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ABSTRACT The giant protein titin is responsible for the elasticity of nonactivated muscle sarcomeres. Titin-based passive stiff-
ness in myocardium is modulated by titin-isoform switching and protein-kinase (PK)A- or PKG-dependent titin phosphorylation.
Additional modulatory effects on titin stiffness may arise from disulfide bonding under oxidant stress, as many immunoglobulin-
like (Ig-)domains in titin’s spring region have a potential for S-S formation. Using single-molecule atomic force microscopy (AFM)
force-extension measurements on recombinant Ig-domain polyprotein constructs, we show that titin Ig-modules contain no stabi-
lizing disulfide bridge, contrary to previous belief. However, we demonstrate that the human N2-B-unique sequence (N2-Bus),
a cardiac-specific, physiologically extensible titin segment comprising 572 amino-acid residues, contains up to three disulfide
bridges under oxidizing conditions. AFM force spectroscopy on recombinant N2-Bus molecules demonstrated a much shorter
contour length in the absence of a reducing agent than in its presence, consistent with intramolecular S-S bonding. In stretch
experiments on isolated human heart myofibrils, the reducing agent thioredoxin lowered titin-based stiffness to a degree that
could be explained (using entropic elasticity theory) by altered extensibility solely of the N2-Bus. We conclude that increased
oxidant stress can elevate titin-based stiffness of cardiomyocytes, which may contribute to the global myocardial stiffening
frequently seen in the aging or failing heart.
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INTRODUCTION

Striated muscles generate passive tension in response to

a stretch due largely to the presence of the giant elastic

protein titin in their unitary building blocks, the sarcomeres.

Titins are 3.0–3.7 MDa size molecules spanning half of

a sarcomere, but only the molecular segment in the sarco-

mere’s so-called I-band region is functionally extensible

and assumes the function of a molecular spring (1,2). The

cardiac titin springs show remarkable plasticity during heart

development and disease in that their elasticity can be tuned

via differential splicing of the titin gene, thus generating iso-

forms of different length and springiness (1,2). For instance,

the failing human heart expresses a higher ratio of compliant

titin isoforms (so-called N2BA) over stiffer titin isoform (so-

called N2B) compared to the normal human heart (3–5). As

both isoform types are coexpressed in the cardiac sarcomere,

the higher N2BA:N2B expression ratio lowers myofibrillar

passive tension and stiffness. Dramatic alterations in titin

mechanics occur during pre- and perinatal heart develop-

ment, during which the stiffness of the cardiac titin springs

increases by up to an order of magnitude owing to titin-iso-

form switching in favor of the N2B isoform (6–10). Further-

more, recent evidence suggests that titin stiffness can also be

modulated acutely through phosphorylation mediated by

protein kinases, PKA (11–16) or PKG (16). Both PKA and

PKG phosphorylate titin at a site located within a cardiac-

specific segment, the N2-B domain (serine residue S469 of
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the human N2-B unique sequence (N2-Bus)), and this post-

translational modification reduces titin-based passive tension

and stiffness (16). The distinct mechanisms of titin-stiffness

adjustment, isoform-transition, and phosphorylation-depen-

dent stiffness modulation may complement or oppose one

another (17).

A previous study elucidating the atomic structure of the

first immunoglobulin (Ig)-like domain in I-band titin, I1,

proposed the presence of a disulfide (S-S) bond between

b-strands C and E of this domain, formed under oxidizing

conditions (18). However, only very rare S-S bonding

was found in single-molecule mechanical experiments on

I1 using atomic force microscopy (AFM) force spectroscopy

(19). After analyzing the published primary structure of titin

(20), Mayans et al. (18) suggested that many other Ig

domains in I-band titin, particularly those located in the

differentially spliced I-band Ig-domain segment (Fig. 1,

inset), carry the potential for disulfide bridge formation.

However, this proposal has not been verified experimentally.

Of importance, a disulfide bridge would stabilize the Ig

domain under conditions of oxidative stress and thus stiffen

the titin springs in the sarcomeres.

In this study we tested the possibility that altered mechanical

stability of titin domains is caused by redox state-dependent

S-S bridge formation. Contrary to the theoretical predictions,

single-molecule AFM force-extension measurements on

recombinant Ig-domain polyprotein constructs failed to

show evidence for domain-stabilizing disulfide bonding in

the differentially spliced I-band Ig segment. However, we

found that the cardiac-specific N2-Bus, a physiologically
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FIGURE 1 AFM force-extension experiments to test whether titin Ig domains can be stabilized by internal (S-S) bonding. (A and E) Exemplary recordings

and WLC fits to Ig-unfolding peaks; (B and F) Ig-domain unfolding forces; (C and G) persistence length, Lp, of the (partially) unfolded polypeptide chain; and

(D and H) contour-length increment upon Ig unfolding, DLc, for two different polyprotein constructs: (A–D) (I55-I56)4 and (E–H) (I57-I58)4. Values at the top

of the histograms are mean 5 SD; dotted lines are the best Gaussian fits. (Inset) Domain numbering for the differentially spliced I-band Ig-domain segment in

human cardiac titin is according to Bang et al. (23), Mayans et al. (18) using the nomenclature of Witt et al. (20), or the UniProtKB/Swiss-Prot entry (Q8WZ42)

for human titin. Predictions for S-S bridge potential in Igs were taken from Mayans et al. (18). Arrowheads point to the four Ig domains investigated by AFM.
Biophysical Journal 97(3) 825–834
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extensible titin region (21) that comprises 572 amino-acid

residues in human titin and was previously thought to be

an intrinsically disordered protein segment (22), is capable

of S-S bonding under oxidizing conditions. In AFM force

spectroscopy experiments, intramolecular bonding stabi-

lized the N2-Bus mechanically. Entropic elasticity model-

ing and mechanical experiments on isolated human heart

myofibrils showed that titin-based stiffness can be elevated

in sarcomeres as a result of increased oxidant stress. Thus,

disulfide bonding occurring in titin’s N2-Bus, but not the Ig

domains, may play a role in the increased global passive

stiffness of the heart seen in various pathological conditions.

MATERIALS AND METHODS

Recombinant titin constructs

To study whether a disulfide bridge can be detected in mechanical AFM

experiments on titin Ig domains, we generated two different recombinant

polyprotein constructs, each of which contained two neighboring Ig domains

from the differentially spliced I-band titin segment: (I55-I56)4 and (I57-58)4

(after the nomenclature of Bang et al. (23)), which would be called (44-45)4

and (46-47)4 according to Witt et al. (20) and Mayans et al. (18), respec-

tively, or (52-53)4 and (54-55)4 according to the UniProtKB/SwissProt

server Ig-domain numbering (Fig. 1, inset). Both polyprotein constructs,

whose constituting Ig domains have been suggested (18) to potentially

contain a disulfide bond (Fig. 1, inset), were expressed in Escherichia

coli (24) and purified under highly oxidative conditions in the presence

of H2O2.

Two different recombinant constructs were engineered that contained the

N2-Bus flanked by Ig domains. One construct type comprised three identical

I91 domains (initially called I27 (25) in the single-molecule field) on either

side of the N2-Bus, (I91)3-N2-Bus-(I91)3 (22), and the other contained the

N2-Bus flanked by its naturally occurring Ig domains, (I24-I25)-N2-Bus-

(I26-I27) (14). These constructs were used for AFM force-extension

measurements in which the signals from the Ig domains served as a ‘‘finger-

print’’ to detect single-molecule tethers (26).

We also expressed in Escherichia coli the human N2-Bus without flanking

Ig domains for use in Ellman’s test (see below). This N2-Bus construct was

purified in the absence of a reducing agent (dithiothreitol (DTT); Sigma Al-

drich, Munich, Germany). In addition to the wild-type N2-Bus, two different

mutants were generated: one with the cysteine at position 7 of the N2-Bus

replaced by a serine (C7S), and one with the cysteine at position 100

replaced by a serine (C100S).

The expression of all recombinant constructs was monitored by sodium

dodecyl sulfate polyacrylamide gel electrophoresis.

AFM force measurements

Both an MFP-3D atomic force microscope (Atomic Force F&E GmbH,

Mannheim, Germany) and a custom-built atomic force microscope (14)

were used. The spring constant of each individual cantilever (sharpened sili-

cone nitride, MSCT-AUHW; Veeco, Santa Barbara, CA) was calibrated

using the equipartition theorem, and was typically found to be ~40 pNnm�1.

In a given experiment, 2 mL of a 2 nM protein suspension were deposited

onto a glass coverslip and after 5 min the glass slide was rinsed with

200 mM phosphate-buffered saline (PBS). AFM force spectroscopy with

the Ig-domain constructs was done in 200 mM PBS buffer. AFM measure-

ments with the N2-Bus-containing constructs were performed in 200 mM

PBS in both the absence and presence of 10 mM DTT. After an equilibration

time of 5 min, polyproteins were picked up randomly by adsorption to the

AFM cantilever tip, facilitated by pressing down onto the sample for ~1 s

at high force (~1.5 nN), before the stretch commenced. Surface protein
density was optimized to ensure a low probability of tethering to the AFM

tip (about one in 400 attempts) to minimize the chance of capturing two

or more molecules and stretching them simultaneously. The pulling rate in

all AFM force-extension measurements was 500 nm s�1. Experiments

were performed at room temperature.

AFM data analysis

Protein elasticity was modeled using the wormlike chain (WLC) model of

pure-entropic elasticity according to the following equation:

F ¼
�

kBT

Lp

�"
1

4ð1� x=LcÞ2
� 1

4
þ x

Lc

#
; (1)

where F is the entropic-based force, Lp is the persistence length (a measure

of the bending rigidity of the polymer chain), x is the end-to-end extension,

Lc is the contour length, kB is the Boltzmann constant, and T is the absolute

temperature (26). Adjustable parameters in the model calculations were Lp

and Lc. Local force maxima (sawtooth-like force peaks) in force-extension

curves were detected by means of a custom-made Igor procedure (WaveMet-

rics, Portland, OR), with the final force peak in each trace discarded as indi-

cating detachment from the coverslip and/or AFM tip. Continuous interpeak

segments in a sawtooth-like force-extension trace were fitted using the WLC

model as follows: If the difference in Lc for consecutive segments fell within

the range of 24–35 nm for a given fixed Lp, then the force peak of the

preceding segment was assigned as an Ig-domain unfolding event (22,27).

For the N2-Bus-containing constructs, we analyzed only those force-exten-

sion curves that showed at least three ((I24-I25)-N2-Bus-(I26-I27)) or four

((I91)3-N2-Bus-(I91)3) regularly spaced Ig-unfolding peaks, because only

then could we be sure that the full N2-Bus was stretched. The Ig-unfolding

peaks (regularly spaced owing to a similar or even identical increase in

contour length upon each unfolding event) represent a ‘‘fingerprint’’ that

is obtained simply by using the WLC model. No alternative ‘‘fingerprinting’’

approaches (28) were applied here. The entropic elasticity parameters for the

N2-Bus were extracted from a WLC fit to the first Ig-unfolding peak, which

likely represented the force-extension behavior of the N2-Bus.

Disulfide bridge predictions

S-S bonds in the N2-Bus were predicted by the DiANNA (DiAminoacid Neural

Network Application) webserver (http://clavius.bc.edu/~clotelab/DiANNA/),

the CysPRED server (http://gpcr.biocomp.unibo.it/cgi/predictors/cyspred/

pred_cyspredcgi.cgi), the PreCys server (http://bioinfo.csie.ntu.edu.tw:5433/

Disulfide/), or the DISULFIND server (http://disulfind.dsi.unifi.it/). DiANNA

finds the maximum likelihood bonding state assignment that satisfies the

constraint for having an even number of disulfide bonded cysteines (ignoring

interchain bonds (29)). CysPRED is a neural network-based predictor that uses

evolutionary information (30). PreCys uses a two-level method of support

vector machines and global information of protein structure (31). DISULFIND

employs a bidirectional recursive neural network that is trained to predict the

expected distance of candidate patterns from the real one (32).

Ellman’s test

Ellman’s test is a standard method for detecting free thiols in solution

(33). Ellman’s reagent, 5,50-Dithio-bis(2-nitrobenzoic acid) (DTNB; Sigma

Aldrich, Munich, Germany), binds to free sulfhydryl groups as NTB, which

can be detected as a yellow color when measuring absorbance at 412 nm.

Additionally, we used the property of a reducing agent, sodium borohydride

(NaBH4; Sigma Aldrich, Munich, Germany), to denature a protein in solu-

tion, thereby cleaving any disulfide connections. Two different samples were

prepared: 1), the control, which contained the N2-Bus (wild-type or mutants)

and DTNB; and 2), the sample of interest that additionally contained the

reducing agent, NaBH4. By measuring (at room temperature) the absorbance

at 412 nm of the control solution (free thiol groups in nonreducing
Biophysical Journal 97(3) 825–834
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environment) and the protein-reagent complex (free thiol groups after

breaking of disulfide connections), we were able to calculate the number

of disulfide bridges in the N2-Bus using the following equation:

N ¼ MProtein

Ereduced

12000 � cProtein � d
; (2)

where N is the number of free thiols, MProtein is the molar mass of the N2-Bus

(63.27 kg mol�1), Ereduced is the extinction coefficient of the NaBH4-con-

taining solution (dimensionless), 12,000 [L mol�1cm�1] is the molar extinc-

tion coefficient of NTB in the solution, cProtein is the protein concentration,

and d is the thickness of the cuvette (1.0 cm). To prevent oxidation of thiols

after the disulfide connections were broken, the solution was covered with

N2. For each protein type, Ellman’s test was performed at least twice (the

same construct was expressed at least twice). Since the results were essen-

tially identical, only those obtained from the first measurement are shown.

Simulation of titin-based force

The titin force versus extension or sarcomere length (SL) relationship was

simulated using a force-extension curve generated from the weighted sum

of three WLC force-extension relations corresponding to the different exten-

sible regions in cardiac titin (5,22): segments of tandem Ig, the PEVK

region, and the N2-Bus. These segments are characterized by different

contour and persistence lengths, i.e., the total titin extension, X, is given by

X ¼
X3

i¼ 1

xi (3)

where the extension xi at a force F of the ith spring satisfies Eq. 1. Solutions

for the equations were found with the use of a standard numerical interpola-

tion technique.

Values for the number of Igs and PEVK residues for each WLC were as

follows: I-band titin segment of N2B-isoform, 41 Ig domains, 186 residues

in the PEVK region, and either 306 or 572 residues in the N2-Bus to account

for its contour length in the presence and absence, respectively, of an S-S

bond (which considers that bonding can occur between residues C100

(second cysteine) and C367 (fourth cysteine) of the N2-Bus). Assuming

that each residue spans ~0.36 nm, the resulting contour lengths were Lc ¼
110 nm (oxidizing conditions) and Lc ¼ 205 nm (reducing conditions).

For the I-band titin segment of the N2BA-isoform, a 986-residue PEVK

region and additionally 40 Ig domains were assumed. Other parameters,

including the persistence length values for each WLC, were as described

previously (16). Titin-based myofibrillar passive tension was deduced

from the force per titin, and SL was deduced from the I-band titin extension

(and an A-band width of 1.6 mm) as described previously (22). Finally, since

both N2B and N2BA are coexpressed in a human heart myofibril, the N2B

and N2BA isoforms were weighted 65% and 35%, respectively (3).

Passive stiffness measurements on isolated
cardiomyofibrils

Single human cardiomyofibrils were prepared and studied for passive force

generation as previously described (34). Briefly, left ventricular tissue from

human donor heart (16) was defrozen, homogenized in a ‘‘rigor’’ buffer

without ATP (for composition, see Opitz et al. 34), and a drop of the myofi-

bril suspension was deposited onto a coverglass under a Zeiss Axiovert 135

inverted microscope. Either end of a single myofibril was glued in ATP-con-

taining ‘‘relaxing’’ buffer (for composition, see Opitz et al. 34) to the tip of

a glass microneedle. One needle was connected to a custom-built force trans-

ducer with NanoNewton resolution (35), and the other was connected to

a piezoelectric actuator (Physik Instrumente, Karlsruhe, Germany). Motor

control and data acquisition were achieved with the use of custom-written

LabView algorithms (National Instruments, Munich, Germany). Before con-

ducting the actual experiment, we added 50 nM thioredoxin (Trx) reductase

(from rat liver; Sigma Aldrich, Munich, Germany) and 2 mM b-nicotin-
Biophysical Journal 97(3) 825–834
amide-adenine-dinucleotide phosphate (NADPH; Sigma Aldrich) to the

relaxing buffer. After equilibration, the SL of the myofibril (measured by

video microscopy) was oscillated between slack (typically, 1.9 mm) and

140% slack at a physiological frequency of 1 Hz for 10 s. After each burst,

the myofibril was allowed to recover at slack SL for 50 s. The same stretch

protocol was repeated 10–12 times. Then, 8 mM of recombinant human Trx

(kindly provided by Dr. A. Holmgren, Stockholm, Sweden) were added to

this buffer and the stretch protocol was repeated again. Experiments were

performed at room temperature. On the recorded traces we analyzed the

peak-to-peak force amplitudes using LabView algorithms and calculated

the mean amplitude value for each 10-s burst as a measure of passive stiff-

ness. Data for Trx-treated myofibrils were expressed relative to controls

(before addition of the Trx).

Statistics

Significant differences in myofibrillar passive stiffness were probed with the

use of an unpaired Student’s t-test; p-values < 0.05 were taken as indicating

significant differences.

RESULTS AND DISCUSSION

Differentially spliced Ig domains, I55–I58, are not
stabilized by a disulfide bridge

We selected the differentially spliced I-band titin Ig domains

I55, I56, I57, and I58 (Fig. 1, inset, arrowheads) as typical

examples of Ig modules with a potential for S-S bonding,

as predicted from sequence comparison with I1, a titin Ig

domain with known atomic structure (18). The Ig domains

I55–I58 (nomenclature of Bang et al. (23)) were called

domains 44–47 by Mayans et al. (18), who used the nomen-

clature of Witt et al. (20). We designed polyproteins contain-

ing four identical copies of a pair of either I55-I56 (I55-I56)4

or I57-I58 (I57-I58)4 (Fig. 1). AFM force-extension experi-

ments were performed on these polyproteins to determine

their mechanical properties. Representative force traces, re-

corded in 200 mM PBS buffer, are shown in Fig. 1, A and

E. The unfolding forces of (I57-I58)4 (Fig. 1 F) averaged

around 200 pN (199 5 28 pN; mean 5 SD; n ¼ 372),

whereas those of (I55-I56)4 (Fig. 1 B) were more broadly

distributed; a 2-Gaussian fit returned two different means

of 156 5 18 and 222 5 28 pN (n ¼ 281). These results

show that I57 and I58 have similar mechanical stabilities,

resembling that of the well-studied titin Ig domain, I91

(frequently also referred to as I27 according to Ig numbering

before Bang et al.’s (23) publication). In contrast, I55 and

I56 differed in their mechanical stabilities, but these fell

within the range reported for the constitutively expressed

Ig domains in I-band titin, I1-I15, and various differentially

spliced Ig domains (22,26,36–38).

Fitting the WLC model (Eq. 1) to the individual force

peaks returned the persistence length, Lp, of the unfolded

Ig domains. The mean Lp values were 0.28 and 0.29 nm

(Fig. 1, C and G), consistent with values expected for an

unfolded polypeptide chain. The WLC fit also revealed the

increase in contour length (DLc) for each Ig-unfolding event

(Fig. 1, D and H). If these Ig domains contain disulfide

bridge(s), the DLc should be significantly shorter than the
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DLc for a complete unfolding event (27–34 nm for titin Ig

domains (22,27)) because AFM stretch forces do not break

the covalent S-S bond (39–41). However, the DLc averaged

32.6 5 1.6 nm (mean 5 SD) for (I55-I56)4 and 32.1 5 0.8

nm for (I57-I58)4, without any hint of a substantially shorter

DLc. Previous AFM studies on the differentially spliced titin

Ig domains (36–38) reported DLc values similar to ours. In

contrast, short DLc values (18–25 nm; mean ¼ ~22 nm)

have been observed, albeit very infrequently, in AFM

force-extension experiments using I1 (19). Consistent with

this, steered molecular-dynamics simulations showed that

a disulfide bond in I1 bridging b-strands C and E would limit

the maximum extension of this Ig domain to 22.0 nm (42). In

this work, since we purified the Ig polyproteins in the pres-

ence of H2O2 (a strong oxidant) and conducted the AFM

experiments in the absence of a reducing agent, S-S bond(s)

should have been formed at least occasionally if the domains

were capable of such bonding. The complete absence of

short DLc values instead suggests that these Ig domains do

not form a disulfide bridge under oxidizing conditions. In

the natural environment of titin in the myocyte, the core of

the (folded) Ig domains is presumably well shielded and

S-S bond formation is even less likely to take place. Thus,

in cardiac cells exposed to oxidant stress, titin-based stiffness

is very unlikely to be altered because of titin Ig domains

forming S-S bridges.

Oxidizing conditions promote S-S bonding in
titin’s cardiac-specific N2-B unique sequence

We previously reported (14) that web-based disulfide con-

nectivity predictors indicated the potential for S-S bonding

in a titin segment expressed only in the cardiac isoforms of

this giant protein, specifically, the N2-B unique sequence

(see Fig. 1, inset). Here we extended that analysis and applied

several different webserver algorithms to search for the

potential of S-S bridge formation in the 572-residue human

N2-Bus, which contains six cysteine residues (Fig. 2 A).

Indeed, three out of four algorithms returned a positive result

(Fig. 2 A, bottom): DiANNA predicted three S-S bridges

(connecting the C7–C445, C100–C367, and C264–C408

residues in the N2-Bus), CysPRED predicted one S-S bridge

(C7–C264), and PreCys also predicted one S-S bridge

(C7–C445). Disulfind predicted no S-S connectivity.

In attempt to validate this result experimentally, we used

Ellman’s test to detect free thiols in recombinantly expressed

human wild-type or mutated (C7S or C100S) N2-Bus con-

structs purified under nonreducing conditions. The constructs

in solution were studied for absorbance at 412 nm before and

after exposure to the reducing agent, NaBH4. Using the wild-

type N2-Bus construct (concentration, cProtein ¼ 0.17 g L�1),

the solution turned yellow in the presence of NaBH4

(Fig. 2 B, left) and transmission dropped by ~20% (extinction

coefficient of the NaBH4-containing solution, Ereduced ¼
0.193). A simple calculation using Eq. 2 showed that on addi-
tion of NaBH4, n¼ 6 thiols/molecule became free, suggesting

that all sulfhydryl groups in the wild-type N2-Bus are capable

of S-S bonding under oxidizing conditions. The predictions of

the DiANNA webserver were thus confirmed, although the

experiment does not distinguish inter- from intramolecular dis-

ulfide bridges. Using the mutants C7S (cProtein¼ 0.037 g L�1)

and C100S (cProtein ¼ 0.048 g L�1), transmission in the

FIGURE 2 S-S bonding predictions for the human N2-Bus and Ellman’s

test for the presence of free thiols in recombinant N2-Bus constructs. (A)

Amino-acid sequence of the human N2-Bus (accession No. X90568 in Gen-

BankTM/EBI Data Bank), with cysteines boxed and numbered. The bottom

part lists the results of four different web-based disulfide bridge-prediction

algorithms calculating the probability of S-S bonding in the N2-Bus. Shown

are predicted connectivities (cysteine numbers in red) and the respective

contour length of N2-Bus, Lc, for each bonding prediction, assuming 0.36

nm per amino acid. (B) Results of Ellman’s test to detect free thiols in re-

combinant wild-type and mutant (C7S; C100S) human N2-Bus constructs

in solution. (Left) Example of a color change of wild-type N2-Bus in Ell-

man’s reagent, in the presence versus absence of reducing agent, NaBH4.

(Right) Relative decrease in transmission at 412 nm measured for wild-

type and mutant N2-Bus constructs under reducing and nonreducing condi-

tions; a decrease in transmission indicates that thiols became free in the pres-

ence of NaBH4 (scale on right).
Biophysical Journal 97(3) 825–834
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presence of NaBH4 was reduced by 11.4% (Ereduced¼ 0.025)

and 12.8% (Ereduced ¼ 0.036), respectively (Fig. 2 B, right).
Calculating the number of freed thiols in the mutants using

Eq. 2, we obtained n ¼ 4 for both C7S and C100S. These

results confirm that both C7 and C100 of the N2-Bus partici-

pate in S-S bonding. Since the reduced mutant constructs

showed two free thiols less than the wild-type N2-Bus, even

though only one cysteine was mutated in each construct,

C7 and C100 appear to be involved in intramolecular S-S

bonding.

S-S bonding mechanically stabilizes the N2-Bus

To directly test at the single-molecule level whether disulfide

bridge(s) form under oxidizing conditions in the N2-Bus, we

studied the mechanical properties of this titin segment using

AFM force-extension measurements (22,26). To that end, we

generated two different recombinant polyprotein constructs

containing the human N2-Bus flanked on either side by

several Ig domains. One construct had the form (I91)3-N2-

Bus-(I91)3, and the other had the form (I24-I25)-N2-Bus-

(I26-I27) (Fig. 3). Representative AFM force traces recorded

in 200 mM PBS in the absence of reducing agent (‘‘�DTT’’)

are shown in Fig. 3, A and B, and D and E, respectively. We

analyzed only those traces in which a ‘‘fingerprint’’ of

successive Ig-unfolding events indicated that the whole

N2-Bus had been stretched (see Materials and Methods).

By fitting the force-extension data up to the first Ig-domain

unfolding peak, we were able to parameterize the elastic

properties of the N2-Bus using the WLC model (Eq. 1). Of

interest, the fits revealed two different populations of contour

length (Lc) for the N2-Bus. One population was centered at

110–120 nm, and the other at 190–210 nm (Fig. 3, C and

F). An Lc value of 205–210 nm would be expected if the

N2-Bus were a completely unfolded polypeptide (572 resi-

dues in N2-Bus, each extending maximally by 0.36 nm).

Therefore, a substantial number of N2-Bus molecules were

likely to be in an unfolded (unbonded) state. However,

the fact that the contour length frequently reached much

less than ~205 nm suggests that in this population, the

N2-Bus was stabilized by internal interactions that are

unbreakable by AFM, most likely S-S bond(s) forming

intramolecularly.

The shorter mean Lc value detected under these experi-

mental conditions (110–120 nm) is identical to the value

one can infer from S-S bonding between cysteines C100

and C367 (DiANNA webserver), leaving 305 residues for

extension, such that Lc ¼ 305 � 0.36 nm ¼ 110 nm, or from

S-S bonding between cysteines C7 and C264 (CysPRED

server), leaving 315 residues for extension, such that Lc ¼
315 � 0.36 nm z 115 nm (see Fig. 2 A, bottom). These

bonding configurations therefore appear to be particularly

common. However, we cannot exclude the possibility that

a disulfide bridge was formed between other cysteines in

the N2-Bus, albeit much less frequently. We sometimes
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measured a contour length as low as ~50 nm, a value pre-

dicted (DiANNA, PreCys) if S-S bonds occur between C7

and C445 (leaving 134 residues for extension, such that

Lc¼ 134� 0.36 nm z 50 nm). Also a rare bonding between

C264 and C408 is possible (DiANNA prediction; leaving

428 residues for extension, such that Lc ¼ 428 � 0.36 nm

z 155 nm), as Lc values near 155 nm were occasionally

found (Fig. 3, C and F). Even if the high flexibility of the

N2-Bus (persistence length ¼ <1 nm; data not shown, but

consistent with Li et al. 22) allowed the formation of more

than one S-S bond within the same molecule, the AFM anal-

ysis would still detect only one Lc value. Thus, the AFM

results support the above notion that up to three disulfide

bridges can be present in the N2-Bus under oxidizing condi-

tions. Most frequently, however, this segment contains less

than three S-S bonds, and presumably, sometimes only one.

Experimental evidence for redox state-dependent alter-

ations in the mechanical stability of the N2-Bus was obtained

when the AFM measurements were performed using the

N2-Bus-containing polyproteins in the presence of 10 mM

DTT (Fig. 3 G). Under these conditions, the population of

short Lc values disappeared and the N2-Bus had a single

mean contour length of ~210 nm. These findings indicate

that there was a reductant-induced breakage of one or

more intramolecular S-S bonds that previously stabilized

the N2-Bus under oxidizing conditions.

WLC modeling predicts redox state-dependent
alterations in titin-based passive tension

How would a shortened Lc of the N2-Bus affect the titin

spring force? We simulated the force per titin versus

I-band extension relationship as that of three WLCs in series

(titin Ig segments, PEVK domain, and N2-Bus (5,16,22); see

Eq. 3) using custom-written LabView procedures. The

cardiac titin isoforms, N2BA and N2B, are expressed in

the sarcomere at a ratio that depends on the developmental

stage or disease status (2). In normal adult human hearts,

the N2B isoform is 3000 kDa (25), whereas N2BA occurs

in different isoforms with an average molecular mass of

~3300 kDa (3,5). The additional mass in N2BA arises

because more Ig domains and PEVK residues are spliced

into the I-band segment compared to N2B (23). The longer

spring makes N2BA more compliant than N2B (21,43).

Simulating the force-extension behavior of either isoform

using two different Lc values for the N2-Bus (110 nm and

205 nm) while leaving all other WLC parameters unaltered

resulted in almost unchanged N2BA curves, but greatly

different N2B curves (Fig. 4 A). Using Lc ¼ 110 nm

(‘‘oxidizing conditions’’), the force of N2B titin was

increased by up to 2.2 times compared to a simulation using

Lc ¼ 205 nm (‘‘reducing conditions’’). When the N2BA:N2B

expression ratio in normal human myocardium (35:65%

(3,5)) was taken into account, titin-based passive tension

was up to 30% higher with Lc ¼ 110 nm than with
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FIGURE 3 AFM force-extension experiments probing the presence of S-S bonds in the N2-Bus. Polyproteins (I91)3-N2-Bus-(I91)3 (left panels) and (I24)-

(I25)-N2-Bus-(I26)-(I27) (right panels) were recombinantly expressed and stretched by AFM. Only those recordings that showed at least four regularly spaced

Ig-unfolding peaks for (I91)3-N2-Bus-(I91)3 or three regularly spaced Ig-unfolding peaks for (I24)-(I25)-N2-Bus-(I26)-(I27) were analyzed by WLC fitting,

because only then could we be confident that the whole N2-Bus had been stretched. (A–E) Exemplary recordings in 200 mM PBS buffer lacking reducing

agent (�DTT), and WLC fit of N2-Bus force-extension behavior up to the first Ig-unfolding peak. Calculated contour length (Lc) values for the N2-Bus are

indicated in blue text. (C and F) Histograms showing bimodal contour-length distribution in the absence of reducing agent (�DTT). Blue lines and values

are single Gaussian fits and mean Lc. (G) Histogram of contour-length distribution for the N2-Bus in 200 mM PBS buffer supplemented with 10 mM DTT

(þDTT). Blue line and value indicate single Gaussian fit and mean Lc. Note the absence of shorter contour lengths.
Lc ¼ 205 nm (Fig. 4 B). Differences between the curves

became obvious at SL > 2.1 mm and increased with further

stretch, as the N2-Bus elongates significantly at higher phys-

iological SLs (21,43). In summary, WLC modeling predicted

that alterations in the redox state could substantially affect

titin-based stiffness in myocytes due to altered mechanical

stability of the N2-Bus.
Reducing agent lowers the passive stiffness of
isolated human cardiomyofibrils

We tested whether the above prediction would hold true in

titin’s natural environment, the sarcomere, by measuring

the passive stiffness of isolated human cardiomyofibrils

obtained from normal donor hearts in response to 1 Hz stretch-

release cycles (Fig. 5 A). The myofibrils were prepared in
Biophysical Journal 97(3) 825–834
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a buffer lacking a reducing agent. Myofibrillar stiffness was

then estimated as the mean peak-to-valley amplitude of the

oscillatory force response before and after addition of a re-

combinant reducing agent, human Trx (in the presence of

Trx reductase and NADPH). Trx is an endogenous antioxi-

dant whose downregulation associated with oxidative stress

is found in many pathological states, including cardiac

hypertrophy and failure (44–46). Recombinant Trx lowered

the myofibrillar passive stiffness significantly (typically

within a few minutes) by a relative amount ranging between

~12% and ~26% (Fig. 5 B). The magnitude of this effect

compares well with that predicted from WLC modeling

using Lc values for the N2-Bus of 110 and 205 nm, respec-

tively (Fig. 4 B). It is likely that the disulfide bond(s) in

the N2-Bus were cleaved by Trx, suggesting the mechanism

observed in the AFM experiments also works in situ. In this

FIGURE 4 WLC simulations of the effect of a less-extensible N2-Bus on

titin-based spring force. (A) Predicted differences in the force/titin versus

I-band titin extension curves using Lc values for the N2-Bus of either 110 nm

(red curves) or 205 nm (black curves). The simulation was performed sepa-

rately for the two human cardiac titin isoforms, N2B (3000 kDa) and N2BA

(3300 kDa). (B) Predicted difference in the passive tension versus SL rela-

tionship of human cardiac titin, using a contour length for the N2-Bus of

either 110 nm (red curve) or 205 nm (black curve). This simulation also

considered the 35:65 expression ratio of N2BA:N2B titin isoforms in normal

human left ventricle.
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context, the N2-Bus has been reported to extend maximally to

a contour length of ~105 nm in stretched isolated cardiomyo-

fibrils in the absence of reducing agent—only about half the

~205 nm expected for the fully unfolded polypeptide

(14,21). In contrast, N2-Bus extension was found to reach

~200 nm at 3.3 mm SL in enzymatically digested, skinned

cardiomyocytes incubated in a buffer containing 1 mM

DTT (43). Taken together, these results suggest that under

oxidizing conditions, internal S-S bonding can limit the

extensibility of the N2-Bus in situ, giving rise to increased

titin-based stiffness in cardiac muscle cells.

SUMMARY AND CONCLUSIONS

Contrary to what we expected when we initiated this study,

single-molecule AFM force spectroscopy of recombinant

FIGURE 5 Effect of reducing agent on the passive stiffness of cardiomyo-

fibrils isolated from human donor hearts. (A) Experimental setup and

mechanics protocol. (B) Change in the passive stiffness of three different

myofibrils studied in relaxing buffer supplemented with 50 nM Trx reduc-

tase and 2 mM NADPH, before (�Trx) and after (þTrx) application of

human Trx (8 mM). Bars show average oscillatory force amplitudes

(mean 5 SE) in bursts of 10 stretch-release cycles; data were expressed rela-

tive to the mean amplitude before addition of Trx. Time between (�Trx) and

(þTrx) recordings is ~5 min. Asterisks indicate statistically significant

differences (p < 0.05 in Student’s t-test).
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polyprotein constructs revealed no evidence of internal disul-

fide bonding in titin’s differentially spliced Ig domains.

Instead, our work suggests that one or more S-S bridge(s)

can mechanically stabilize the human N2-Bus under condi-

tions that favor the oxidized state. The N2-Bus, a cardiac-

specific titin domain, has been speculated to be a permanently

unfolded random coil (22,47), a notion that may not hold up in

light of the findings presented here. On the other hand, a low

degree of secondary structuring may allow the free thiols in

the N2-Bus to bond more easily under oxidizing conditions

than, e.g., the thiols in the folded titin Ig domain, I1 (18),

which in AFM measurements showed only a very low propen-

sity for S-S bonding (19). In this study, disulfide bridges in the

N2-Bus were confirmed under oxidizing conditions in vitro.

This novel property of the N2-Bus has implications for titin

function and adds a twist to our understanding of passive stiff-

ness regulation and dysregulation in the heart.

Normally, disulfide bridges are unlikely to form inside

muscle cells because there is a reducing environment, due

mainly to the presence of glutathione (48) and other reduc-

tants, such as Trx. However, when cardiomyocytes experi-

ence oxidative stress, disulfide bridges formed in the

N2-Bus will decrease titin extensibility and increase titin-

based passive tension, as observed here in isolated human

cardiomyofibrils. Titin stiffening could thus contribute to

the alterations in global myocardial mechanics associated

with oxidant stress, which often accompanies aging or heart

failure (49–51). Promoting oxidative mechanisms will thus

alter the two major elements known to determine myocardial

passive stiffness: the extracellular matrix, which is known to

remodel in response to oxidative stress (52,53), and titin. S-S

bonding in titin’s N2-Bus may add to other aging- or disease-

related mechanisms that modify titin-based stiffness, such as

titin-isoform transition and alterations in titin phosphoryla-

tion (17). Moreover, internal S-S bonding in the N2-Bus

could interfere with various other important functions of

the N2-B domain, including ligand binding (2), mechano-

sensing (54), or phosphorylation-dependent stiffness adjust-

ment (16). We conclude that the S-S bonding property of the

N2-Bus is likely to be of pathophysiological importance.
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