.7)
to 7 9 12 3 24 6 47
p) <44|
8 2 10 3 21 5 42
9 1 9 3 18 1 41
10 1 8 2 16 4 *37
11 12 6 1 15 2 35
12 2 4 1 14 1 34
13 3 1 1 13 1 33
14 -- 1 1 12 -- 33
15 -- 1 4 8 1 32
16 7 1 7 1 31
17+ 146 7/2g 31/ag
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A study for a common casino game was used to confirm technique. The game provides a banker
advantage over the player. The rate A is 1.25%. In the study, {p, q, Mg, } tracking revealed an excessive
‘return’ within the lower terms and the distance returns for the (M, ) extended to larger distances than
logarithmically projected.

Recorded data is linked for the observer, one play session to the next observed session. The event
continuity is maintained for the stacked counts. Distance sets will perpetually follow the extended terms
and rates across time. A test, in which data cards were resorted, continued to match the variant patterns
for the observer. A paradoxical question arises: If several selections from a mixing system results in
repetitively (lo/hi) probability events, does this alter the probability rate? If the chosen element is
returned for each selection, the rate should not vary. The return/distance ratio should maintain the
invariant rate, following the {r?(1 — r)"} summation. This dampening formula suggests the highest
probability for the low rate event to recur is therefore, the next event. However, the increasingly
dampened rate (1 — )™ remains constant, as (n) increases and the return distance also increases. For
particular (lo) combinations, variant return distances are observed, exceeding asymptotic limits. The
underlying connectivity in random sequenced events is identified by the shared rate discrepancies. The
permutable low term sets are described as a “halo” of variant events and the spike for precise high terms
sets as ‘tails’, i.e. the 50k card flip symmetry set data. An approach to quantify the variant rate will begin
by manipulating the geometric sequence for term expansion. The derivation will seek a general
expression for the anomalous probability variance, P, .

Probability Variance - Theorem 2.0

The Lateral Transition is defined as term (0). {p,qAs)1 and p,qAm)1}

(0) Upp {(0) x 0 [x]} —LT— (0) Upg {(x) 0x [0] }
= Uop°q =U,q°p
The Opposite Transition is defined as term (1).

(D) Uop {(0) x0xx...[0] } (D Uopq {(x)oxoo...[x]}
2 2
= Uop {pq <p /q> q} =U,q {qp (q /p> p}

A Tr A

The Opposite Transition Leak is defined as term (2+). The (i) geometric summation provides
numerical equivalence for the (As / Am) factor stack derived progression (figure 4).

24 U,(0*) ) g" OTL_ 2+ U(a*p) ) p"
1 1
= U, ®*9) 1/ = U,(q*)P/q
= U,p*q* = U,q°p?

The Lateral Transition Progression is the given term 2+ progression substituted for the (As / Am) factor
stack derived progression (figure 4).

® 2 U, 3,2 n
2+ U,(p3q% qZP" _LTP— @0 lelaw )pzo:q
0 = U,(q3p? +p4
=Us(@*a")(a +a"/g) ey (Z%%(pi g )
= Upy(p>q?)(q +P) "= U, q¥p? 14

= U,p3q*



It is shown that term (0) equals the sum of terms (1) and (2+) :

0 @ (2+)

0) @) (24)
p’q = p*q +p3q? °r = q*p + ¢°p®
=p3*q(p +q) = q°p(q +p)
=p3q =qp

In the forgoing, it has been established that term 2+ for the (As / Am) factor stack progression is
equivalent to the geometric sum. Term a, is thus defined.

Th 2.0 p,qa, = pq OTL = pq LTP
pa, = p3q® = aquP" qa, = ¢°p* = aopz q"
p q
= (pq¢?) (q +q 5) = (¢°p?) (p +p 5)
= (p3*q*)(q +p) = (@*p) +9)
= (°q*) = (¢°p?)
= aO

=a0

ray =13(1—71)% =ae(1 — r)Zr” =a,(1—-1r)+a,(1 —7r)r+ay(1 —7r)r2+...+a,(1 —r)r*1
0

aO a1 a2 an—l
a, a " a, a, (a,” (i)vcir; term < sum
U r? r?
exp.2.1: a, = [p,q OTL f] A-r+a (m) + aqr+a, (1—r2) =p,q OTL = p,q LTP
a, as+as+ ... a, az+ag+...
o xx (0) p UOT OT to LT qUOT xoo0 (x)
—_— k b
(1257.6xx 0 (xx,) pLOT L0k ale qLOT 00,x(00,)( 3721
U,p*q (0.4694 |0.5306 Uoq*p
ay(2 +) 291.2

U,p3qg®> pOTL q OTL  U,q3p? 329.2

X (0]
1982 — — (a, + ¢,») — — 215.0
00 X X

93.0 — —— (ay + ") — — 114.1
U - — (a a _— = .
X X 2 2 00

OT/LT , LT/OT
OT/LT , LT/OT
o(xx,00,)x - (U)LTP 5 x(00xx)o

(2) a,; 154.5 xx, (ox)% p°q q—(L)LTPp q°p 154.5 00 (x0)xx

o(xx,00,xx,)0 3 i3 x(00xx,00)x
(3) a, 72.5 2, (0%0)%%, p*q bp ql | a'p 82.0 00 (x0x)00
4 340 o(xx,00,xx,00,)x s 3 5 3 435 x(00, xx, 00, xx,)0
(4) a3 5% xx, (oxox)oo, P ap ' 00, (x0x0)xx,

/291.2 /329.2
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10k calc Index P)0.4694:0.5306

Upper OT / Upper LT
(p) (q)
o(xx,00,)x  198.2 x(oo,xx,)o  215.0
oxx, (0) o(xx,00,xx,)0 93.0 x00, (x) x(00,xx,00,)x 114.1
A. 291.2 C. 329.2
Lower OT / Lower LT
(p) (q)
xx,(ox)oo, 198.2 0o, (xo)xx, 215.0
M(xx') {xx’ (oxo)xx’ 93.0 M(OO,) {OO, (X'O_X')OO, 114.1
B. 291.2 D. 329.2
Lower LT / Upper OT
(q) (p)
00, (x0)xx, 215.0 xx, (0x)00, 198.2
XX, (oxo)xx,} oxx, (0) 93.0 00, (xox)oo,} %00, (x) 114.1
(p) E. 308.1 (q) G. 312.3
Upper LT / Lower OT
(a) (p)
x(00,xx,)0 215.0 o(xx,00,)x 198.2
o(xx,oo,xx,)o}w(xx') 93.0 x(00, xx, oo,)x} 00, x(00,) 1141
(») F. 308.1 (q) H. 312.3

Consider E (all lateral transitions sequencing to p(UOT) ), an input value of 308.1 events. Consider A (all
lateral transitions sequencing from p(UOT) ), an output value of 291.2 events. The same is true for F to B.
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Consider the symmetry set permutation {pAm} {qAs}, {oxoxx, ox} corresponding to all (LLT) input to

(p UOT). Q)
exp 2.2 pa, = [p (UOT) output] = [p, g(LTP) input] Z rh
1
(following index)
A=E Z r’
1
r

291.2 = 308.1 —

r = 0.4859

data

0.4859

Thus (B,) = . This rate predicts (0.5141 x 1465 = 753.2) given {pAm} {qAs} sequences, of which 759

0.5141
were observed for the 50k card flip data. Consider the two given permutations:
flip’ inv. data calc. o 106 ( ﬂ
0.4694 0.5181 0.5141 .
{pAm}{qAs} P) 05306 [0] pP) 0.4819 [0] F) 04859 [0] @ [.l'
759 .

If P, = |P, — P| is considered, then the rate ‘dilation’ for the converse sequence can be examined. Thus,
Pd =P i PA .

‘dilation’ inv. data calc. 755

0.4694 0.4529 0.4529 o] r
Am}{pAs} P py—2 & p :
teAm}(pAs} P) 5este @ P osari @ 7 0se71 o) (0] g

Experimental data corresponds to the ‘flip’ and ‘dilation’ variant rates with exceedingly high and precise
matches.

The foregoing (Lateral Transition Progressions) is viewed as linear term geometric series. The (As / Am)
factor stacks operate with a twin p/q oscillation, which, in fact, produce greater step-by-step accuracy.
Nevertheless, the array of anomalous observations persists. The convergence for both sequences at
infinite term summation appears to suggest ‘dualistic’ probabilities. A general expression for (P,) will be
derived for examination at infinite limits.

17



Th 2.0

exp 2.2 pa

(following index)

A

r =
A+E

V' " A+(qE+pE)

A=p'q (%) ;o qE=a; +a;" ;
=p*¢? =[e(®)]pa+:2)
= q3p3 (1 + 1?:2)

A

pa, =p OTL = p LTP

o = [p(UOT) output] = [p, q(LTP) input] Zr"

neglect U,

a, m factor= (pq)
pE =a, + a”

-~ a(®) v (1+:25)

=p*q® (1 + 1?;)

3,2

P q

P: =
Y A+ (qE + pE)

p3q24-p3q3(1-+ i 2)4-p4q3(1-+ v 2)
1-¢q 1-p

p3q*

1

p3g? + p3q3 +L‘152+ ptq3 +ﬁ
—q

1—p?

p3q®

3

3,2 342 q p3q
P*q +pq<1+q+1_qﬁ+pq+1_ﬁ

3 3
=<1+q+qp+1z + pq>
=[1+(1—p)+(1—p)p+

= |2+

polynomial division and simplification yields:

exp 2.3

-1

q> 1-p?

(1-p)?
1-(1-p)?

pPPa-pl”
1-p?

1- -1
p. P ]
p?—1 p?>=2p

18



Another review for lateral transition input can be considered with the p-component set to the balanced
rate of G) . The input from the g-component might be viewed as static; while the input from the p-

transition may dampen to equivalence.

_ A

A+E

V' " A+(qE+DE)

neglect U,

1 2
; a, m factor= (E)

A=p4q(§) ;0 qE = a4 +a” ; pE =a, +ax”
2
— 3,2 — | 4., (P q — |4, (42 12 (1)
=p°q —hzﬂg]pﬂ+rﬂz) ‘{quﬂ(g G*giy
2
2
= ¢*p* ( 1fqz) =p°¢
b _ A _ p’q’
= - 2
p°q
- 1
pq+qﬁ+fﬁf+ﬁq
p°q

simplification yields:

3 1
3,2 q
p-q (1+q 1—¢2 3)

4 -1
_[3739 +a
= -
__[4
13 q -1

e =
13 m—py—1

2
p°—2p

exp. 2.4 : Pvz ZE
3p 3p
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Variant expressions; derivatives at limits:

1_1
P, =ty 372
p3_p2_p__
1
, d -3 —6p3 + 7p% —1
Pvl_%[Pvl]: 3 _ 2 1 (2p3 —2p2 —2p — 1)2
pP-p*-p—>
lim Py, = P,,'(0) = 2
And
P p* —2p
»=%4 5§
3P 3Pl
8
P,_d[P]_ 2p -2 (30-3) ®@*-2p)
Todpt A 5o g (4, 5 LY
3P° 73 zp?—3p—1

In both cases, the derivative is 2. The fact that the (P, per P) graph will slope at two times the invariant
rate, as the probability approaches zero may provide observable phenomenon.

is

N |-

= 0.444. . . and P, atp == is 2= 0.555. . .

N |-
O |

P, atp =

As the invariant rate approaches (p: q) equivalence, the (P, per P) slopes will complement the % rate

explicitly:
dp, P, +P, =1
lim (E) = (1 4) (1 5 —0
P72 2 9 2 9/~
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Devil’s Tail - A property of mean stack count dilation

Consecutive multi-sets produce runs which can be viewed in a number of ways. Within the alternating,
multi-set (Am) brackets, {pM} and {qM} sets partition one another. (Am) brackets are likewise
partitioned by the alternating single (As) brackets.

Fixed rate
p : q elements

») ()

O
O
o)

4.43‘2&
gAm> 8} gdx)1
10 o)
q.‘f.5:1 * @
;;.JmI{ 28

g4 »dx)4
p.-'Im;{ 38 > £%)
gAs, g
/).'!ﬂh{ 40 )
gAs,
8} gdx)]
gAm, 8 } pdxl
8 } gdx)l
prAs,© O
o

series and ( ) for (q) series (see expressions ). In each case, the multi-set

1
14

structured P) g: %

50: 50 elements

(0)(©)
0]

Ms,

e

(o]o)

qgdx | M 234} 2
pdx.!./‘.’{ﬁ.g. 2

Ms, g}pdx'ﬂ/_q... 1
! qu‘ szg_;:l

} gdx)S

gdx)0
fl'fs.p

Q
QJ
O 4)
M sy §
@g}pdxﬂ

Notice the distance runs for the

p dx{Ms,}2 + must be partitioned by
(4s,) brackets for the structured runs.
The {gM} runs may be counted
concurrently without regard to (A4s)
brackets. For fixed rate (M) elements,
the given consecutive runs for either
(p or q) must be partitioned by (4s)
brackets for dx)2 +, dx)1 events may
occur within the (Am) brackets. The
prior permutations represent an
example of fixed rate closed randomness,

X
{oxoxx, o }. This is considered as a

variant rate expectation for

{rAs,pM, qAs}.

[t is considered that the given rate for the
multi-set stack counts are expressed by
‘1’ for both (p) and (g). The multi-set

summation is expressed by (%) for (p)

dx) stack example

summations are greater than one. Notice the {gMs} summations exceed the 1\ 8 1
invariant component by ‘1’. For G) the average distance for the (q) run P (é) 7 for I
Y.{qMs} should be (3) and the (p) stack count };{pMct} will reflect ‘1’. Thus, q (§) 8 for —
G : i) is not validated by the spontaneous variant sum of q(4). 1\ 4 1

p(z)=3%rg
Y{qMct} (Multi-Set Stack Counts) Y {pMct} q G) — 4 for %
Uy @) (p+22) Uy (a) (a+2) r(3)=2for

U)(®* +pq) = Usp
Dp
2) pq

pXoqt=p+q=1
3pg* |

U1)(q* + qp) = Urq

Daq
2) qp
3) q_p2

qXoprt=q+p=1
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The mixing systems ‘return’ to the converse event, (p) stacks ‘return’ to {q} sets and (q) stacks ‘return’ to

{p} sets. Multi-set ‘returns’ will stack along (As) brackets, {

observed systems.

D M)

U1)zz np"
Pe
K

o3
b/ &=
n=0

=U, (2) <p —(n+ Dp™*tt + npn+2>

p (p—1)?
=0.(5)(7) =25
2 Zp AN q(p 1
3) qp? EZ"pn (@)=
U,) 6,000 L
2(7,1
dx) q[234] ; 8 8
q(data) Z{q} calc
1) 76 p 76 81.3
2) 70pq 140 71.1
3) 63 pq® 189 62.2
4) 54 - 216 54.4
5) 44 - 220 47.6
6) 48 - 288 41.7
7) 31- 217 36.5
8) 35 280 31.9
9) 23 207 27.9
10+)  (206) (3530) (195.4)
650 5363 650.0

M, As, M, As, M,

1 ) 3 } exclusively for some

(Multi-Set Summation)

> tams)
lim ¢
k—co U1) BZ nq"
q 1
k

o
q7 &=
n=0

_ o (P\ (9~ (n+ Dg™" +ng™*?
= () (e >

-

U
Dp .

2)pq (P nqn=B<i>=l
Mrg* |44 q\p?/ p

Exact data matches for variantly long summation stacks
are observed in the variety of contained random systems.
The variantly greater sum in the example is shown to
maintain the invariant rate if the (g) summation is divided
4473> = 3. The given
count of 3 (q) elements for each single (p) element

by the corresponding (p) summation (

. 3.1 . .
provides the (Z : Z) ratio. However, the variantly long

runs for both (p and q) sequences are observed in the
variety of mixing systems. The perturbations occur
simultaneously given (n + 1 > n).

For example, a common casino card game, which is nearly
50 : 50, can be played using a structured rate and 3 small
adjusted progressions. The naturally disruptive q dx{p}
logarithmic distance can be avoided using the dilated runs
to provide a method without compound losses.

Consider a small rate ‘delta’ such as that in the foregoing
data. This will produce an increase in the term 1 count for
the (p) stacks and a decreased term 1 count for (q) stacks.
Simultaneously, the consecutive (As) partitioned (p)
stacks will produce variantly high {As, M, As} sets at the

rate of (g) for terms (3+). This is far in excess of (p)
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invariance; the sets reflecting (0.89) rather than

dx) p[5+] (0.47) rates. The observed exceptionally long multi-set
Y.{Ms} run phenomenon appears to originate from the
p(data) Z{P} calc modulation of the excess low set count being reduced by
1) 575 q 575 568.8 the larger element length, the increased distance for given
combinations. These anomalous sets are labeled the
2) 60 gp 120 711 ‘Devil’s Tail’.

U1=Uo(pq) Ui represents the ‘return’ count for both q:p

3) 12 qp* 36 8.9 stacks. In the given data, 650 combinations result from the

4 3 : 12 113 consecutive (Mset [2,3,4] ending in 650 ,Mset [5+]. Notice
that the distance (dx) analog equates to combination

650 743 650.0 lengths and their counts. The distance ‘return’ concept will

be used to demonstrate a waveform analog for explicit
trigonometric limits in the subsequent data for a
(q cOr = 2_6; — 8.25 Dilation circumferential random system. Macro quantum wave

5363 length:radian variance is thereby observed.

(gs)r = —a3 = /-22 Expected

variance Term zero distance - Varied descending term (0,1,2)
counts, non-sequential origination.

The formulations for term summation can be phased for
the (n-1) progressive stacks by applying the coefficient (p) for the p-stack series and (q) for the g-stack
series. This results in [U1)q/p] for the g-stack and [U1)p/q] for the p-stack. For the given data, 4553
consecutive ‘zero distance’ dx)0 sets are obtained for the g-stack and 93 dx)0 sets for the p-stack,
(1)60+(2)12+(3)3 =93. [Zero (dx) term counts] multiplied by the (Square) of the first term coefficient
for the q:p stacks divided by the converse rate provides the resulting progressive first term values.
[U1)q/p](p?/q) for g-stack, thus [(p)Term 0)=4553] and [Term 1)=81]. [U1)p/q](q?/p) for the p-stack,
thus[(q)Term 0)=93] and [Term 1)=569].

The given multiplying factors for the zero term count thus validates the first term coefficient for the q:p
stacks as (p) for the g-stack and (q) for the p-stack. However, a variety of open and closed random
systems have demonstrated distinct and repetitive variant high rates for the first and often low terms for
each of the combinational elements. A natural low term variant bias is therefore observed outside the
mean calculations for each random event. The given perturbations are thereby producing observable
sequenced permutations. All series terms have been observed to modulate from the static zero term
node. [p-p + p-9-p + p-9q-p + P-9qqq.p + --- ] [p.p + p-p.p + p-p-pp + -]
dx)p term) O 1 2 3 qdx)0 term) 1 2 3

A principle of spontaneous rate variance produces non-linear counts in the p:q progressive sets. All
randomizing systems closely maintain the equivalent p:q total stack combination count (U1). Zero term
p:q square rate divergence tends to favor excess (p) stack low terms due to the (q%/p) coefficient and
expanded (q) stack higher terms due to the (p%/q) factor. Waveform harmonics can be expected to result
from the p:q stack (term zero:term one) enigma. Notably, both p,q stacks (term 2) equal values are the
product of both p,q (term 0) rates, (p,qterm 2)=Uo(pq)2. Two extreme possibilities exist for the range of
(p+gq=1). For alarge database when U;=1, (term 0) is large for both p,q stacks and (term 1)=0. If (term 1)
is large then (term 0)=0. Discontinuity of the p:q stack term (0,1) factors spontaneously produce non-
linear progressions.

Uo[(1-1)r][r/(1-1)][(1-r)2/r] = Up[r(1-r)2] (TermO) Square flux factors {p%/q:q?/p}

c--=-Ug----. ---Term1---.
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Th. 3.0 The Complex Identity: Gi %i); (\% + L%) A

1) r=|z|=|x+iy|=+/x2+y%2 ; |z| magnitude of vector r identity
X g (m) 2
2) @i T S0 (2) 1

-limit condition-

lim p
3) 1—cosf = |P,| ; 6_>z(sin9)=1§?”
2
lim 1-cosx ) lim Py) ~ ~ .
4-)x—>0( x? ) " x>0 {p}_IPZ|_|Zn|_l]

lim 1-cosp _ sinp _ cosp) _ 1 e A e 1y
5)p—>0( 7 2 )—EbyLHopltalsRule

1 .
9—5 ly=1

—5 T Cycloid imprint (P, = 2p = 2x)
x=ty=; ¢ |Pz|=7

lim _lim _ 1 lim 1 _ > >
6)p—>0|PZ|_p_>0(r)—ﬁ ’ p_,o(x)—ly—z ; T=4x4+y

V2 V2
lim [P,| = |~ (3)+ (”)| L ! lex identit
= |— — —_ = |— — = = — *
pm(l)l 2| ﬁ(cos 2 i sin 2 >t r 7z complex identity
1 .1
i N P WX
2 2l — | — ==& = i
7) = |\/E+ lﬁ| ” 1 * | P,| unit rate
V2
—— 4 liy:x
8) 2nr? = 2m (1)2/2 =7 ¢ 7 mirrors identity
2 - N
“’VIE P, Z|
Ty
4 2 ’
Wi
o il
P~X~n 24

lim(p = =17



Pythagorean : Polar Analog

The polar form expression for the complex plane establishes the real vector (r) as coincident with the
complex number (z). The limit conditions for the orthogonal x: y scale can be considered the domain for

the unit circle. The probability rate for p: q observed events corresponds to the x-axis and the % radian

measures.

Forx =1,p=0,9g =1,rad = 0.

Fory = 1,rad = g,(P) = 0.

Sincen = wfor%z P=0

gcorresponds tox=P=0

(1 —cosf =isinB)

expresses real number accuracy for (0, %) limits. For P limit zero, iy = 1. For a limitless sum of events iy

will correspondto P = 1. = (iy = x = 1) for

limit co. :}72
- _ 2
XXX Xl : (P,,=f(x ))
SRS
b4 i lx V'=2
<3 p<<i lim

20
Multi Set 2, Recession

Reflection across x-axis for identity matrix
(limitx =y =1)~(P=1)

R L

|i0‘i0 |i0‘i0
0 1 0 1 0 1 0 1
x> 0
0 y?

=|—1 O| AB=BA=]
0 1

mirrored random links
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The commutative multiplicative inverse (I) establishes a new unit circle, thereby expanding sequenced

events across the negative probability axis-x. 1 = 'x? + y?%; 1 = cos?x + sin?x. The polar analog will
negative

resultin (1 — = sinx). For the considered infinite limit condition . =ix =y% =x?
esultin (1 — cos x = sinx). For the considered infinite limit conditio ' (P) unit circle y=ix=y*"=x
yields (1 — cosx : x?)
Cycloid -  uniform |1:l’: x| b o
Premise displacement across ST ST
(event-time) circular functlopallty
(arc-time) Circumfrential (C) “mirror point” 2‘;’;:& :_t;f?(:n
circle |277| (transcendental) symmetry
[ =44 cycloid | 8~ | arc length (L) Fo=x . P, | =P P =Y
Caxd : (whole) ' P’ 2 z 7
___________________ ; Rotation Real (P) adjusted scalar
angen at vertical
2a| T tangent
(L)arcclength (2. ¥) occurs for
: all P,
l \ combinations
Ay ' “ala
Pa) = Iz =Xp  geost ‘ Y
| ' = 27
- =0 [——|-asin/
= — ' ! T
X = a(!—sin/) e
%/ = ﬂ( .I. s COS’) r t t r Real (P) Hverncalﬂ
) — — . mixing i
iy=ia(l=cosr) 1 2z |ay|:rs @] ()
2 vertical hortzontal
vertical deceleration S. / stop tangent 5 e
occurs  smoothly across  vector - )

27 at P = rate
An established property of the Cycloid shape is the synchronous displacement of tangential items along
the arc% from 0 to % . All items along any position 0 to %Will displace to % in an equivalent constant time
(T) as long as a vertical, perpendicular and uniform acceleration exists along x effective upon (L).

L
{X TL'TEEET=C}
°T

n?=—=1L;}

Each prior cycle will produce n arcs for the current domain of circular displacements (S). Each prior%

start results in ng for all current stops. ng produces one cycloid arc (L). The total arcs produced for the
mean probability (P) is n for each cycle, n? for all prior cycles. The uniform distribution of the start/stop
component for each alternating cycle provides the vertical acceleration for the arcat 8 = % . Theiz : x

axis provides the horizontal component into the negative time axis. The unifying rate of the arc across
L o : . .
5 = X creates synchronization for variant sequences across time {iz : x = T}.
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Cyp, 1. The arc-time circular displacement tends to
the cycloid uniformity for 8 = g .

2. 1 — cos @ provides the vertical component for
the arc
3. Cycloid synchronization per (P)

randomization is expressed by
1—cosp «x

fx) = Tz ;) =D
4. L'Hopital’s second derivative ylelds the
rational Value 0 f'(x )— =

5. The P, expressmn yields the 11m1ting value of
2 for the first derivative.

6. The variant/invariant ratio yields Im : Re

/('./ ‘ 9 coordinates resulting in the identity

- 1) =il =i

(Po=1=O+¢p)="=m,

z=r(cos@ +isinf); w = s(cos¢ + ising)
mod (zw) = [zw| =r-s=1

arg (ZW)=(9+¢))=2?R=7T

P= %; outcome along circumference P = (n) displacements S for each

prior : current outcome cycle. Each cycle stepping back in time reflects n? displacements. For all n
cycles, n3 displacements occur (Sr)

Mixing outcomes alternate between current and prior location stops and starts. The current OTC, or stop,
becomes the next cycle start. The next OTC becomes the stop. The current (last-to-next) event results in
a measurable displacement. All prior outcomes are reviewed as prior starts to the current stop. This

temporal displacement is viewed to a distance of 7, (2) possible outcomes. The current last

circumferential displacement (o - n) is considered Tic 1, Return n. All prior cycle starts are designated
Ticl, 2, ... n. The cycle starts at the zero angle position for each Tic : return value. The results are viewed
inthe:y, (Tic:return) graph called the “Halo”.
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oo Temporal identity (vector)

(# / - ) ‘return’ (mixing motion)

origin =
o N
(x:y) y-(1-cosx)
limit x - (x’) {t event)
x-+0
l'Hopltal's(OIO)vhlds o (_l—cos.r_) L= SNy e =
indeterminant quotient /¢ ) =™ e By TR~
limit
x -0

A circle is an arc radially formed by a one-dimensional distance (r;). The circle is expressed in two
dimensions by the (x:y) scale (2r;). The (2r;,) scale is considered congruent with the (x:y) axes. The

perpendicular components of (r;) are given by the value (1/2) of the (x:y) unit axes. A dimensional

vector linking the radial center and the (x:y) axes origin is expressed by (1 / \/i)

The limit zero vertical component for the cycloid (1 — cos x) prescribes 8r. For the horizontal
component, the displaced motion corresponds to the (2"d) wheel. The perpendicular orientation

produces the prescribed P,) 1 / NG resultant vector. The common factor, (r) reflects (2r) for the cycloid

arc and (r) for the wheel. This prescribes (1/ 2) value for the (initial condition) vector components.
Notice the circular Ideal Centers and the Cycloid origin are ‘linked’ by the resultant (—+) vector (7).
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Prior OTC

(S) Returns

50k sample outcomes were
graphed using data from a roulette

wheel. This allowed for events to

Current OTC be plotted in time : space
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(otc) physical m
Column
1/0 (—values) 4.5
RIN MO H1 H2 H3
0 1344 1401 1400 1316
1 1401 1363 1337 137
2 1301 1265 1277 1282
3 1284 1324 1311 1381
4 1246 1361 1317 1330
S 1228 1295 1284 1390
6 1263 1356 1353 131
Physical 7 1246 1329 1262 1351
bias 8 1366 1282 1252 1210
9 1341 1332 1322 1366
10 1380 1271 1314 1343
B 1459 1304 1287 1308
12 1250 1315 1328 1264
13 1406 1329 1342 1337
14 WIS 1298 1322 1312
15 1299 1268 1322 1276
16 1263 1 1323 1318
B 1429 1303 135 1320
18 1399 1286 1365 1336
19 1268 1329 1332 1301
20 134t 1377 1388
1 129§ 3 1274 1322
2 18 138 1315
23 1300 p260 1294 1282
24 1139 291 1288 1356
25 1294 200 1275 12m
26 1251 327 1299 1291
27T 1329 320 1353 1301
28 1314 269 1327 1330
W 1438 299 1380 134
30 1244 123
mn(l+ @u.ﬁ .ﬂm
33 1283 1338 1287 1263
D3B3 1300 1280
2222 35 1258 1324 1301 1389
36 1410 1209 1260 1297
37 1315 1280 1291 1282
10T so77 10808 e wowis
Bias - u) 1315.79
11@15,525 1388.89
1)1411.36
vi) 1.0726

Time

RR (t:s) Halo

4

1278
1282
1300
1293
1310
1390
1327
1328
1322
1290
1320
1265
1332
1289
1202
1347
1317
1269
1321
1328
1313
1367
128
1344

o Ng

o Ns

*M, =>Pn=19 2x0=2x39.694

6.36

HS W6 W2
1358 1355 1365
1213 1214 1359
1355 1302 1344
1334 1333 1322
1329 1338 1297
1355 1262 1329
1268 1300 1330
129 132 1315
1334 1334 1306
1 1339 1348
1310 1253 1246
1345 1286 1324
1260 1371 1320
1311 1324 1307
1327 1317 1238
1308 1355 1278
1273 1304 1262
1367 1329 1246
1206 1275 1313
1316 1330 1296
1331 1341 1377
1205 1278 1293
1343 1341 1336
1256 1269 1342
1330 1390 1337
1360 1333

1341 1416 1359
1321 1295 1397
1306 1278 1380
1338 1328 1301
1314 1265 1312

81.9; A =1379.69
80.7; A =1396.5

U,)50k
9.0
H8 M9
1303 1323
1317 1275
1317 1339
1346 1243
1330 1363
1259 1383
1336 1327
1252 1325
1263 1267
1329 1301
1268 1265
1363 1303
1342 1336
1300 1316
1285 1310
1204 1311
1316 1353
1220 1275
1311 1362
1397 1345
1306 1379
1362 1345
1293 1355

79.6; A =13954; A/, = 1.0605

2 times (variant) standard deviation = 79.39

4.15.9
HQHM:NM w\_uoa 7 files (277) Time Trace Nodes
a9 o 450 jdentity (t:s)
1278 {(1/2Pn—-1DII? P} 2 standard
HI0 M1 M2 M3 MM IS M6 W17 M8 M9 M20 geyiation
1351 1262 1353 1375 1345 1347 1368 1330 1386 1280 1398
1263 1331 1332 1331 1254 1311 1296 1305 1354 1370 1330
1300 1297 1344 1350 1301 1319 1304 1363 1269 1256 1283
1237 1344 1341 1293 1368 1305 1366 1327 1356 1333 13N
125¢ 1202 1261 1272 1257 1222 1299 1307 1279 1292 1349
1343 1317 1341 1274 §403 1254 1260 1306 1383 1303 135
1333 1205 1309 1337 1309 1375 1284 1336 1250 1335 1300
1360 1361 1298 1346 1303 1305 1359 1342 1321 1339 1338 ()
1360 1306 1273 1336 1263 1312 1231 1331 1313 1288 1229 p3io oo
1330 1297 1352 1276 1323 1313 1410 1254 1253 1331 1308 (z 'SP
1346 1200 1290 1333 1318 1258 1293 1251 1225 1293 1283 by tumbler bas
1200 1308 1341 1306 1367 1309 1299 3390 1323 1212 1330
136 124 134 1333 1323 1341 1308 1328 1256 1309 1324 xNodeis
1346 1347 1342 1351 1296 1350 1264 1324 1304 1303 139 L.
1304 1269 1329 12684 1339 1338 1357 1386 1266 1333 1295 dISplacedto
1330 1270 1334 1316 1308 1279 1392 1308 1274 1321 1317 adjacenttime
1230 1269 1393 1357 1316 1333 1316 1248 1292 1342 13%6 nodes.
1301 1328 1339 1208 1308 1313 1225 1295 1269 132 1288
1315 1339 1335 1355 1325 1245 1246 1344 1378 1375 1322 ' )
1M8 1235 1328 1270 1296 1276 1305 1384 1372 1:5 130 i(odd) }i
1339 1343 1302 1311 1349 1290 1372 1343 1369 1327 coefficient at P2
1362 1420 134 1312 1325 1316 1329 1313 resyltsin
10 1372 1273 1372 1414 1330 1289 1317 1334
1200 1265 1314 1384 1359 1332 1299 1330 reversevalue
1277 1350 1332 1344 1329 1327 1364 1265 1307 butrefraction
1134 1275 1332 1220 1307 1369 1230 1353 1382 1213 notexpected.
1264 12906 1328 1309 1367 1326 1305 1222 1337 1273 1264
1345 1332 1325 1340 1312 1398 1300 1314 1295 1407 1253 b
1274 1334 1357 1284 1348 1334 1244 1283 1308 1301 1319 -~ CAuse =Dhias
1327 1265 1242 1340 1341 1344 1288 1306 1365 1370 1293 N, u) 13795
1317 1302 1323 132 3396 1336 1285 ) 1.0484;
1268 1333 1330 1335 1348 12M
1597 iw1 i THR i ims  ise nearexpected
1286 1374 1340 13807 1262 1323 1383 1323 1236 1341 1371 variancevalue
1259 1303 1322 1307 1326 1289 1321 1223 1347 1217 1330 forsingle P,)
1337 1332 1320 1288 1330 1300 1272 1269 1371 1338 1319 pode
1302 1387 1309 1315 1201 1326 1331 1375 1324 1321 1349
1337 1338 1224 1240 1331 124 1335 1313 1232 1269 1328 .
10C0 4971 “ve 0G0 10203 10%Q1 4T 497 o aomr 10:C0 50ﬁ Ho ﬁ:MﬁmmmﬂQ
idea of exact
=2 -0.0566 760 Nodes, B,)0.05058
59,840, 43Vyy; 1) 1391.63, calc)1382.34,1.0067
vi) 1.0576
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—Summary—
As described in Th 3.0, the limit condition for the x, iy-complex plane allows for a mirrored equivalence

across the % identity argument, if the radian P value equals 1 for both axes. (x =iy = 1)~(P = 1).
Consider (m~n~o0).

For (Z = P), this condition can be seen as possible for events stacking across time for outcomes = infinity.

The given condition for x = P = 1, for the radian measure limit 7 — 0, assumes P = 1 for the outcome
limit n - 1. The condition for radiang = P = 0 is considered for limit n - oo.

If the system tends to uniformity, for the % identity argument, the radian displacement S will connect

outcomes into the negative events per outcome - x-axis. This prescribes (n . %) ~(P = 1). The negative
time trace identity present in the halo graph, 2 x ¢ nodes, matches the time : space axis parameters for
{|P] = \/% vector} multiplying factors.

—Thought Experiments—

If random events are manifestly synchronized across negative time, i.e. the multiplicative inverse

(x: iy)-matrix, then a real and plausibly physical continuum of positive/negative time exists. If a negative
time wave form is found to describe matter, Variance Theory will require a matter : energy leak. If a push
in negative time results in attraction, is this gravity? Are slowly moving galaxies experiencing more
trans-time gravity waves? Perhaps the observed extra centripetal force in some galactic spirals does not
require dark matter.

The old wives tale prescribes lightning as never striking the same place twice. Could the intuition of
stubbing your toe twice in the same day reflect some truth? The research demonstrates that low
probability events tend to recur at a variantly high rate for given contained randomizing systems.

The conundrum of the miraculously complex and minute DNA molecule may involve the variant binomial
phenomenon; A- T, G - C. Is the molecule evolving with an inherent proclivity for certain combinations?
Does the blue print for life have a mind of its own, precluding much of the so-called natural selection?

Consciousness might be considered little more than data collection and processing. Are we nothing more
than self-deceived computers? If the complex lipid structure of neurons is participating in a natural
property of time-slip connectivity, self-awareness takes on a new meaning.

Einstein’s Relativity identified static light velocity as dependent upon the observer’s positive time
dilation. If random systems are experiencing a continuum of negative time synchronicity, then motion

and mixing itself is establishing a domain of immutable information along a negative : positive time axis.

Many possibilities currently excluded from the academic dogma appear quite probable.
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