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SUMMARY

PDI catalyzes the oxidative folding of disulfide-
containing proteins. However, the sequence of
reactions leading to a natively folded and oxidized
protein remains unknown. Here we demonstrate a
technique that enables independent measurements
of disulfide formation and protein folding. We find
that non-native disulfides are formed early in the
folding pathway and can trigger misfolding. In con-
trast, a PDI domain favors native disulfides by cata-
lyzing oxidation at a late stage of folding.We propose
a model for cotranslational oxidative folding wherein
PDI acts as a placeholder that is relieved by the pair-
ing of cysteines caused by substrate folding. This
general mechanism can explain how PDI catalyzes
oxidative folding in a variety of structurally unrelated
substrates.
INTRODUCTION

Protein folding is a sensitive reaction that can be easily affected

by a multitude of factors such as mutations and changes in the

physical or chemical environment. Failure to correctly fold is

the basis of numerous disorders of central importance tomodern

medicine (Dobson, 2003). In particular, the third of human

proteins that traverse the secretory pathway and that possess

disulfide bonds pose unresolved challenges to our under-

standing of protein folding and disease (Gething and Sambrook,

1992; Ron and Walter, 2007; Schröder and Kaufman, 2005).

Protein disulfide isomerase (PDI) introduces disulfide bonds

into folding proteins and is the main catalyst of oxidative folding

in humans (Wilkinson and Gilbert, 2004). Recent studies have re-

vealed a link between disulfide chemistry and the pathogenesis

of misfolding diseases and specifically implicated PDI as a novel

target for treatment of several neurodegenerative disorders

including Alzheimer’s disease (Hoffstrom et al., 2010; Uehara

et al., 2006). These studies stress the importance of under-

standing how PDI catalyzes oxidative folding.
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Human PDI catalyzes the formation of disulfides (oxidase

activity) as well as the rearrangement of incorrectly formed

disulfide bonds (isomerase activity) (Wilkinson and Gilbert,

2004). The enzyme consists of two catalytically active A domains

and two redox-inactive B domains. Isolated A domains have

been shown to effectively catalyze the introduction of disulfides

into protein substrates; meanwhile the full-length protein is

generally thought to be required for efficient isomerase activity

(Darby and Creighton, 1995b). PDI belongs to a ubiquitous family

of enzymes that catalyze thiol-disulfide exchange (Wilkinson and

Gilbert, 2004). In addition to PDI, this family includes other oxido-

reductases such as thioredoxin (TRX), glutaredoxin, and the

bacterial Dsb enzymes (Martin, 1995). All of these enzymes share

a characteristic structural fold and a highly conserved Cys-X-X-

Cys motif in their active sites (Martin, 1995). Their mechanism of

action has been revealed through numerous studies over the

past 40 years. In all cases, the reaction mechanism involves

the formation of a mixed disulfide between a cysteine in the

substrate and the N-terminal cysteine in the active site of the

enzyme (Holmgren, 1985; Walker et al., 1996) (Figure S1 avail-

able online). The C-terminal cysteine can attack and cleave the

mixed disulfide, thereby spontaneously releasing the enzyme

(Walker andGilbert, 1997;Wilkinson andGilbert, 2004).Whereas

spontaneous release is necessary during reduction of substrate

disulfide bonds, it is unknown how this activity affects catalysis

of oxidative folding.

Secretory proteins are synthesized as linear polypeptides

and emerge from the ribosomal channel via the translocon into

the endoplasmic reticulum (ER) (Rapoport et al., 1996; Van den

Berg et al., 2004; Walter et al., 1984). Emerging sequentially

into theER, the nascent polypeptide encounters PDI,which cata-

lyzes cotranslational oxidative folding (Bulleid and Freedman,

1988; Molinari and Helenius, 1999). This reaction is mediated

by the formation of a mixed disulfide bond between the PDI

enzyme and a cysteine in the nascent polypeptide (Figure 1A)

(Frand and Kaiser, 1999; Gilbert, 1995; Sevier and Kaiser,

2002). The mixed disulfide is then transferred to the folding poly-

peptide. Given the crucial roles of mixed disulfides in oxidore-

ductase catalysis, many studies have been focused on these

ephemeral intermediates. The molecular structures of mixed

disulfide complexes have been reported for several enzymes
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(Dong et al., 2009; Paxman et al., 2009; Qin et al., 1995). In addi-

tion, mixed disulfide complexes in the process of oxidative

folding have been characterized in living cells (Di Jeso et al.,

2005; Kadokura and Beckwith, 2009; Kadokura et al., 2004; Mo-

linari and Helenius, 1999). Although these studies have provided

us with snapshots of mixed disulfide complexes, their dynamics

during oxidative protein folding remain unknown. In order to

study the intersection of covalent chemistry and protein folding,

a method is needed that can independently measure these two

concurrent processes.

Here we demonstrate single-molecule techniques that mea-

sure the kinetics of enzyme attachment and release and the

kinetics of protein oxidation and folding. We used an atomic

force microscope (AFM) to mimic the initial stages of oxidative

folding by extending an individual polypeptide to a state wherein

the substrate cysteines were spatially separated, and a mixed

disulfide complex was formed with the catalytic domain A1

from human PDI (hereafter referred to as PDIa, Figure 1B). We

then allowed the polypeptide to refold in the absence of external

force and probed the progress of oxidative folding by applying

additional force pulses. Our data are consistent with a model in

which PDIa acts as a placeholder that allows the substrate to

guide the pairing of cysteines into native disulfide bonds. This

mechanism is general in its nature and therefore does not require

substrate specificity.

RESULTS

Creating a Mixed Disulfide Complex between PDIa and
a Single Unfolded Protein
Formation of a PDI-substrate mixed disulfide is thought to

enable oxidative folding of newly synthesized proteins. We

sought to create such a mixed disulfide complex and, starting

from this state, study the progression of oxidative folding. A

mixed disulfide complex can be formed through two pathways

(Figure S1). In the first pathway, an oxidized PDI enzyme reacts

with a free substrate cysteine (Frand and Kaiser, 1999; Tu et al.,

2000). In the second pathway, the mixed disulfide is formed

when reduced PDI reacts with a substrate disulfide (Lundström

and Holmgren, 1990). Regardless of the pathway, the resulting

mixed disulfide complex is identical. Although we could use

both pathways (see Figures 6 and S7), the second pathway

proved more advantageous in our experiments because we

could then directly detect the formation of the mixed disulfide,

as described in detail below.

We used in our experiments human PDI A1 (PDIa). Although

essentially inactive in disulfide isomerization as compared to

the full-length enzyme, PDIa is sufficient for catalysis of oxidative

folding (Darby and Creighton, 1995b). The substrate we chose

was the 27th Ig domain from human cardiac titin containing

a buried disulfide between residues 32 and 75 (hereafter referred

to as I2732–75), which has been well characterized in the past

(Ainavarapu et al., 2007; Wiita et al., 2006, 2007).

Our strategy to establish mixed disulfide complexes is illus-

trated in Figure 1C, and an experimental recording is displayed

in Figure 1D. We used a custom-built AFM to apply a constant

calibrated force to the termini of a single I2732–75 protein, while

measuring its extension (Fernandez and Li, 2004). A force of
130–150 pN enables protein unfolding but does not break any

of its covalent bonds (Grandbois et al., 1999; Wiita et al.,

2006). The polypeptide chain can thus unravel only up to the di-

sulfide bond, resulting in the 11 nm extension step seen in the

recording (Figure 1D). Meanwhile, the 11 nm extension exposes

the 32–75 disulfide to the solvent and enables reactions with

enzymes present in the surrounding media (Wiita et al., 2006).

In Figure 1D, a reduced PDIa enzyme present in solution reacts

with the now solvent-exposed disulfide, creating a mixed disul-

fide. The enzymatic reaction is captured as a 14 nm step that

results from mechanical unraveling of the rest of the substrate

as soon as the original disulfide is broken. A 14 nm step in our

experiments thus indicates the formation of a mixed disulfide

complex. Once a mixed disulfide was acquired in a fully ex-

tended polypeptide, we could proceed to study its effect on

protein folding.

Mixed Disulfide Complexes with PDIa Enable Oxidative
Folding
We used a three-part experimental protocol consisting of two

mechanically equivalent force pulses separated by a refolding

interval [denature � folding � probe] to study the effect of PDIa

mixed disulfide complexes on the folding of an (I2732–75)8 poly-

protein substrate (Figure 1E). A polyprotein was used because

it yields multiple events within a single recording, thereby pro-

viding a stronger fingerprint of the reactions. Figure 1F shows

how each substrate domain was first completely extended and

linked to a PDIa enzyme during an initial denature pulse, as

described in the previous section. The force was subsequently

switched off, and the substrate was allowed to fold for a set

time Dt folding (DtF). In order to detect the formation of disulfide

bonds and protein folding during DtF, we once again applied

force, thereby halting the folding reaction. This probe pulse

was identical to the initial denature pulse and in the samemanner

allowed us to detect folded domains and disulfide bonds. A

25 nm step appearing during the probe pulse reports that

a domain had folded but not formed a disulfide during DtF. An

11 nmstep, on the other hand, indicates that a domain had folded

during DtF and also acquired a disulfide. Given that PDIa was

present in the surrounding media throughout the experiment,

14 nm steps would be seen in the probe pulse if newly formed

disulfide bonds were again broken. In summary, a 25 nm step

provided a signature of a natively folded domainwith nodisulfide,

whereas an 11 nm step (followed by a 14 nm step) indicated

a natively folded domain with a disulfide (Figure 1F).

Figure 1G shows an experimental recording of the [denature�
folding � probe] experiment in a solution containing reduced

PDIa, and Figure 1H shows histograms of the step sizes de-

tected in several such recordings. During the denature pulse,

11 and 14 nm steps were seen, indicating formation of mixed

disulfide complexes between PDIa and the substrate. When

the force was removed (DtF = 5 s), the substrate rapidly

collapsed as seen in the experimental trace (Figure 1G). The 11

and 14 nm steps seen in the probe pulse unambiguously showed

that disulfides had been formed in the substrate during folding.

The reaction path for these domains is readily interpreted.

When the force was removed, the substrate collapsed and

allowed the free cysteine in each domain to attack the mixed
Cell 151, 794–806, November 9, 2012 ª2012 Elsevier Inc. 795
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Figure 1. A Single-Molecule Approach to Study Oxidative Folding
(A) As part of the secretory pathway, protein disulfide isomerase (PDI) forms mixed disulfide complexes with nascent polypeptides (blue) undergoing ER

translocation. These complexes are thought to enable oxidative folding.
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disulfide bond, thus releasing the PDIa enzyme and establishing

the intramolecular 32–75 disulfide bond. The appearance of

11 nm unfolding steps is consistent with these domains also

acquiring their native fold. Additional experiments performed

with full-length bovine PDI showed similar results, validating

our use of PDIa (see Figure S2C for a representative recording).

Detection of Spontaneous Enzyme Release
In addition to 11 and 14 nm steps, 25 nm steps were also seen in

the probe pulse (Figures 1G, 1H, and S2B), revealing that some

substrate domains had folded without forming disulfide bonds.

Two scenarios can account for these 25 nm steps: either (1)

PDIa was still attached to the folded substrate but had failed to

introduce the 32–75 disulfide bond, or (2) PDIa had spontane-

ously released before substrate oxidation could be realized.

We could thus distinguish between these scenarios by using

two oxidoreductase enzymes with vastly different release rates:

wild-type (WT) and C35S TRX.

TRX is capable of catalyzing the same reactions as PDI (Car-

valho et al., 2006; Debarbieux and Beckwith, 2000; Lundström

et al., 1992) but releases spontaneously from the mixed disulfide

on a much faster (sub-millisecond) timescale, as inferred from

reactions with nonprotein substrates (Chivers and Raines,

1997; Lappi and Ruddock, 2011). Consequently, in a [denature�
folding � probe] experiment with WT TRX, all enzymes would

have released from the substrate before the end of the denature

pulse. We would thus expect only 25 nm steps in the probe

pulse as the substrate folds in the absence of the enzyme. Exper-

iments with TRX confirmed that only 25 nm steps were detected

in the probe pulse (Figure 2A).

Spontaneous release from the mixed disulfide is mediated by

the C-terminal cysteine in the active site of oxidoreductases

(Cys35 in TRX). We mutated this cysteine to abolish sponta-

neous release (TRX C35S, Figure 2B; see also Figure S3). This

resulted in the complete absence of 25 nm steps and full oxida-

tion of the substrate (as indicated by 11 and 14 nm steps in the

probe pulse). Thus, every domain that folded in the presence

of a mixed disulfide complex successfully completed oxidative

folding. These observations indicate that 25 nm steps are only

caused by spontaneous release of the enzyme from the mixed

disulfide complex prior to folding, in agreement with scenario

(2) described above (see Figure S4C for further support of this
(B) In this study, we used an atomic force microscope (AFM) to create mixed disul

from this state, we investigated how PDIa catalyzes oxidative folding.

(C) Mixed disulfide complexeswere formed by applying a constant stretching forc

exposing the disulfide. A reduced PDIa enzyme could then form a mixed disulfid

thiolate on the substrate disulfide (charges have been omitted for clarity; see als

(D) In an experimental recording of the end-to-end length of the I2732–75 substrat

step. Formation of a mixed disulfide was detected as a 14 nm extension step ar

shown in light grey).

(E) A mechanical force was applied to a polyprotein consisting of repeated I2732

(F) The substrate was extended, andmixed disulfides were formed between PDIa

removed, and the resulting folding and oxidation of the substrate were probed a

(G) Representative recording showing extension and force measurements for the

mixed disulfide complexeswith PDIa (14 nm steps). After refolding for 5 s, four dom

14 nm steps in the probe pulse. Other traces revealed refolding without disulfide

(H) Step-size histograms compiled from several recordings confirm that PDIa ca

a reduced state (n = 137).
conclusion). We could therefore use 25 nm steps as an indicator

of spontaneous enzyme release.

Measurement of the PDIa Spontaneous Release Rate
In our experiments, we could detect the formation of individual

mixed disulfide complexes (14 nm steps in the denature pulse),

their presence during protein folding (14 nm steps in the probe

pulse), and their spontaneous dissociation prior to folding

(25 nm steps in the probe pulse). By varying the time before

folding (the duration of the denature pulse, DtD; see Figures 3

and S4A) and measuring the resulting proportion of 25 nm

steps in the probe pulse, we could thus measure the rate of

PDIa spontaneous release from a protein substrate. In these

experiments, we used a force protocol optimized for long exper-

iments with split denature and probe pulses (see Experimental

Procedures).

For a denature pulse duration DtD = 5 s, �50% of the refolded

domains contained disulfide bonds (11 nm, 14 nm steps in probe

pulse of Figure 3A). In contrast, for DtD = 30 s, the enzymes had

more time to release from themixed disulfide complex, which led

to 80% of folded domains not having acquired disulfide bonds

(25 nm steps in probe pulse of Figure 3B).

Figure 3D shows a simple model of the PDIa dissociation

process. This model contains three rates, representing the rate

of spontaneous enzyme release (koff), the rate of oxidative folding

from the mixed disulfide complex (kox), and the rate of folding

of the reduced substrate (kfold). The model also assumes that

PDIa can dissociate during both DtD and DtF. Notably, the

total amount of refolding remained constant for all values of

DtD (Figure S4B), leading to the conclusion that kox and kfold
were approximately equal (this is further verified by the kinetic

data in Figure 4C). Given that the folding and oxidation rates

were similar, it follows that 14 versus 25 nm steps report on

the PDIa enzyme being ‘‘on’’ and ‘‘off,’’ respectively. We mea-

sured the dissociation of PDIa as the ratio between the number

of 25 nm steps and the total number of refolded domains in the

probe pulse. In Figure 3C, this dissociated fraction is displayed

as a function of total time before probing (DtD+DtF). We obtained

the PDIa release rate by fitting these data with a single exponen-

tial curve constrained to zero at time zero. The result of the fit

was consistent with a spontaneous PDIa release rate koff =

0.10 ± 0.03 s�1.
fide complexes between PDIa enzymes and a single extended protein. Starting

e to a folded protein containing a buried disulfide, thus unfolding the protein and

e with one of the cysteines in the substrate through SN2-attack by the enzyme

o Figure S1).

e under force, unfolding of the substrate was detected as an 11 nm extension

ising from the cleavage of the 32–75 disulfide in the substrate (unfiltered data

–75 domains, in a solution containing reduced PDIa.

enzymes and a cysteine in each domain, as described in (C). The force was then

fter a preset folding interval DtF.

[denature � folding � probe] force protocol. Arrowheads indicate formation of

ains had folded and acquired disulfides, as revealed by the subsequent 11 and

formation (25 nm step, inset; see also Figure S2B).

talyzed oxidative folding in some domains, whereas other domains refolded in
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Figure 2. Enzyme Release Determines Outcome of Oxidative Folding

(A) Mixed disulfide complexes with thioredoxin (TRX) do not catalyze disulfide formation in the folding I2732–75 polyprotein. In this recording, seven domains were

completely extended during the denature pulse. Four of these then refolded, albeit without disulfides, as seen from the 25 nm steps in the probe pulse. The rapid

release mechanism of TRX accounts for its inability to catalyze disulfide formation (right panel) (n = 61).

(B) The C35S mutation in TRX replaces a reactive sulfur atom with oxygen and thus prevents spontaneous release of the enzyme (see Figure S3). TRX C35S

catalyzed disulfide formation in the folding polypeptide by remaining in the mixed disulfide complex upon substrate folding (DtF = 3 s). Step-size histograms show

that disulfides had been formed in all refolded domains (n = 169). Arrowheads indicate mixed disulfide complex formation.
Kinetics of Oxidative Protein Folding from an Extended
State
A mixed disulfide complex with PDIa enables the catalysis of

oxidative folding, yet it is unknown howprotein folding is affected

by the covalent attachment of this enzyme. Our approach

allowed us to directly measure the effect of a covalently bound

PDIa on protein folding.

We first set out to establish the refolding properties of I2732–75

in isolation, with and without the 32–75 disulfide bond. Using

the [denature � folding � probe] protocol, we first measured

folding kinetics of the reduced substrate. Figure 4A shows a

representative trace for a refolding time DtF = 3 s. Steps of

25 nm are seen in both the denature and probe pulses, confirm-

ing that none of the domains contained disulfide bonds (in the

absence of enzymes, we never observed disulfide formation

during folding; Figure S5 shows the equivalent experiment with
798 Cell 151, 794–806, November 9, 2012 ª2012 Elsevier Inc.
oxidized I2732–75). A longer refolding time of DtF = 10 s allowed

for more domains to refold (Figure 4B). By varying the refolding

time DtF, we could measure the kinetics of refolding. We found

that the reduced protein folded at a rate of 0.27 s�1, whereas

presence of the 32–75 disulfide increased the folding rate by

nearly 30 times to 7.74 s�1 (Figure 4C).

Strikingly, the time course of PDIa-catalyzed oxidative folding

was similar to the time course of folding of the reduced substrate

(Figure 4C). Despite the steric hindrance caused by covalent

attachment, PDIa apparently did not interfere with the folding

protein. Single exponential kinetics accounted well for the

PDIa-catalyzed oxidative folding data (solid red line in Figure 4C),

suggesting a single rate-limiting step late in the oxidative folding

pathway. Statistical analysis showed that the rate of oxidation

wasmarginally yet significantly faster than folding (p < 0.01), indi-

cating that this rate-limiting step occurred before folding had
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Figure 3. Measurement of PDIa Release

Kinetics

(A) In an experiment with a 5 s denature pulse

(DtD = 5 s),�50%of PDIa enzymes remained in the

mixed disulfide complexes during the subsequent

protein-folding interval. As a result, oxidative

folding mostly completed successfully, as seen

from the predominance of 11 and 14 nm steps in

the probe pulse (n = 105).

(B) After a 30 s denature pulse (DtD = 30 s), �80%

of mixed disulfides had been cleaved through

spontaneous release of PDIa. Folding was still

observed, but only few of the folded domains

contained disulfides, as seen from the predomi-

nance of 25 nm steps in the probe pulse (n = 66).

See also Figure S4A.

(C) Spontaneous enzyme release, measured as

the fraction of folded domains that were reduced

by the start of the probe pulse (25 nm steps,

fraction ± SEM). The fraction is displayed as a

function of total time (DtD+DtF). The data for PDIa

fall between the rapidly releasing TRX and the

release-deficient TRX C35S. Assuming the model

in (D), the rate of spontaneous PDIa release

was calculated from an exponential fit (solid line)

(n > 100).

(D) Kinetic model including the rate of sponta-

neous enzyme release (koff), the rate of oxidative

folding from the mixed disulfide complex (kox), and

the rate of folding of the reduced substrate (kfold).
completed. The native state was acquired rapidly after disulfide

formation, as inferred from the fast refolding kinetics of the

oxidized substrate (Figure 4C). Although PDIa-mediated oxida-

tion could in theory be more accurately described as a multi-

exponential process, fitting a double exponential to the PDIa

data yielded only marginal improvement of the fit (c2 = 0.373

versus c2 = 0.377). Curiously, all experiments with enzymes

(PDIa and TRX) showed lower absolute values of folding than

the experiments without enzymes. However, we observed this

effect also in experiments where both the substrate and the

enzyme were reduced, wherein no mixed disulfides could have

been formed (data not shown). This effect is therefore not caused

by mixed disulfide complexes but rather by other, likely nonco-

valent, enzyme-substrate interactions.

Taken together, our data give an idea of how PDIa catalyzes

disulfide formation in the folding protein. PDIa first becomes

covalently attached to the substrate by forming amixed disulfide

complex. From there on, the enzyme acts as a passive place-

holder, allowing the substrate to collapse and fold in an unhin-
Cell 151, 794–806,
dered manner. At a late stage of folding,

close in time to the acquisition of the

native fold, PDIa catalyzes the formation

of an intramolecular disulfide in the sub-

strate. This reaction releases PDIa and

allows the substrate to rapidly complete

oxidative folding. An earlier study showed

exceptionally high reactivity between

PDI-substrate mixed disulfides and freely

diffusing cysteine-containing peptides
(Darby and Creighton, 1995a). In light of these and our results,

it appears that PDI-mediated oxidative folding is rate-limited

not by the covalent chemical reaction but rather by the encounter

rate of the reacting groups, which in turn is limited by protein

folding.

Formation of Interdomain Disulfides TriggersMisfolding
The oxidative folding recordings with I2732–75 revealed in the

probe pulse sporadic 15 nm steps, which were due to cleavage

of interdomain disulfide bonds. Several lines of evidence support

this conclusion. The most direct indication came from record-

ings where the events were clearly separated in time and thus

allowed for higher precision when determining the step size.

For instance, in the recording shown in Figure 5A, we achieved

a spatial resolution better than 0.1 nm by localizing the centroids

of Gaussians fitted to 1,000 unfiltered data points before and

after each step. This analysis revealed that whereas the step

size of the 32–75 reduction events was 13.8 nm (hereafter

referred to as 14 nm steps for simplicity), the new steps had
November 9, 2012 ª2012 Elsevier Inc. 799
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C

Figure 4. Measurement of Protein Folding from an Extended State

(A) Refolding experiments with prereduced I2732–75 polyproteins show no evidence of disulfide formation in the absence of enzymes (n = 68).

(B) Longer folding interval (DtF) increases refolding probability. Folding kinetics were measured by varying DtF.

(C) Time course of folding (gray squares and black circles) and oxidative folding (red diamonds and blue triangles) from an extended state (fraction ±SEM; n > 50).

I27 folding is accelerated nearly 30-fold by the presence of the 32–75 disulfide (Figure S5). The rates of disulfide formation catalyzed by PDIa and TRX C35S are

only marginally faster than the folding rate of the reduced substrate, indicating that disulfide formation occurred late in the oxidative folding process. Errors

represent SEM.
a magnitude of 15.4 nm (hereafter referred to as 15 nm steps).

The occurrence of 15 nm steps correlated well with the number

of initially unfolded domains (Figures S6A and S6B); however,

these steps did not represent unfolding events, as they were

not induced by a high stretching force. Instead, their step size

corresponded exactly to the expected elongation upon cleavage

of a disulfide between Cys75 in one I27 domain and Cys32 in the

next domain (15.4 ± 0.1 nm measured versus 15.5 nm predicted

from Equation S1).

To investigate the prevalence of interdomain disulfides, we

compiled an extended histogram from the oxidative folding

data with PDIa (Figure 5B). We then fit the data with multiple
800 Cell 151, 794–806, November 9, 2012 ª2012 Elsevier Inc.
fixed-width Gaussians and identified three clearly distinct peaks

in the probe pulse that were not present in the denature pulse.

One peak was centered at �25 nm and corresponded to the un-

folding of reduced domains. The two other peaks were centered

at �15 nm and �30 nm and could be assigned to interdomain

disulfides (Figure 5E). In total, the interdomain disulfides ac-

counted for �20% of the data.

Sporadic formation of interdomain disulfides was observed for

different substrates (Figure 5D), including I2724–55 (Figure S7C)

and I27 WT (Figure S7B). The high accuracy of our step assign-

ment can be seen in Figure 5E, where the horizontal axis indi-

cates the cysteine separation as a number of residues, and the



Figure 5. Non-native Interdomain Disul-

fides Prevent Native Folding

(A) Cleavage of a 32–75 intradomain disulfide re-

sulted in a 13.8 nm step. Interdomain disulfides

between Cys75 in one domain and Cys32 in an

adjacent domain were detected as 15.4 nm steps.

The recording shows unfolding and PDIa-medi-

ated disulfide cleavage of four domains in the

denature pulse. Upon refolding, two interdomain

disulfides were formed, but no refolding took

place. Cleavage of the interdomain disulfides can

be seen in the probe pulse as two 15.4 nm steps

(values represent mean ± SEM).

(B) Histograms reveal in the probe pulse pop-

ulations of 15.4 nm and 30 nm steps (black arrows)

that appear only after refolding in a mixed disulfide

complex with PDIa. These anomalous steps were

not preceded by corresponding unfolding steps

(n = 302; solid lines: Gaussian fits with s = 0.7 nm).

(C) Kinetics of interdomain disulfide formation

by PDIa (fraction ± SEM) (n > 100). See also

Figure S6.

(D) The three substrates used in this study. Yellow

spheres indicate locations of cysteine residues.

Red segments are inextensible when an intra-

domain disulfide is present. Cleavage of a disulfide

under force triggers extension of the correspond-

ing red segment (Protein Data Bank [PDB]: 1TIT).

(E) Comparison of observed step sizes (symbols)

with predicted values (Equation S1, solid line).

Solid symbols represent cleavage of the pre-

dominant intradomain disulfides; open symbols

represent cleavage of sporadically formed inter-

domain disulfides.
vertical axis indicates the measured step size. In all our experi-

ments, interdomain disulfides were formed sporadically but

did not appear to be favored during PDIa-catalyzed oxidative

folding.

The I2732–75 data showed that formation of interdomain disul-

fides precluded proper folding. Whereas nearly every 14 nm step

in the denature and probe pulses was accompanied by a corre-

sponding 11 nm step (N11/N14 = 97% ± 1% and 91% ± 3%,

respectively), 15 nm steps did not appear to be preceded by cor-

responding unfolding steps (Figure 5A). An 11 nm step some-

times appeared before a 15 nm step in our recordings. In all of

these cases, however, the 11 nm step was also succeeded by

a 14 nm step, showing that the 11+14 nm pair corresponded
Cell 151, 794–806,
to a different domain than the 15 nm

step. Furthermore, the appearance of

15 nm steps was negatively correlated

with the fraction of domains that success-

fully refolded (Figure S6A). Domains

affected by the interdomain disulfide

thus appeared unable to fold into their

native conformation. Although the sub-

strate might still attain some degree of

structure beyond our detection limit, the

absence of mechanical resistance of

these structures proves that they are not
correctly folded. Formation of non-native interdomain disulfides

was thus sufficient to induce protein misfolding.

We explored the possibility that domain swapping had caused

the formation of interdomain disulfides. Domain swapping has

been observed in I27 in previous studies (Borgia et al., 2011;

Oberhauser et al., 1999). However, these studies showed that

domain-swapped structures retain mechanical stability. We

found no evidence of such structures in our data and therefore

conclude that the interdomain disulfides were likely not caused

by domain swapping.

Remarkably, the interdomain disulfides appeared at a faster

rate than native disulfides (1.0 s�1, Figure 5C). The proportion

of interdomain disulfides reached a plateau after�2 s, indicating
November 9, 2012 ª2012 Elsevier Inc. 801
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Figure 6. Disulfide Formation Catalyzed by

Oxidized PDIa

(A) I27 WT was refolded in solution containing

oxidized PDIa. After initial unfolding, the substrate

was allowed to collapse for periods of 0.5 s

between repeated probe pulses. Formation of

a disulfide bond between Cys47 and Cys63 in

a domain was detected as a 5 nm shortening of

the stretched substrate. Occasionally, multiple

oxidation events were detected after a single re-

folding interval, resulting in 10 or 15 nm steps.

(B) PDIa-mediated disulfide formation was de-

tected from the resulting substrate shortening.

(C) Magnified view of the recording shown in (A).

(D) Histogram of substrate shortenings DL in

subsequent pulses, compiled from multiple re-

cordings. Numbers above the peaks indicate the

corresponding number of intradomain disulfides.

Vertical dotted lines indicate predicted shortenings

upon formation of interdomain disulfides (n = 439).

(E) Refolding of I27 WT in solution containing 1:1

molar ratio of reduced PDIa and oxidized PDIa.

Similar to the result in (A), disulfide formation was

detected as shortening of the substrate. These

disulfides could then be cleaved by reduced PDIa

enzymes, as seen from the 5 nm extension steps

(arrows). See also Figure S7A.
that they were formed at an early stage of folding. This is con-

sistent with the substrate being less structured early on during

the folding process. If the interdomain disulfides were formed

through randomcollisionbetweencysteines indifferent domains,

then they would be more likely to form at an early stage, as

compared to later stages of folding. In this scenario, the folding

pathway determines the fidelity of disulfide formation. As

domains segregate and tertiary structure starts to form, interdo-

main contacts lessen, which in turn decreases the probability of

forming interdomain disulfides. The accuracy of disulfide forma-

tion thus reaches a maximum as the protein approaches the

native state.

In cells, non-native interdomain disulfides have been observed

during the oxidative folding of low-density lipoprotein receptor

(LDL-R) in theER (Jansenset al., 2002). Thesedisulfideswere iso-

merized into a native configuration on a timescale of hours. In our
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experiments, non-native disulfides could

potentially be resolved by reduced PDIa

or through intramolecular rearrangement

involving the attack of a free cysteine in

the substrate, as shown in a previous

study (Alegre-Cebollada et al., 2011).

However, we did not detect a decrease

in interdomain disulfides over time (Fig-

ure 5C), indicating that they are relatively

stable and not prone to isomerization on

the timescale of our experiments.

Formation of Disulfides by Oxidized
PDIa
In the ER, PDI-substrate mixed disulfides

are thought to form mainly as a result of
oxidized PDI reacting with free cysteines in a substrate (Frand

and Kaiser, 1999). To test whether our results were valid also

under these conditions, we investigated the reaction of oxidized

PDIa with a reduced substrate. Initially, we studied PDIa-medi-

ated oxidation of reduced I2732–75. However, we found that

folded I2732–75 became oxidized at a rate too rapid to enable

observation of oxidative folding in a single molecule (Figures

S6C and S6D). We therefore chose a substrate with two cyste-

ines that are known to be buried, WT I27 (see Figure 5D). The

two cysteines in I27 WT are close in the native structure yet

have not been found to form a disulfide (Improta et al., 1996).

We speculated that folding in the presence of oxidized PDIa

could induce disulfide formation. Formation of an intradomain

disulfide in I27 WT shortens its stretched length by 5 nm (Fig-

ure 6B). We used a polyprotein consisting of eight repeats of

I27 WT to investigate disulfide formation in the presence of



12.5 mM oxidized PDIa. The initial staircase in Figure 6A shows

only 25 nm steps, verifying that all domains were natively folded

and reduced at the beginning of the experiment. When a domain

becomes unfolded, oxidized PDIa can form mixed disulfide

complexes with the newly exposed cysteines. After exposure,

followed by a brief refolding interval in the absence of force

(DtF = 0.5 s), the substrate was again stretched but did not reach

its fully extended length. This shortening, DL, may be due to

intramolecular disulfide formation (Figures 6B and 6C). A histo-

gramof all observed shortenings for a large number of recordings

(n = 439) is shown in Figure 6D. Although the majority of refolding

intervals did not yield shortenings, three peaks can be seen

centered at shortenings of 5, 10, and 15 nm. We reasoned that

these three peaks corresponded to the formation of 1, 2, and 3

intradomain disulfide bonds, in separate substrate domains. To

prove this hypothesis, we repeated the experiment in the pres-

ence of a 1:1 mixture of reduced and oxidized PDIa and now

observed5nmstepsas thenewly formeddisulfideswerecleaved

by reducedPDIa (Figures 6EandS7A). Althoughpresent (seeFig-

ure S7B), interdomain disulfide formation was not frequently

observed in our experiments. We did not observe mechanically

stable folded structures in oxidized domains; nevertheless, the

data indicate a strong preference for intradomain over interdo-

main disulfides during PDIa-mediated oxidation of I27 WT. As

the native fold of the substrate appeared to determine the

disulfide formation pattern, this confirms that protein folding

drives disulfide formation also in the context of oxidized PDIa.

DISCUSSION

For a protein, the path to a native fold is lined with potential traps

(Dobson, 2003). Protein folding has become a field of intense

research due to its fundamental importance as well as its rele-

vance in numerous diseases. The formation of disulfide bonds

adds an additional layer of complexity to the folding pathway

of many proteins. For these proteins, cells have evolved dedi-

cated pathways to ensure efficient oxidative folding (Chakravar-

thi et al., 2009; Sevier and Kaiser, 2002).

In eukaryotes, nascent polypeptides targeted to the ER are

exported from the cytosol cotranslationally (Rapoport et al.,

1996). Emerging in the ER lumen, polypeptides that contain

cysteines formmixed disulfide complexeswith oxidase enzymes

such as PDI (Bulleid and Freedman, 1988; Molinari and Helenius,

1999). However, it has remained unknown how a mixed disulfide

complex affects protein folding and how oxidation and folding

are coupled. To investigate this, we used single-molecule AFM

to reconstitute mixed disulfide complexes between PDIa and

an unfolded model protein. Our approach enabled direct and

independent measurements of protein folding and disulfide

formation.

Does disulfide formation drive protein folding, or conversely,

does protein folding provide a driving force for native disulfide

formation? Both ideas have been proposed in previous studies

(Camacho and Thirumalai, 1995;Wedemeyer et al., 2000;Welker

et al., 2001; Wilkinson and Gilbert, 2004), without any consensus

being reached in the field. In our experiments, the presence of a

mixed disulfide with PDIa enabled disulfide formation in a folding

protein. Whereas protein folding appeared to rate-limit oxidative
folding, attachment of PDIa did not impede the protein-folding

rate. Furthermore, native disulfide formation was catalyzed by

PDIa at a late stage of protein folding. The enzyme remained in

the mixed disulfide complex until the substrate had attained

a near-native state. At this point, the substrate disulfide was

formed, and PDIa was released. By enabling oxidation while

interfering minimally with protein folding, we conclude that PDIa

functions more like a passive placeholder than as an active

folding catalyst. Our results thus indicate that protein folding pro-

vides the driving force during PDIa-mediated oxidative folding.

Nascent polypeptides are constrained in an extended state

as they traverse the ribosomal exit tunnel and Sec translocase

(Becker et al., 2009). Before folding can take place, extended

polypeptides first have to undergo entropic and hydrophobic

collapse (Berkovich et al., 2010; Fernandez and Li, 2004; Gar-

cia-Manyes et al., 2009). In the absence of force, extended

full-length proteins collapse in a fraction of a second and then

sample an ensemble of compact conformations that over a time-

scale of several seconds acquire their native contacts. Such

‘‘molten globule’’ precursor states have been studied exten-

sively, and they are today recognized as a significant deviation

from the classical two-state model of protein folding (Baldwin

et al., 2010; Garcia-Manyes et al., 2009; Kuwajima, 1989; Ptit-

syn, 1995). We found that the kinetics of disulfide formation

corresponded closely to the kinetics of formation of the mechan-

ically stable native state. A molten globule state was thus gener-

ally not sufficient for native disulfide formation. Instead, PDIa

catalyzes disulfide formationwith high efficiency only after a large

fraction of the native contacts have been acquired (Figure 7).

Cotranslational folding in eukaryotes is limitedby the ribosomal

translation rate of�5 amino acids per second (Ingolia et al., 2011)

(Figure 7). Nuclear magnetic resonance (NMR) studies of co-

translational folding have shown that, although proteins can start

acquiring some structural elements while still attached to the

ribosome, they acquire their native fold in a domain-wise fashion

(Cabrita et al., 2009; Eichmann et al., 2010). For a typical 100

amino acid domain, this leaves around 20 s during which its

cysteines are relatively accessible and therefore able to form

mixed disulfides with PDI. Based on the estimated concentration

of PDI in theER (up to 1mM) (Lyles andGilbert, 1991; Zapunet al.,

1992) and the rate of mixed disulfide formation (>0.1 mM�1s�1;

see Figures S6C and S6D), there is a high probability that a

mixed disulfide is present before folding occurs.

When an entire protein domain has been translocated into the

ER, themixed disulfide has to remain in place as the protein folds

into its native state. What happens if PDI dissociates before its

substrate is completely folded? An exposed substrate cysteine

can form a new mixed disulfide. However, protein folding can

cause the burial of cysteine residues, which in turn can prevent

thiol-disulfide exchange. In an earlier study, prematurely folded

domains could acquire disulfides only after spontaneous unfold-

ing, which could take up to an hour (Walker and Gilbert, 1995).

To avoid unproductive waiting times and/or consumption of

energy through active unfolding of such substrates, PDI needs

to introduce disulfides when the nascent protein folds for the first

time. This in turn requires the spontaneous off-rate of PDI to be

slower than the rate of protein folding. We measured the off-rate

of human PDIa to be 0.1 s�1. Human PDI is thus an efficient
Cell 151, 794–806, November 9, 2012 ª2012 Elsevier Inc. 803
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Figure 7. PDI-Mediated Oxidative Folding in

the ER

A nascent polypeptide is kept physically extended

while emerging from the ribosome and is unable to

fold or form disulfide bonds before it enters the ER.

PDI enables oxidative folding in the ER lumen by

forming a mixed disulfide with a cysteine in the

nascent polypeptide. The polypeptide collapses

before folding takes place, whereas PDI remains

attached throughout this process. Non-native

disulfides are sporadically formed during the early

stages of folding. PDI favors the formation of

native disulfides by allowing the polypeptide to

fold into a near-native state before it catalyzes

disulfide formation. By allowing protein folding to

guide the pairing of cysteines, PDI can catalyze

oxidative folding without the need for substrate-

specific interactions. Graphs on right side: color

intensity indicates percentage of native contacts

(blue bar) and probability of disulfide formation

(yellow and orange bars).
oxidative folding catalyst for substrates that fold in less than

10 s after they collapse. This time limit is likely sufficient for

most secreted proteins and certainly sufficient for small proteins

with simple globular structure. However, protein folding can take

place on a wide range of timescales. It is therefore tempting to

suggest that the off-rate of PDI is adapted to the folding rate of

its substrates. The human PDI family has at least 19 members.

Perhaps this diversity is required to accommodate the range of

protein-folding rates.

Although spontaneous release by PDIa precluded successful

oxidative folding in our experiments, this mechanism can serve

an important purpose as a release timer in situations where the

mixed disulfide complex is unproductive (Walker and Gilbert,

1997).

How does PDI ensure correct pairing of cysteines in proteins

with more than one disulfide? For a 4-disulfide protein, there

are more than 700 possible disulfide-bonded configurations.

Despite the vast number of possibilities, the majority of bonds

formed by PDIa in our experiments were the correct intradomain

disulfides. In order to catalyze oxidative folding in a wide range

of substrates, PDI must rely on a catalytic mechanism that is

general yet ensures correct bonding for each specific protein.
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In view of this, Wilkinson and Gilbert

proposed that it is the substrate, rather

than PDI, that determines the pairing of

cysteines (Wilkinson and Gilbert, 2004).

Our data lend strong support to this

theory by showing that covalent attach-

ment of PDIa did not significantly interfere

with the folding protein. PDIa could

thereby favor native disulfides by allowing

its substrate to decide, through folding,

which cysteines to join. Because this

mechanism does not rely on any sub-

strate-specific interactions besides the

mixed disulfide, it can explain how a

single enzyme can catalyze the oxidative
folding of a wide variety of proteins. Nevertheless, it is conceiv-

able that other oxidases affect protein folding in diverse ways; for

instance, we have found that mixed disulfides with the small

molecule glutathione inhibit protein folding (unpublished data).

Oxidative folding in the cell is a highly complex process that

involves many components, including oxidoreductases, chaper-

ones, proline cis-trans isomerases, and small redox molecules

such as glutathione. All of these components can interact with

a protein during its folding process, and the resulting complexity

has severely hindered detailed mechanistic studies of oxidative

folding (Chakravarthi et al., 2009). We have here presented an

approach that enables precise control and measurement of

both folding and disulfide formation in single protein molecules.

These methods can effectively be used to determine differences

between oxidase enzymes, as well as the function of other

factors involved in oxidative folding in the cell.

EXPERIMENTAL PROCEDURES

Single-Molecule AFM

The details of our custom-made atomic force microscope have been de-

scribed previously (Fernandez and Li, 2004). We used silicon nitride cantilevers

(Bruker MLCT) with a typical spring constant of 15 pN nm�1, calibrated using



the equipartition theorem (Florin et al., 1995). The force-clamp mode provided

a feedback time constant of 5 ms. The buffer used in all the experiments was

10 mM HEPES, 150 mM NaCl, 1 mM EDTA, degassed and at pH 7.2. The

concentrations used were 10 mM reduced TRX, 40 mM reduced TRX C35S,

120 mM reduced PDI A1, and 12.5 mMoxidized PDI A1. These enzyme concen-

trations were chosen so as to yield similar rates of mixed-disulfide formation.

The polyprotein substrate was added in a droplet and allowed to bind to

a freshly evaporated gold coverslip before the experiments. Every experiment

consisted of repeated trials where the tip was pressed against the surface at 1

nN for 0.5 s and subsequently retracted. If attachment was achieved, the pulse

protocol was applied until detachment occurred. The oxidative folding force-

clamp experiments used a triple-pulse [denature � folding � probe] force

protocol. The first pulse was maintained at 130–150 pN for a time long enough

to ensure complete unfolding and reduction of the substrate (at least 5 s). The

second pulse was set at 0 pN andmaintained for the desired amount of refold-

ing time. The third pulse was set at a force identical to the first and maintained

until complete unfolding and reduction could be ensured (at least 5 s). For

measurement of the data in Figures 3, 4, and 5, split denature and probe pulses

were used. This method allowed for a clearer separation of unfolding and

reduction steps and has been described earlier (Wiita et al., 2006).

Data Analysis

We used custom-written software in IGOR Pro (Wavemetrics) to collect and

analyze data. Recordings were low-pass filtered at 1 kHz for display purposes.

Traces were selected based on the fingerprint consisting of at least two unfold-

ing events in the denature pulse. Initially oxidized I2732–75 traces exhibiting step

sizes other than 11 nm or 14 nm in the denature pulse were excluded from the

analysis to ensure homogeneity. For initially reduced substrate samples,

25 nm steps were used as the selection criterion. More than 50% of all traces

with repeated steps met these criteria. Only traces showing equal extension

at the end of the probe pulse and the end of the denature pulse were included,

to ensure that thesameproteinwas stretched in the twopulses. Step-sizehisto-

grams were generated using all steps >5 nm detected after the initial elastic

extension in each forcepulse.A2.5nmminimumcutoffwasapplied to thehisto-

gram in Figure 6D. Histograms in the main-text figures were compiled from

representative experiments. The number of independent observations n was

counted as the total number of protein domains (as observed in the denature

pulse). Standard error of the mean (SEM) for fractions was estimated through

the bootstrap method, where each recording was treated as an independent

data point. SEM for fit parameters was determined as the standard error for the

coefficient in the fit, given the measurement errors of the individual data points.

SUPPLEMENTAL INFORMATION
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