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The widely used Arrhenius equation describes the kinetics of
simple two-state reactions, with the implicit assumption of a single
transition state with a well-defined activation energy barrierΔE, as
the rate-limiting step. However, it has become increasingly clear
that the saddle point of the free-energy surface in most reactions
is populated by ensembles of conformations, leading to nonexpo-
nential kinetics. Here we present a theory that generalizes the
Arrhenius equation to include static disorder of conformational
degrees of freedom as a function of an external perturbation to
fully account for a diverse set of transition states. The effect of
a perturbation on static disorder is best examined at the single-
molecule level. Here we use force-clamp spectroscopy to study
the nonexponential kinetics of single ubiquitin proteins unfolding
under force. We find that the measured variance in ΔE shows both
force-dependent and independent components, where the force-
dependent component scales with F2, in excellent agreement with
our theory. Our study illustrates a novel adaptation of the classical
Arrhenius equation that accounts for the microscopic origins of
nonexponential kinetics, which are essential in understanding
the rapidly growing body of single-molecule data.

single-molecule force-clamp spectroscopy ∣ protein unfolding ∣ ubiquitin ∣
molecular dynamics simulations

In 1889 Svante Arrhenius proposed a simple equation for the
temperature dependency of the rate of a chemical reaction

k ¼ A exp½−ðΔEkBT
Þ�, where A is a preexponential factor, kB is the

Boltzmann constant, T is the absolute temperature and ΔE is
the height of the activation energy barrier (1). This widely
accepted description of a single barrier crossing reaction can
be readily expanded to include the effect of perturbations that
alter the height of the free-energy barrier. For example, when
a mechanical force, F, is applied to a molecule, the free-energy
barrier height is reduced by an amount equal to FΔx, where Δx
represents the actual distance from the native conformation to
the transition state conformation along the reaction coordinate.
As pointed out by Bell (2), the corresponding Arrhenius law then
becomes kðFÞ ¼ A exp½−ðΔG−FΔx

kBT
Þ�, where ΔG is the height of the

free-energy barrier of reaction in the absence of force. This
simple description of the kinetics of a reaction under force has
proven useful in a wide variety of single-molecule studies such
as bond rupture events (3, 4), protein unfolding (5, 6), and che-
mical reactions (7, 8). In this work we will focus our investigation
on proteins unfolding under a stretching force. However, our
conclusions can be readily generalized to other reaction schemes.
Assuming a negligible refolding rate, the survival probability, SðtÞ,
that a protein remains folded for a time t while under a force, F,
satisfies the first-order rate equation, dSðtÞ

dt ¼ −kðFÞSðtÞ. The
resulting survival probability is thus a single exponential. Recent
generalizations of the Arrhenius description also lead to a single-
exponential survival probability (9, 10). The advent of force-
clamp techniques have allowed the direct measurement of the
survival probability of protein unfolding under a constant force.
The survival probability is expected to follow single-exponential

time dependence while assuming each protein in the ensemble
has a single native conformation and follows the same unfolding
pathway. In sharp contrast with this simple assumption, thou-
sands of ubiquitin unfolding events observed at a constant force
of 110 pN revealed a nonexponential survival probability (11, 12).
Further, many other biological reactions, including ligand binding
to heme proteins (13–18), enzyme catalysis (19–25), and ion
channel openings (26, 27), also exhibit nonexponential kinetics.
These results are not surprising given that proteins and their sol-
vent environment form complex systems with many degrees of
freedom. Indeed, proteins exhibit a large number of conforma-
tional substates (28, 29). The transition state of a reaction is more
generally described as the saddle point of the multidimensional
free-energy landscape for the reaction. Moreover, multiple mo-
lecular conformations typically populate a saddle point, allowing
the reaction to proceed through a number of pathways with com-
parable energy barriers, but different transition state structures
(30). Thus, we need to develop a generalized Arrhenius equation,
kðFÞ, that takes into account reactions that proceed through tran-
sition state ensembles, resulting in a nonexponential survival
probability.

In a seminal study, Zwanzig investigated the origin of nonex-
ponential kinetics and defined two different kinds of molecular
scenarios: dynamic disorder and static disorder (31, 32). Dynamic
disorder refers to fluctuations of the reaction rate as a single mo-
lecule explores its conformational free-energy landscape (31, 32).
If the reaction rate changes rapidly, the value of the reaction rate
is an ensemble average, leading to single-exponential kinetics. By
contrast, in the case of static disorder, the interconversion rates
among different conformations are much slower than the reac-
tion rate, such that individual molecules are “frozen” in distinct
conformations during their barrier crossing reactions. In this case,
nonexponential kinetics results from the diversity of reaction
rates among individual molecules, reflecting the broad distribu-
tion of free-energy barrier heights associated with different con-
formers of the native states and their distinct reaction pathways.
Here, we utilize Zwanzig’s approach (31, 32) to develop a gen-
eralized Arrhenius term in the presence of static disorder.

Model
Static Disorder Model For proteins, conformational heterogeneity
of the native-state ensemble (33, 34) as well as variations in the
structure of the transition state ensemble (6) are likely to contri-
bute to a diverse set of unfolding pathways, implying disorder in
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the free-energy barrier heights ΔE ¼ ΔG − FΔx under a constant
force. Extending from Zwanzig’s approach (31, 32), we consider
both ΔG and Δx as functions of independent disorder para-
meters, which characterize conformational degrees of freedom,

ΔGðtÞ ¼ ΔGavgð1þ uðtÞÞ; ΔxðtÞ ¼ Δxavgð1þ vðtÞÞ; [1]

where ΔGavgu is the amount of disorder in ΔG respective to the
average value, ΔGavg, and Δxavgv is the amount of disorder in Δx
respective to the average value, Δxavg. In general, the disorder
parameters of u and v fluctuate in time as the protein fluctuates
between different conformers. Therefore, the survival probability
SðtÞ ¼ exp½−∫ t

0kðF;uðt0Þ;vðt0ÞÞdt0� is dependent on the dynamics of
the two disorder parameters, u and v. We assume that the dy-
namics of both u and v are governed by the Langevin equation,
du
dt ¼ −λuuþ f uðtÞ, dv

dt ¼ −λvvþ f vðtÞ, where λu, λv are the relaxa-
tion rate constants of u and v, and f uðtÞ, f vðtÞ are the Gaussian
white noise for u and v, respectively. It is important to note that,
if the interconversion rates among different conformational sub-
states are much faster than the reaction rate (λu and λv are large,
≫k), the time-averaged reaction rate will show single-exponential
kinetics. This situation is a special case of dynamic disorder. By
contrast, static disorder corresponds to slow interconversion rates
among different molecular conformations (λu and λv are very
small, ≪k), resulting in nonexponential kinetics. Interestingly,
in the intermediate cases, the kinetics is initially nonexponential
and changes to exponential at long time scales, as discussed by
Zwanzig (32). Here, we assume conditions of static disorder
throughout.

The Arrhenius/Bell equation for a molecule under force now
becomes

kðF;u;vÞ ¼ A exp
�
−
�
ΔGavgð1þ uÞ − FΔxavgð1þ vÞ

kBT

��
: [2]

We define r ¼ ΔGavgu − FΔxavgv and then Eq. 2 becomes

kðF;rÞ ¼ kF exp
�
−

r
kBT

�
; [3]

where kF ¼ A exp
�
−ðΔGavg−FΔxavg

kBT
Þ� is the rate of crossing the aver-

age barrier height (a nondisordered part) and r is the amount of
disorder in the barrier heights with respect to the average value,
ΔGavg − FΔxavg. We assume that the disorder parameters u and v
are both normally distributed, centered at zero with a standard
deviation of σu and σv, respectively. Given that u and v are inde-
pendent variables, it can be shown that the parameter r obeys a
Gaussian distribution with a mean of zero and a variance given by

σ2 ¼ σ2ΔG þ F2σ2Δx; [4]

where σΔG ¼ ΔGavgσu and σΔx ¼ Δxavgσv (35). We can now derive
the generalized Arrhenius equation for the mean rate of a
reaction:

hkðFÞi ¼
Z

∞

−∞
kðF;rÞf ðrÞdr

¼ A exp
�
−
�
ΔGavg − FΔxavg

kBT

��
exp

�
σ2ΔG þ F2σ2Δx
2ðkBTÞ2

�
; [5]

where f ðrÞ is the probability density of r. This generalized Arrhe-
nius equation for a reaction under a constant force readily reverts
back to the simple two-state expression, in the case where there
is a single transition state and no disorder (σ ¼ 0). However, in
the presence of disorder, the actual mean rate of the reaction
becomes different from the rate of crossing the average barrier

height, kF . Owing to the fact that σ2 increases rapidly with force
(Eq. 4), this difference becomes larger as the pulling force is
increased.

Here, what is measured in the force-clamp spectroscopy is
the ensemble-averaged survival probability, rather than the
mean rate of a reaction. The survival probability for any specific
reaction pathway, as parameterized by r, is now given by

Sðt;F;rÞ ¼ exp
�
−kF exp

�
−

r
kBT

�
× t

�
: [6]

The ensemble-averaged survival probability is given by the super-
position of the survival probability for each unfolding pathway,
weighted by the probability of the corresponding pathway. Then,
the ensemble-averaged survival probability hSðt;FÞi for any Ar-
rhenius type reaction in the presence of static disorder becomes

hSðt;FÞi ¼
Z

∞

−∞
Sðt;F;rÞf ðrÞdr

¼
Z

∞

−∞
exp

�
−kF exp

�
−

r
kBT

�
× t

�
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp
�
−

r2

2σ2

�
dr:

[7]

It is clear that in the absence of disorder ðσ → 0; f ðrÞ → δðrÞÞ, the
ensemble-averaged survival probability becomes a single expo-
nential, in good agreement with the standard usage of the Arrhe-
nius equation. However, in the presence of disorder (σ > 0), the
survival probability becomes nonexponential. Notably, in the spe-
cial case where the disorder in the barrier heights is small (σ is
small compared to kBT), the survival probability has an analytical
form, clearly showing nonexponential time dependence (SI Text).
Our model predicts that in the presence of static disorder, the
survival probability will be nonexponential and the measured
variance of the barrier heights will show a quadratic dependency
on the applied force. Here we test these predictions using force-
clamp spectroscopy to measure the survival probability of single
ubiquitin proteins unfolding under a stretching force.

Results and Discussion
Pulling a single polyubiquitin protein (nine repeats) at a constant
force of 110 pN (Fig. 1A) gives rise to a series of stepwise incre-
ments of ∼20 nm in the length of the polyprotein, corresponding
to the unfolding of each ubiquitin to a fully extended state
(Fig. 1B). The step size of 20 nmmarks an extension that is tightly
correlated with the number of amino acids released by the unfold-
ing of a ubiquitin protein, providing a well-established mechan-
ical fingerprint. The step size, which can be directly calculated
from the worm-like chain model of polymer elasticity (36, 37),
varies very slowly in the region between 90 pN and 200 pN. Each
step increase in the length marks the unfolding dwell time for an
individual ubiquitin in the chain (indicated as ti in Fig. 1B).
Ubiquitin unfolding in a polyprotein was shown previously to
be Markovian and not affected by the status of its neighbors
(12, 38). Hence, for a given force F, a histogram of the measured
dwell times corresponds to the probability density of unfolding,
pðtÞ (Fig. 1C, F ¼ 110 pN). The nonexponential nature of the un-
folding reaction is readily observed in such a histogram where a
single-exponential fit (Fig. 1C, solid trace) fails to account for the
large deviations observed at short dwell times. From the dwell-
time histogram, we can measure the ensemble-averaged survival
probability, defined as hSðtÞi ¼ 1 − ∫ t

0pðt0Þdt0. A clear demonstra-
tion of nonexponential behavior of survival probability can be ob-
tained by plotting ln½− lnhSðtÞi� versus ln t (Fig. 2). We note that in
these coordinates a phenomenological stretched-exponential
function, hSðtÞi ¼ exp½−ðt∕τÞβ�, would appear as a straight line
whose slope is equal to β, which serves as an indication of non-

Kuo et al. PNAS ∣ June 22, 2010 ∣ vol. 107 ∣ no. 25 ∣ 11337

CH
EM

IS
TR

Y
BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1006517107/-/DCSupplemental/pnas.1006517107_SI.pdf?targetid=STXT


exponentiality. Using single-molecule force-clamp techniques,
the measured survival probabilities over a range of forces were
found to be nonexponential (Fig. 2, symbols; 90 pN, 110 pN,
130 pN, 150 pN, 170 pN, 190 pN). We then fit the static disorder
model (Eq. 7) to the survival probability measured at each force,
with the fit variables kF and σ2, using the Levenberg-Marquardt
least-squares algorithm (39) (Fig. 2, solid lines). The measured
values of kF and σ2 are listed in Table 1. The errors in the fit para-
meters were estimated using the bootstrap method (40).

From the measured values of kF we observed a linear relation-
ship between ln kF and the applied force (Fig. 3), demonstrating
that the most probable unfolding rate kF , corresponding to the
rate of crossing the average barrier height ΔGavg − FΔxavg, fol-
lows the simple Arrhenius law. Fitting ln kF with the Arrhenius
equation using a preexponential factor of A ¼ 106 s−1 (41) gives
an average barrier height of ΔGavg ¼ 85.1 pNnm and an average
distance to the transition state of Δxavg ¼ 0.23 nm. The extrapo-
lated value of the most probable unfolding rate at zero force is
kF¼0 ¼ 10−3 s−1. More strikingly, the measured variance of the
barrier heights σ2 is linearly dependent on the square of the force,
in good agreement with the predictions of our model (Fig. 4). In
this plot, the intercept at zero force is equal to σ2ΔG and the slope
corresponds to σ2Δx, demonstrating that the dispersed kinetics of
ubiquitin unfolding results from both the disorder of ΔG and the
disorder of Δx. A fit of Eq. 4 to σ2 (Fig. 4, solid line) yields the
values of σ2ΔG ¼ 4.34� 2.76 ðpNnmÞ2 and σ2Δx ¼ 6.4 × 10−4�
1.6 × 10−4 nm2. From these measurements we conclude that
the probability distribution of barrier heights in the absence of
force is a Gaussian distribution with a mean of 85.1 pNnm
and a standard deviation of 2.1 pNnm. Similarly, the probability
distribution of distances to the transition state is a Gaussian
distribution centered at 0.23 nm with a width of 0.025 nm. While
these measurements show consistency with the theory up to
170 pN, the data point at 190 pN shows a significantly reduced
variance from that predicted by Eq. 4. However, the kinetics of
ubiquitin unfolding at 190 pN (kF ∼36.8 s−1) is near the upper
limit of the resolution of our instrument which has a feedback
response time constant of ∼1–3 ms. Therefore, we are likely to
be missing many fast unfolding events with short dwell times. Al-
ternatively, the abrupt decrease in disorder observed at 190 pN
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Fig. 1. Measuring the survival probability of ubiquitin proteins unfolding
under a stretching force. (A) A single polyubiquitin molecule is picked up
from the surface by the cantilever tip and stretched under a constant force.
(B) Stretching a ubiquitin polyprotein at a constant force of 110 pN results in
a series of 20 nm stepwise increments in the polyprotein length, marking the
unfolding of individual ubiquitins in the chain. Wemeasure the dwell time to
unfolding, ti , for each unfolding event. (C) A histogram of 2799 unfolding
events measures the probability density of unfolding pðtÞ at 110 pN. At short
dwell times the distribution deviates significantly from a single exponential
(black trace).
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Fig. 2. Survival probability for ubiquitin unfolding under force is well de-
scribed by static disorder theory. Plot of ln½− lnhSðtÞi� versus ln t at 90 pN
(filled circles), 110 pN (open circles), 130 pN (filled squares), 150 pN (open
squares), 170 pN (filled triangles), and 190 pN (open triangles), respectively.
The slopes of all the curves are less than 1, indicating the nonexponential
survival probability measured at all forces. The solid lines represent the fits
of the static disorder survival probability (Eq. 7) to the data at each force,
with the unfolding rate of crossing the average barrier height kF and the
variance of the barrier heights σ2 as fit parameters. The values of these
parameters are compiled in Table 1. The errors in the fit parameters were
estimated using the bootstrap method.

Table 1. Kinetic parameters for ubiquitin unfolding from the static
disorder model fit

Force [pN] kF [s−1] σ2 [ðpNnmÞ2]
90 0.13 ± 0.02 9.07 ± 3.48
110 0.73 ± 0.03 12.01 ± 1.35
130 1.28 ± 0.15 17.23 ± 3.40
150 3.11 ± 0.16 18.54 ± 1.47
170 16.28 ± 2.82 22.89 ± 4.35
190 36.81 ± 2.86 12.42 ± 2.26

The unfolding rate of crossing the average barrier height, kF , and the
variance of the barrier heights, σ2, were obtained by the static disorder
model fit to the data. The errors of kF and σ2 were estimated using the
bootstrap method.

Fig. 3. The unfolding rate of crossing the average barrier height, kF , de-
pends exponentially on the pulling force. A linear dependence between
ln kF and the applied force reveals the remarkable result that the most
probable unfolding rate, kF , follows the simple Arrhenius law. Fitting ln kF

with the Arrhenius equation (solid line) yields the average barrier height
in the absence of force ΔGavg ¼ 85.1 pNnm and the average distance to
the transition state Δxavg ¼ 0.23 nm.
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could represent an abrupt shift in the dynamics of the transition
state ensemble, shifting from static to dynamic disorder, causing
the unfolding kinetics to become more single-exponential.
Resolution of these questions will have to wait until much faster
force-clamp measurements become possible.

Our theory and experiments support the view that single
ubiquitin proteins unfold through different pathways, where both
the free-energy barrier height, ΔG, and the distance to the tran-
sition state, Δx, vary over a Gaussian distribution of values. In the
absence of force, only the variance of the barrier heights at zero
force ðσ2ΔGÞ is of consequence for determining the distribution of
unfolding rates (see Eq. 4). The standard deviation of the barrier
heights in the absence of force is 0.5 kBT and thus plays only a
minor role in the dispersed kinetics, consistent with the bulk
probes of ubiquitin unfolding, which show mostly single-exponen-
tial kinetics (42). Indeed, using our generalized Arrhenius mean
rate equation (Eq. 5) and the measured values of σ2 (Fig. 4) we
calculate that at zero force the mean rate of the reaction is only
13% bigger than the value estimated if one assumes a simple two-
state reaction: hki ¼ kF¼0 × 1.13. On the other hand, at 170 pN,
the mean rate doubles: hki ¼ kF × 2. These observations resolve
the paradox of observing nonexponential kinetics for single
proteins unfolding under force (11), while observing single-
exponential kinetics for the same proteins under bulk conditions
at zero force (42).

We conclude that the dominant factor in the nonexponential
kinetics of ubiquitin unfolding under force is a dispersion in the
values of Δx. Lattice model simulations of mechanical unfolding
have predicted variations in Δx (43). Recent experiments have
shown that the value ofΔxmeasured for proteins unfolding under
force is determined by the bridging length of solvent molecules at
the transition state structure of the reaction (6). We propose that
variations in the way that solvent molecules populate the transi-
tion state structure may explain the distribution of values of Δx.
Here, we performed forced unfolding of ubiquitin using steered
molecular dynamics (SMD) simulations to examine this possibi-
lity. Previous SMD simulations of ubiquitin showed that the key
event in mechanical unfolding is the simultaneous breaking of the
four backbone hydrogen bonds bridging the β1 and β5 strands of
the protein (44) (Fig. S1A). Therefore, in our studies we defined
the reaction coordinate for ubiquitin unfolding as the distance
between the first residue of the β1 strand (Q2) and the last re-
sidue of the β5 strand (L69). A total of 100 SMD simulations
show that water molecules can bridge the breaking backbone
hydrogen bonds in many different ways, resulting in varying elon-

gations along the reaction coordinate when reaching the transi-
tion state of the reaction (Fig. S1B). While the values of Δx
measured in the SMD simulations are smaller than those ob-
served experimentally, they follow a similar distribution
(Fig. S1C), supporting the view that a diversity of bridging water
conformations could explain the dispersion in the values of Δx
measured experimentally. These observations predict that the de-
gree of disorder in Δx will be dependent on the type of solvent
surrounding the protein. Furthermore, it is likely that the degree
of disorder in Δx varies from protein to protein following the par-
ticular architecture of each transition state ensemble. Indeed, in a
beautiful study using force-clamp spectroscopy, Li and colleagues
showed that protein G unfolds under force following a perfect
single-exponential kinetics over the range of 50–120 pN (45),
implying either a well-defined transition state structure or much
faster interconversion among different configurations at the un-
folding transition state of the protein (46). It is well established
that proteins fluctuate in a broad range of times scales (19, 22, 29,
46, 47); however, only those motions which interconvert much
slower than the unfolding rate will result in the dispersed kinetics
reported in our work. Faster interconversions would lead to a sin-
gle-exponential survival probability, which is not observed in our
work. It is also possible that at low pulling forces the unfolding
rate may become comparable to the interconversion rate between
conformers, reaching a form of dynamic disorder where the
kinetics becomes single-exponential.

Our theory provides a direct approach in determining the var-
iance in the height of the activation energy barrier of a reaction
and can be readily generalized to any type of perturbation. It is
now clear that in the presence of static disorder, the effect of a
perturbation is to tease apart transition state conformations with
similar energies, such that they can be identified. We have so far
considered the effect of a mechanical force on the height of the
activation energy barrier, ΔE ¼ ΔG − FΔx. Excitingly, our theory
can be applied to other perturbations such as a membrane voltage
acting on the gating charges of an ion channel, ΔE ¼ ΔG − Vq
(48, 49), or a chemical denaturant triggering unfolding
ΔE ¼ ΔG − Dm (50). Then, ion channels kinetics under vol-
tage-clamp conditions will show a variance of the barrier heights
equal to σ2 ¼ σ2ΔG þ V 2σ2q, where V is the membrane voltage and
q is the equivalent gating charge which shows disorder. Similarly,
proteins undergoing chemical denaturation will show a variance
of the barrier heights equal to σ2 ¼ σ2ΔG þD2σ2m, where D is the
concentration of the denaturant and the kinetic m-value is the
disorder parameter. By replacing the correct expression for the
variance of the barrier heights into the generalized Arrhenius
mean rate equation (Eq. 5) and the survival probability
(Eq. 7) one can predict the kinetics of any type of barrier acti-
vated reaction in the presence of static disorder.

Materials and Methods
Protein Engineering and Purification. The polyproteins consisting of nine
tandem repeats of the human ubiquitin were engineered by consecutive
subcloning of the monomers using the BamHI and BglII restriction sites, as
described previously (44). The DNA molecule containing nine repeats of
the ubiquitin cDNA sequence is then subcloned into the pQE80L expression
vector and transformed into the BLR(DE3) Escherichia coli expression strain
(Novagene). Constructs were purified by histidine metal-affinity chromato-
graphy with Talon resin (Clontech) and by gel filtration using a Superdex
200 HR column (GE Biosciences).

Single-Molecule Force Spectroscopy. The constant-force experiments were
performed with the homemade atomic force microscopy (5, 51). The sample
is prepared by depositing 3–12 μl of protein in phosphate buffered saline
solution onto a freshly gold coverslide. Each cantilever (Olympus, Veeco)
was calibrated using the equipartition theorem (52), giving rise to a spring
constant of ∼20 pN∕nm. Single ubiquitin polyproteins are picked up from the
surface by the tip of the cantilever by pushing the cantilever hardly on the
surface at 1,500 pN. Then the polyprotein is stretched under a constant force
by retracting the piezo actuator, controlled by the analog force feedback

Fig. 4. Force dependency of the variance in the barrier heights to unfolding.
Plot of the measured variance of the barrier heights, σ2, as a function of
the square of the pulling force. The solid line corresponds to a fit of the
data from 90 pN to 170 pN with σ2 ¼ σ2ΔG þ F2σ2Δx (Eq. 4). The fit gives
σ2ΔG ¼ 4.34� 2.76 ðpNnmÞ2 and σ2Δx ¼ 6.4 × 10−4 � 1.6 × 10−4 nm2. The
measured values of σ2 increase linearly with F2 in this range of forces, in
agreement with the prediction of our model.
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system. The force-clamp experiments at 170 pN and 190 pN were performed
with a high-speed S-303 piezo (Physik Instrumente, Germany), improving the
feedback response time up to 1–3 ms.

Data Analysis. All data were collected and analyzed using the custom soft-
ware written in Igor Pro 6 (Wavemetrics). The survival probability is defined
as hSðtÞi ¼ 1 − ∫ t

0pðtÞdt, where pðtÞdt corresponds to the probability of
unfolding during the period of time between t and t þ dt. The survival
probability at each force is obtained from the associated probability density
histogram of unfolding times, pðtÞ. The integral in the fitting function (Eq. 7)
is evaluated by taking a sum of the integrand over the interval ½−6σ;6σ�, with
the interval width of dr ¼ 0.001 pNnm. All the fitting procedures are per-
formed by the Levenberg-Marquardt least-squares algorithm, implemented
in the Igor Pro 6 software package. The errors of kF and σ2 are estimated by
the bootstrap method (40).

Steered Molecular Dynamics Simulations. The simulations were carried out
with the NAMD2 (for equilibrium) and Gromacs 4.0 (for SMD simulation)
simulation suites. The OPLSAA (optimized potentials in liquid simulations
all-atom) force field was applied. The complexes were solvated in a 6.0 � 6.0 �
11.0 nm3 box of SPC/E [simple point charge (extended)] water molecules.

Simulations were performed in the NPT (isothermal-isobaric) ensemble.
The system was energy-minimized (steepest descent, 1,000 steps) before
equilibrating the solvent for 1 ns with positional restraints on heavy atoms
of ubiquitin. Simulations for 2-ns were performed to equilibrate the whole
system, and this was followed by 30-ns simulations to generate various initial
configurations for steered molecular dynamics simulations. The Cα-atoms of
the terminal residues of the substrate were moved away from each other in
the x-direction with a constant force of 400 kJmol−1 nm−1, 667 pN.
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