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ABSTRACT Using the recently developed single molecule force-clamp technique we quantitatively measure the kinetics of
conformational changes of polyprotein molecules at a constant force. In response to an applied force of 110 pN, we measure
the dwell times of 1647 unfolding events of individual ubiquitin modules within each protein chain. We then establish a rigorous
method for analyzing force-clamp data using order statistics. This allows us to test the success of a history-independent, two-
state model in describing the kinetics of the unfolding process. We find that the average unfolding trajectory is independent of
the number of protein modules N in each trajectory, which varies between 3 and 12 (the engineered protein length), suggesting
that the unfolding events in each chain are uncorrelated. We then derive a binomial distribution of dwell times to describe the
stochastic dynamics of protein unfolding. This distribution successfully describes 81% of the data with a single rate constant of
a ¼ 0.6 s�1 for all N. The remainder of the data that cannot be accounted for suggests alternative unfolding barriers in the
energy landscape of the protein. This method investigates the statistical features of unfolding beyond the average measurement
of a single rate constant, thus providing an attractive alternative for measuring kinetics by force-clamp spectroscopy.

INTRODUCTION

Statistical analysis of single molecule kinetics of biological

reactions has revealed the mechanisms of several important

processes (1), including the function of ion channels in cell

membranes (2,3) and the evoked synaptic transmission in

neurons (4). With the advent of new single molecule tech-

niques that can probe folding and unfolding of biomolecules

over time (5–9), appropriate histogram fits and maximum-

likelihood methods (10,11) to overcome problems of noise

and artifacts are becoming increasingly important in the

field. In these experiments, a single module protein fluctuates

over time between different conformational states that can

be observed and their lifetimes measured. If the reaction is

modeled by the simplest two-state Markov process, as is

often the case in protein (un)folding (12,13), the distribution

of unfolding times can be fitted by a single exponential

curve, yielding the rate constant of the reaction.

On the other hand, many modular proteins perform their

function in tandem, such as the immunoglobulin modules in

the muscle protein titin (14) or multiple ubiquitin modules in

protein degradation (15). The influence of the proximity of

multiple protein modules in a chain on the unfolding process

is a biologically relevant question, since it may introduce cor-

relations via domain swapping (16), module-module inter-

actions (17), aggregation (18) or energy storage through the

molecular spring (19). A wealth of information about the

underlying kinetics of the process can be inferred from

the distribution of unfolding times of the individual protein

modules. However, the number of modules in the chain, N,

and the order number of each unfolding event in the chain, k,

must first be taken into account in the statistical analysis.

Such an analysis can then test the system’s dynamics, as

purely stochastic (random) or including memory (correla-

tions), as well as the presence of alternative unfolding energy

barriers.

Force-clamp spectroscopy using atomic force microscopy

(AFM) unambiguously follows single polyprotein unfolding

and refolding trajectories under a stretching force as a func-

tion of protein end-to-end length (13,20). Identical protein

modules in the chain serve as a firm signature of the single

molecule in the experiment. These measurements then yield

the precise dwell time, t, defined as the time it takes for each

module in the chain to unfold from the moment the force is

applied, which is marked by a step increase in length in the

force-clamp trajectories. Measuring the dwell times to a large

number of individual unfolding events allows for a statistical

analysis of the system’s kinetics. Previously, we have shown

that the average of just a few such unfolding trajectories,

analogous to bulk measurements (12), can be fitted with a

single exponential curve, suggesting that the process at a

given force appears stochastic (Markovian) (13). Moreover,

the average rate of unfolding, a, was shown to be expo-

nentially dependent on the stretching force (21).

Here, with a large statistical pool of 1647 unfolding events of

ubiquitin, we are able to perform thorough tests of Markovian

behavior, the effects of the chain length N on the kinetics of

unfolding, as well as the validity of the two-state model for

unfolding. In the AFM, the cantilever picks up single mole-

cule chains at random points on the surface, implying that

any number of protein modules within a chain, N # 12, may

be picked up in a pulling experiment. In single polyprotein
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chains, if the unfolding events are truly independent of one

another, the number of modules in the chain N should not

influence the time course of the average unfolding trajectory.

On the other hand, histograms of dwell times can be fitted

with a probability density function that is dependent on N.

In this study we demonstrate that ubiquitin modules unfold

independent of one another in each protein chain, refuting

arguments of module-module correlations. Finally, the as-

sumption of two-state unfolding is explored, by testing how

successful a unique unfolding rate constant is in fitting all the

dwell times using the derived stochastic model. We conclude

that a single rate constant is unable fit to all the obtained

dwell-time distributions, which is indicative of other path-

ways in the free energy landscape. We thus provide a statis-

tical analysis for data obtained by the force-clamp technique,

while probing important questions as to the microscopic mech-

anism of unfolding of ubiquitin.

MATERIALS AND METHODS

We used the polyprotein of human ubiquitin, engineered by consecutive

cloning of the monomer ubiquitin using the ‘‘sticky’’ ends of the BamHI and

BglII restriction sites (22) to form 12 identical domains in the polyprotein

chain. The 12-mer ubiquitin is cloned into the pQE30 (Qiagen, Valencia,

CA) expression vector and transformed into the BLR(DE3) Escherichia coli

expression strain. This construct has a C-terminus His-tag and has two

additional residues (arginine and serine) between each module in the chain.

The proteins were purified by histidine metal-affinity chromatography with

Talon resin (Clontech, Palo Alto, CA) and by gel-filtration using a Superdex

200 HR column (GE Biosciences). The length of the individual folded

protein is 3.8 nm from the PDB and the step length at 110 pN is measured to

be 20.4 6 0.7 nm, totaling 24.2 6 0.7 nm for the fully extended length of the

unfolded protein. This corresponds to the unraveling of all the 78 amino acid

residues in the protein structure.

The homemade AFM is constructed as described elsewhere (20). Using

analog electronics based on a proportional-integral-derivative amplifier

whose output is fed to the piezoelectric positioner, the AFM can be operated

under force-clamp conditions, in which the cantilever is kept at a constant

deflection (force) for a few seconds. The drift of the cantilever introduces an

error in the force calibration and is important to address. There are mainly

two sources of drift: mechanical relaxation of the whole experimental setup,

and the bending of the cantilever because of temperature changes in the

room, changes in adsorption on the surface, and the presence of air bubbles.

The drift manifests itself in the length trajectories as a nonstationary value of

the length over time at constant force, and can therefore be quantified. We

have a procedure that rejects any trajectory with an error in the cantilever

position of 65 pN over the course of the experiment (several seconds), thus

avoiding any influence of drift on the theoretical model and its results. This

corresponds to a change in cantilever position of �0.33 nm. Also, to avoid

drift, we only start taking data when the experiment is equilibrated at room

temperature to ensure constant force conditions.

The typical feedback response is set to 4–6 ms. The used cantilevers

(Veeco, MLCT-AUHW, Woodbury, NY) are individually calibrated using

the equipartition theorem (23) yielding spring constant values in the range of

12–18 pN/nm. As a result, the force-clamp technique maintains the cali-

brated cantilever in a constant position, such that the molecule is under a

fixed stretching force for the time of the experiment. Typical measurements

of protein length yield peak-to-peak noise of 60.5 nm. The polyprotein is

suspended in phosphate buffer solution on a gold cover slide.

RESULTS

A single ubiquitin molecule is held under a constant stretching

force between the cantilever and the surface, as shown in Fig.

1 a, tilting the protein energy landscape such that the unfolded

state becomes energetically favored. Consequently, the indi-

vidual modules unfold stochastically in a two-state manner on

the millisecond timescale of the experiment. This is evidenced

by the stepwise increases of 20 nm in the protein end-to-end

length, corresponding to the unraveling of all the amino acids

within each module in the chain, as illustrated by the staircases

in Fig. 1, b and c. We only include those trajectories that have

a minimum of three consecutive 20-nm steps in the staircase,

FIGURE 1 Single molecule force-clamp experi-

ments. (a) Schematic showing a polyprotein stretched

under a constant force of 110 pN between the can-

tilever tip and the gold surface. The unfolding of a

single domain is associated with a 20-nm release in the

protein end-to-end length for ubiquitin. (b) Unfolding

kinetics data for ubiquitin chains of varying number of

protein modules, N. Length versus time traces show the

20-nm stepwise increase in length each time a single

protein domain unfolds. Zero displacement is set at the

point where the molecule is taught. The dwell times to

the multiple unfolding events k are measured, as in-

dicated in the trace with N ¼ 3. Statistically, the larger

the N, the shorter the time it takes to observe an un-

folding event. (c) For a given N, the modules unfold

within a range of times since the process is probabi-

listic. This gives rise to dwell-time distributions.
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corresponding to the unfolding of at least three protein

modules as the signature of the polyubiquitin molecule. On

very rare occasions, ,0.1%, multiple molecules can attach to

the cantilever, but the likelihood of those giving a staircase

fingerprint of single molecule unfolding is negligible. Instead,

they give rise to a variety of unfolding step sizes, corre-

sponding to the parallel unfolding of individual modules in

different chains, and are therefore not included in the analysis.

The cantilever picks up molecules of any chain length, N,

as shown in Fig. 1 b. Inherent to the technique, there is an

uncertainty in N since the detachment of the molecule from

the cantilever takes place at random times, irrespective of

whether all the protein modules have unfolded. As the rate of

detachment is comparable to the average unfolding rate of the

protein, many molecules detach before the unfolding of all the

modules. For this reason, we only include those traces that

lasted longer than 4 s.

Owing to the large data set (272 trajectories ¼ 1647

events), we can segregate the trajectories according to the

number of modules in the chain, N. The normalized sum of

all the trajectories for each N is shown in Fig. 2. The single

exponential fitting rate constants do fluctuate within the

range of N (a ¼ 0.90–1.57 s�1). This narrow range and the

absence of a trend as a function of N demonstrates that

the average unfolding rate is independent of N. Because the

length of the chain does not influence the average rate of

unfolding, it would seem that the events are independent of

one another. The average over all the data (i.e., chain lengths

of N ¼ 3–12, black curve) naturally passes in between the

rest of the curves and is fit with a single exponential (dashed
gray curve) with a ¼ 1.03 s�1. This result is in remarkable

agreement with the previous estimation of the unfolding rate

at 110 pN, a ¼ 1.0 6 0.1 s�1, obtained from a fit of a much

reduced unfolding data set as a function of force (13).

Nevertheless, this large statistical pool of data reveals sig-

nificant deviations from the single exponential fit, indicating

the presence of other unfolding pathways, which are dis-

cussed in detail elsewhere (22).

The N independence of the average unfolding trajectories

can be rationalized assuming a stochastic process in which

the modules unfold independent of each other. If the average

rate of unfolding is a, the average time course of the nor-

malized protein length, L̂ðtÞ, as in Fig. 1, would then predict

L̂ðtÞ ¼ PðtÞ ¼ 1� e
�at
; (1)

where P(t) is the probability of unfolding over time, inde-

pendent of N, as shown in Fig. 2. Our result of N inde-

pendence of L̂ðtÞ therefore agrees with the assumption of

probabilistic Markovian unfolding, yet the deviations from

the single exponential fits are indicative of violations of the

two-state model for unfolding.

Next, we probe the stochastic dynamics of the forced

unfolding trajectories. We directly measure the dwell times

to the unfolding events of individual protein modules in each

polyubiquitin chain under a stretching force. The time it

takes to observe multiple unfolding events as a function of

chain length is then statistically investigated. If each module

unfolds probabilistically with the same rate constant, it

should take longer (on average) to observe three events out

of three than out of a pool of 12 modules, given that there are

more choices. Several such trends become apparent from the

length versus time trajectories shown in Fig. 1, b and c. In

agreement with the previous remark, the longer the chain

length N, the shorter the dwell times to the same number of

consecutive events, k, as observed in Fig. 1 b. Second, mul-

tiple events k in chains of the same length, e.g., N ¼ 5, are

shown to unfold at progressively longer times in Fig. 1 c.

Because the unfolding process is stochastic and not deter-

ministic, these observations are only true on average, and can

be quantitatively shown in the dwell-time histograms of all

the unfolding data. The dwell times of all the events that

occur first in the sequence, k ¼ 1, for different chain length

ranges N in Fig. 3 a confirm faster unfolding times for longer

chains. Also, dwell times to multiple events (k ¼ 1, 4, 7)

occurring in sequences of the same N range in Fig. 3 b show

not only longer dwell times for more events, but also a

change in the shape of the distributions from exponential

for a single event to broad distributions for large k. These

distributions indicate that the unfolding is probabilistic and

that the dwell-time distributions depend on both N and k,

which we next investigate theoretically.

If we assume that each individual unfolding event is a two-

state process and that the events are independent of one

another we first calculate the probability of unfolding mul-

tiple protein modules within a certain period of time. More

specifically, let us construct the probability as a function of

time of observing k unfolding events from N folded modules,

FIGURE 2 Comparison of the average unfolding trajectories obtained by

summing over traces containing the same number of unfolding events N.

The unfolding trajectories are independent of N, as obtained from the two-

state fits of Eq. 1 to the data. The variation in the single exponential fits with

a rate constant range Æ a æ ¼ 0.90–1.57 s�1 arises from additional pathways

in the landscape, also evidenced by the deviations of the single exponential

fits with x2 ¼ 40. The average trace over all the data is also shown with a ¼
1.03 s�1.
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that is, P(t, N, k). The probability that exactly (k � 1) modules

out of N unfold until time t, given that the probability to

unfold until time t is denoted p(t), is binomial

Pðt;N; k � 1Þ ¼ N!

ðk � 1Þ!ðN � ðk � 1ÞÞ!½1� pðtÞ�ðN�ðk�1ÞÞ

3 ½pðtÞ�ðk�1Þ
: (2)

Because the probability of a module to unfold in the time

range [t, t 1 dt] is adt, it follows that p(t) ¼ 1 � e�at. Thus

the probability of the kth module to unfold in the time range

[t, t 1 dt], is then just (N � (k � 1))a dt, since there are N �
(k � 1) modules that remain folded. Summing over all the

unfolding events, the probability P(t, N, k), that exactly k� 1

modules out of N unfold until time t and then the kth module

unfolds in the time range [t, t 1 dt], is then

Pðt;N; kÞ ¼ N!

ðk � 1Þ!ðN � ðk � 1ÞÞ!½1� pðtÞ�ðN�ðk�1ÞÞ

3 ½pðtÞ�ðk�1ÞðN � ðk � 1ÞÞa: (3)

This equation is normalized from zero to infinity over t.
We then used Monte Carlo simulations to test the proba-

bility theory. The simulations were based on a Markovian

(stochastic) process, with a single unfolding rate constant of

a ¼ 1.0 s�1, obtained for the average trajectory over all the

data shown in Fig. 2. Each simulation generated 1000 length

trajectories over time for each chain length N, while marking

the unfolding events by an increase in length of 20 nm,

mimicking the experiments. The resulting distribution of

dwell times for multiple unfolding events k ¼ 1, 3, 5, 7 for

N¼ 7 is shown in Fig. 4. The success of the fits of Eq. 3 with

a ¼ 1.0 s�1 confirms that the probability theory we derived

captures the stochastic two-state dynamics.

Next, we examine the success of the theory on the exper-

imental data. Fits of Eq. 3 to the experimental distributions in

Fig. 3 indicate that the functional form of the equation is

correct. However, in Fig. 3, the data is grouped into N ranges

to give better statistics, but this introduces errors in the

breadth of the distributions and a large variation in the rate

constants used to fit the histograms. We therefore measure

the average dwell-time values, rather than the actual distri-

butions, for the best fits of the rate constant for each chain

length N. The average dwell times are fitted with the expec-

tation values of Æ t æ for each event k and chain length N that

are obtained from Eq. 3, according to

Ætæ ¼
Z

tPðtÞdt ¼ 1

a
+
N

i¼ðN�k11Þ

1

i
: (4)

For each N, the average dwell times are successfully fitted

with Eq. 4, as shown in Fig. 5, with a relatively narrow

distribution of rate constants, a ¼ 0.87 6 0.13 s�1, shown

in the inset. These variations in the average rates indicate

FIGURE 3 Histograms of unfolding dwell times. (a) Distribution of dwell

times to the first unfolding event, k ¼ 1, as a function of N reveals that the

waiting time is longer for chains with fewer ubiquitin modules. The curves

are fitted with Eq. 3, which is the binomial distribution. (b) Distribution of

dwell times for k number of unfolding events, for a fixed N range. The

distributions range from exponential for k ¼ 1 to normal for large k, char-

acteristic of the binomial distribution.

FIGURE 4 Dwell-time distributions obtained using Monte Carlo simula-

tions for 1000 traces with chain length N ¼ 7. The success of the fits shows

that a Markovian, two-state process with a single rate constant of unfolding

gives rise to a binomial distribution derived in Eq. 3.
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discrepancies from the two-state model, but are also affected

by the following experimental artifacts.

In this figure the total number of modules N is assumed

to be the number of observed unfolding steps, since all the

experiments have lasted a minimum of 4 s. Although all the

average dwell times shown in Fig. 5 take place before this

threshold time, there is a finite but small probability of events

occurring at even longer times, as seen in the tails of the

distributions in Fig. 6 a. Their probability of occurrence is

low, however, trajectories that have detached from the can-

tilever before the unfolding of all the events have an un-

derestimated N, which could contribute to the observed

variation in the unfolding rate constants. Also, there is noise

in the stretching force arising from the thermal noise of the

cantilever, on which the unfolding rates are exponentially

dependent. Given these experimental errors, on average the

binomial model fits the experimental data reasonably well.

Note, however, that our analysis method is not capable of

capturing the diversity in the unfolding pathways of each

individual module, rather, it tests which single pathway (a)

fits the majority of the data for each chain length N.

Finally, we test the two-state model of unfolding by

searching for the most successful single rate constant in

fitting all the dwell-time data using the binomial distribution.

It is known that the length of each polyprotein chain N must

lie between the number of observed steps, kmax, and 12, the

engineered protein length. For each trajectory, we take the

time of the last unfolding event, i.e., of kmax, as well as an

input a-value and we solve Eq. 3 to obtain N as the maxi-

mum in the probability P. We therefore find the most likely N
for each single molecule trajectory. We then determine the

average rate constant a that best fits all the dwell-time data,

segregated by both k and the allocated N, as in the inset of

Fig. 5. This average rate output from the data is then input

into the binomial distribution in Eq. 3 in the next step of the

iteration procedure. When the input and the output rates

converge, we consider this to be the best possible rate

constant that fits the data. Using this iteration procedure, we

find the data to converge to a ¼ 0.6 s�1 from values far

above and below it, but only 81% of the data is allocated an

N that is within the possible experimental range. These data

are shown in Fig. 6 a, beautifully fitting the binomial dis-

tribution across the available range of N and k with the

predetermined single rate constant. The remainder of the data

is allocated an unrealistic N value in this procedure. Com-

paring the normalized average trajectories of the data selected

by the iteration procedure and the outliers, shown in Fig. 6 b,

we observe a fourfold faster average rate constant for the

outliers. Previous analysis presented in Fig. 5 included all the

data, as it did not assume a single best-fitting rate constant

FIGURE 5 Fits of the experimental average dwell times as a function of k

and N. Average dwell times to the first, second, kth event in the sequence of

each trace, segregated by the total number of steps in the staircase, N, show

that the data is successfully fitted with Eq. 4, with a rate constant of a ¼
0.87 6 0.13 s�1. The error bars represent the mean 6 SE. The variation in a

shown in the inset is independent of N, confirming that the process is

Markovian.

FIGURE 6 (a) Dwell-time distributions of experimental data that is best

fitted with a single rate constant of a¼ 0.7 s�1, consisting of 81% of all data.

They are fitted with Eq. 3 as a function of both N and k, clearly indicating the

success of the model. (b) Comparison of the average unfolding trajectories

obtained by summing over: traces accepted by the iteration procedure (green

line), and the outliers (red line). They reveal a clear separation in the rate

constants (indicated in the legend) between the selected data and the outliers,

suggesting a heterogeneity in the unfolding pathways. The single exponen-

tial fits still deviate from the two separated populations.
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for all N, such that the 19% representing the outliers are

accounted for in the variations of the fitting rate constants.

These results suggest that there is a subpopulation of mod-

ules unfolding much faster than the most probable pathway

(the most likely rate constant). Our statistical analysis reveals

this heterogeneity at the chain level when the faster outlier

modules are a majority. It is a coarse grained approach,

which implies an even larger population of outliers at the

single module level. One explanation for the outlier popu-

lation is that there is at least one alternative pathway in the

protein free energy landscape. However, even the popula-

tions separated by our iteration method significantly deviate

from the single exponential fits in Fig. 6 b, which is sug-

gestive of an even more complex unfolding landscape.

Although we cannot rule out a small contribution from

misfolded proteins on the surface with our technique, we have

previously found that they occur in ,2% of the cases and

are accompanied by extensions that do not correspond to the

signature in length of the protein (24). The outliers are

therefore highly unlikely to arise from misfolding. We next

investigate whether the noise in the stretching force arising

from the thermal noise of the cantilever could be the source of

the outlier population.

Fig. 7 a shows a typical length trajectory of a polyprotein

unfolding and the corresponding constant force trace in Fig.

7 b. A histogram of forces experienced by the protein due to

thermal noise of the cantilever is shown in Fig. 7 c, with an

average force f ¼ 110:81 pN and a standard deviation of

sf¼ 6.82 pN. We investigate the influence of this force noise

on the rate of unfolding and show that it is negligible com-

pared to the deviations we measure with the outliers.

The barrier crossing to unfold a protein is a thermally

driven process, where the barrier height is modulated by the

external force, F, as:

a ¼ aoe
FDx
kBT; (5)

where a is the rate of unfolding, a0 is the rate of unfolding in

the absence of force, Dx is the distance to the transition state,

and kBT is the thermal energy. Because of Brownian motion

the applied force is not constant, and has a probability

distribution given by:

PðFÞ ¼ 1

sf

1ffiffiffiffiffiffi
2p
p e

� F��f
2sf

� �2

; (6)

shown in Fig. 7 c. A simple change of variables in Eq. 5 leads

to an exponential distribution of rates instead of a single

value of a,

PðaÞ ¼ Fo

sf

1

a
exp �

ð f � Fologð a

ao
ÞÞ2

2s
2

f

 !
; (7)

where Fo[ kBT
Dx . This probability distribution has an expected

value of

a ¼ aoexp
f

Fo

1
s

2

f

2F
2

o

� �
: (8)

Using the experimental values of sf and f in Fig. 7 we

obtain an expected value of the narrow distribution of rates to

be within 10% of the rate measured without taking the force

noise into account. On the other hand, we find a four times

higher average value of the rate of unfolding of the ‘‘outlier’’

population, which shows that this effect is negligible com-

pared to the experimentally observed discrepancy.

DISCUSSION

Using a large pool of single module unfolding data obtained

by force-clamp spectroscopy, we were able to test the val-

idity of a stochastic model on the mechanism of unfolding in

polyprotein chains. We found that the average unfolding

trajectory over time is independent of the number of modules

in the chain, N, thus supporting the Markov hypothesis of

history-independent unfolding. We have demonstrated that

the proximity of multiple protein modules in a given chain

does not accelerate ubiquitin unfolding, as the events are

FIGURE 7 Thermal noise of the cantilever. (a) A

typical unfolding length trajectory of ubiquitin, under a

constant stretching force of 110 pN, shown in panel b.

(c) The distribution of forces in the trajectory in panel b

represents the thermal noise of the cantilever and gives

an average force f ¼ 110:81 pN and a mean 6 SD of

sf ¼ 6.82 pN. It broadens the distribution of measured

rates of unfolding by 10% (see text) and cannot account

for the outliers in the distribution.
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independent of one another. Therefore, our results show that

the dynamics of a single ubiquitin module is independent

of the length of the chain despite the recent evidence that

aggregation or stabilization due to interactions between the

individual modules may occur (18,17).

Another signature of Markovian behavior was shown to

be the binomial distribution of unfolding dwell times, in

which the average fitting rate constants in Fig. 5 were also

independent of N. The experimental data also proved that the

dwell times to the unfolding events are dependent on N since

N is small. For example, the longer the chain, the shorter one

has to wait for the same number of events to occur. On the

other hand, the last event in each chain takes place at later

times for longer chains.

While the Markovian assumption was shown to hold well,

we also discovered significant deviations from the two-state

model, which implies a single rate constant for unfolding.

First, the single exponential fits to the average trajectories in

Figs. 2 and 6 b clearly strayed from the experimental data.

Also, there were significant variations in the rate constant fits

of the average dwell times as a function of N in the inset of

Fig. 5. Furthermore, the single best fitting rate constant for

the data according to the binomial model did not account for

all the dwell times in Fig. 6 a. Instead, the two separated

populations in Fig. 6 b had vastly different average rate

constants and still could not be fitted with single exponen-

tials. All these discrepancies suggest that multiple unfolding

barriers do exist in the energy landscape of ubiquitin. Indeed,

a theoretical analysis at the single molecule level facilitated

the discovery of a distribution of unfolding pathways in the

glassy landscape of ubiquitin (22). Our results are consistent

with that finding, since the ‘‘selected’’ data in Fig. 6 b cor-

responds to the most probable pathway at the peak of the

distribution in Fig. 4 of Oberhauser et al. (24), while the

‘‘outliers’’ account for the tail of the observed broad distri-

bution.

In our experiments we are probing the lifetimes of dif-

ferent conformational states of the single protein molecules

explored under a constant stretching force. Arguably, this is

a much reduced phase space as compared to the molecules

that are free in solution, which is determined by the pulling

direction and the magnitude of the pulling force. We are

perturbing the system away from its native state in solution

to deduce the mechanical stability of the molecules. These

states are relevant in nature as the cell is an environment that

is often under stress (25). A protein’s mechanical stability

and conformational diversity under force are therefore rel-

evant parameters in nature.

Bulk kinetic measurements of ubiquitin show both single

pathway mechanisms and intermediates that appear as a

function of unfolding conditions (26–32). However, they are

unable to distinguish between the pathways of individual

molecules that are blurred in the ensemble. Single molecule

data has the important advantage of distinguishing between

the individual molecules, which reveals a wealth of new in-

formation. We have demonstrated how measuring dwell-

time distributions can produce kinetic signatures of the

conformations of ubiquitin at any given pulling force. Such a

capability is useful, particularly for future studies of how the

unfolding path depends on thermodynamic variables, such as

the temperature. With the advent of new statistical energy

landscape theories of protein folding and insight into the

complexity of the dynamics of folded protein structures,

there is an increasing need for more sophisticated statistical

analysis of protein unfolding/folding measurements.
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