

I'm not a robot   
reCAPTCHA

**I am not a robot!**



## Stability indicating. Stability indicating method.

Smela M J (2005) Regulatory considerations for stability indicating analytical methods in drug substance and drug product testing. *Am Pharm Rev* 8:51–54. Google Scholar ICH Q5 (1996) Stability testing of biotechnological/biological products. Google Scholar ICH Q1A (2003) Stability testing of new drug substances and products. Google Scholar ICH Q1E (2003) Evaluation of stability data. Google Scholar ICH Q3A (R) (2003) Impurities in new drug substances. Google Scholar ICH Q3B (R) (2003) Impurities in new drug products. Google Scholar ICH Q6A (2000) Guidance on specifications: test procedures and acceptance criteria for new drug substance and products: chemical substances. Google Scholar ICH Q2A (R) (1995) Guideline for industry, text on validation of analytical procedures. Google Scholar ICH Q2B (R) (1996) Guideline on validation of analytical procedures: methodology. Google Scholar Reynolds DW, Faccinne KL, Mullaney JF, Alsante KM, Hatajik TD, Motto MG (2002) Available guidance and best practices for conducting forced degradation studies. *Pharm Technol* 26:48–56. Google Scholar Reynolds DW (2004) Forced degradation of pharmaceuticals. *Am Pharm Rev* 7:56–61 Google Scholar Thatcher SR, Mansfield RK, Miller RB, Davis CW, Baertschi SW (2001) Pharmaceutical photostability: a technical guide and practical interpretation of the ICH guideline and its application to pharmaceutical stability – Part I. *Pharm Technol N Am* 25:98–110.CAS Google Scholar Baertschi SW (2005) Pharmaceutical stress testing: predicting drug degradation. *Taylor & Francis, Boca Raton*. Google Scholar FDA (2003) Guidance for industry INDs for phase 2 and 3 studies: chemistry, manufacturing, and control information. KM, Martin L, Baertschi SW (2003) A stress testing benchmarking study. *Pharm Technol* 27:60–72.CAS Google Scholar Kats M (2005) Forced degradation studies: regulatory considerations and implementation. *BioPharm Int* 18:7. Google Scholar Alsante KM, Ando A, Brown R, Ensing J, Hatajik TD, Kong W, Tsuda Y (2007) The role of degradant profiling in active pharmaceutical ingredients and drug products.

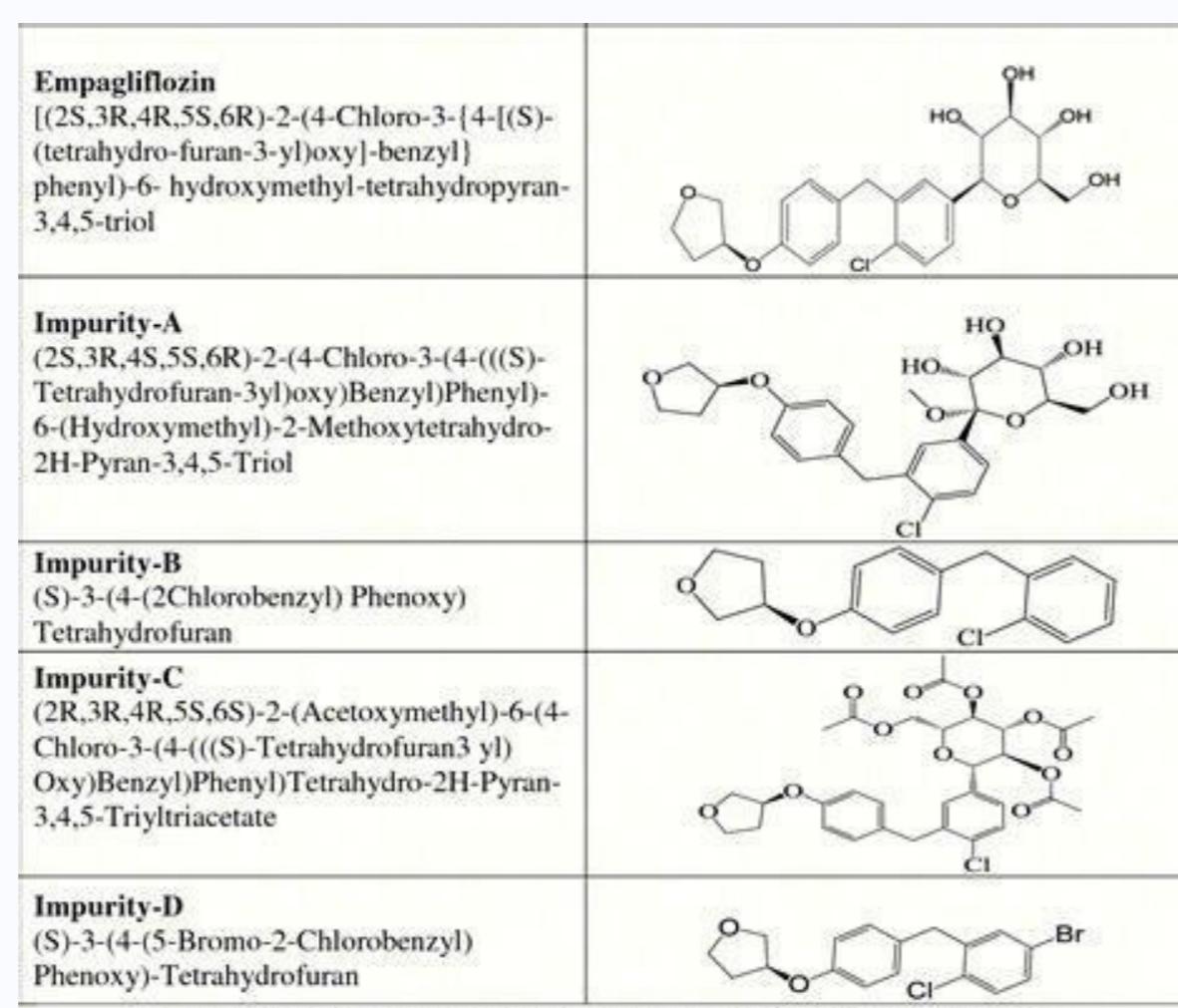



Figure 1: Chemical structure of Empagliflozin and process impurities

Am Pharm Rev 8:51–54. Google Scholar ICH Q5 (1996) Stability testing of biotechnological/biological products. Google Scholar ICH Q1A (2003) Stability testing of new drug substances and products. Google Scholar ICH Q1E (2003) Evaluation of stability data. Google Scholar ICH Q3A (R) (2003) Impurities in new drug substances. Google Scholar ICH Q3B (R) (2003) Impurities in new drug products. Google Scholar ICH Q6A (2000) Guidance on specifications: test procedures and acceptance criteria for new drug substance and products: chemical substances. Google Scholar ICH Q2A (R) (1995) Guideline for industry, text on validation of analytical procedures.

Journal of Applied Pharmaceutical Science Vol. 9(06) pp 021-032, June, 2019  
Available online at <http://www.japsonline.com>  
DOI: 10.7324/JAPS.2019.90604  
ISSN: 2231-3354

**Development and validation of a stability-indicating RP-HPLC method of cholecalciferol in bulk and pharmaceutical formulations: Analytical quality by design approach**

Dilipkumar Suryawanshi\*, Dargob Kumar Jha, Umesh Shinde, Purimra D. Amin  
Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, UGC-CAS (IIIT) State, Mumbai, India

**ARTICLE INFO**  
Received on: 06/11/2018  
Revised on: 05/06/2019  
Accepted online: 05/06/2019

**Key words:** Cholecalciferol, analytical quality by design, orthogonal array design, DoE, forced degradation studies, forced degradation studies.

**ABSTRACT**  
The present article utilized analytical quality by design (AQbD) methodology to optimize chromatographic conditions for the development of a stability-indicating RP-HPLC method for cholecalciferol in bulk and pharmaceutical formulations. The present method was developed to validate the analytical quality by design principles for augmenting the method performance. The optimized chromatographic separation was attained on a C18 column (5  $\mu$ m, 250  $\times$  4.6 mm) in mobile phase at a flow rate of 1.0 mL/min and photodiode array detection at 253 nm. The optimized chromatographic method was successfully validated as per ICH Q2 (R1) guidelines. The detection limit was 0.001 mg/mL and the quantification limit was 0.003 mg/mL. The detection limit and quantification limit were found to be 30 and 100  $\mu$ g/mL, respectively. The percent recovery of reference developed 400 IU mouth dissolving tablets and marketed Tops 400 tablets were found to be 99.9% and 99.7%, respectively. The results of the present study clearly indicated the analytical quality by design approach suggesting the stability-indicating power of the method. In conclusion, the AQbD-driven method is highly suitable for analysis of C18 in bulk and pharmaceutical formulations.

**INTRODUCTION**  
During product development, quality assurance of pharmaceutical products is a matter of great concern in the pharmaceutical industry. Analytical methods are critical elements in product development due to their roles in assisting with process development and quality control. The analytical methods used in product development are often based on a trial and error approach, resulting in misleading information that may not be representative of the true quality of the product. As evidence to address such plausible crucial issues, different Pharmacopeial regulatory agencies, such as International Council for Harmonization (ICH), United States Pharmacopeia (USP), and European Pharmacopeia (EP) have been transforming by adopting quality by design (QbD) principles to circumvent these quality crises. Recently, ICH has announced new guideline Q1E (Q1) on analytical procedures (Q1E/Q14) (ICH Assembly, Kobe, Japan, June 2019). The Q1E/Q14 guideline on analytical procedures is a QbD approach, method development for any drug molecule was performed by a trial and error approach, for example, by varying one-factor-at-a-time and two-factor-at-a-time approach, until the best method was found. It is a time-consuming process and required a large amount of manual data interpretation and often requires hypothesis. This can be overcome by applying QbD principles to the analytical method development as it uses a statistical experimental design to establish the relationship between the process and the drug development process (Molko *et al.*, 2011; Pernar *et al.*, 2013). Moreover, this type of method development provides a linkage between quality and quality requirements. This can be overcome by applying QbD principles to the analytical method development as it uses a statistical experimental design to establish the relationship between the process and the drug development process (Molko *et al.*, 2011; Pernar *et al.*, 2013). Moreover, this type of method development provides a linkage between quality and quality requirements.

**Corresponding Author:**  
Dilipkumar Suryawanshi, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, UGC-CAS (IIIT) State, Mumbai, India. E-mail: [dilipjkj@gmail.com](mailto:dilipjkj@gmail.com)

\*Correspondence to: Dilipkumar Suryawanshi, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, UGC-CAS (IIIT) State, Mumbai, India. E-mail: [dilipjkj@gmail.com](mailto:dilipjkj@gmail.com)

© 2019 Dilipkumar Suryawanshi *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (<http://creativecommons.org/licenses/by/4.0/>)

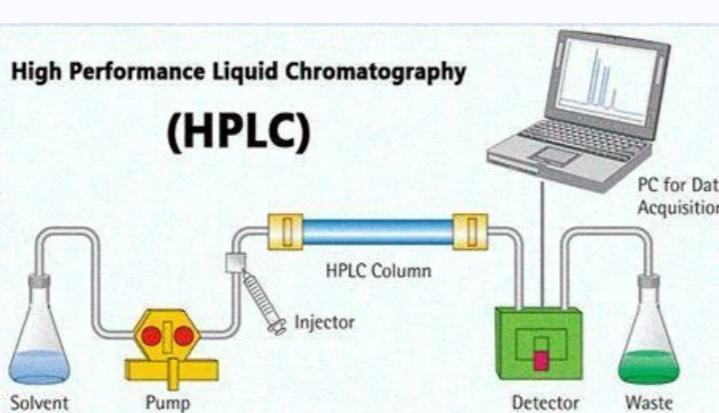
Google Scholar ICH Q2B (R) (1996) Guideline on validation of analytical procedures: methodology. Google Scholar Reynolds DW, Faccinne KL, Mullaney JF, Alsante KM, Hatajik TD, Motto MG (2002) Available guidance and best practices for conducting forced degradation studies. *Pharm Technol* 26:48–56. Google Scholar Reynolds DW (2004) Forced degradation of pharmaceuticals. *Am Pharm Rev* 7:56–61 Google Scholar Thatcher SR, Mansfield RK, Miller RB, Davis CW, Baertschi SW (2001) Pharmaceutical photostability: a technical guide and practical interpretation of the ICH guideline and its application to pharmaceutical stability – Part I. *Pharm Technol N Am* 25:98–110.CAS Google Scholar Baertschi SW (2005) Pharmaceutical stress testing: predicting drug degradation. *Taylor & Francis, Boca Raton*.

www.japs.com JAPS – Vol.11, No.6, June 2019, ISSN: 2231-3354  
INTERNATIONAL JOURNAL OF ADVANCES IN PHARMACY, BIOLOGY AND CHEMISTRY  
Research Article

**A Validated Stability-Indicating HPLC Assay Method for Cetirizine HCl in Bulk Drug**

**Vitali Choudhury and Milind Ubale**

Department of Chemistry, Vasantrao Naik Marathahalli, Bangalore, India.


**ARTICLE INFO**

**ABSTRACT**

**INTRODUCTION**

**KEYWORDS**

**Chemical structure of Cetirizine**



Google Scholar ICH Q6A (2000) Guidance on specifications: test procedures and acceptance criteria for new drug substance and products: chemical substances. Google Scholar ICH Q2A (R) (1995) Guideline for industry, text on validation of analytical procedures. Google Scholar ICH Q2B (R) (1996) Guideline on validation of analytical procedures: methodology. Google Scholar Reynolds DW, Faccine KL, Mullaney JF, Alsante KM, Hatajik TD, Moto MG (2002) Available guidance and best practices for conducting forced degradation studies. *Pharm Technol* 26:48-56. Google Scholar Reynolds DW (2004) Forced degradation of pharmaceuticals. *Am Pharm Rev* 7:56-61 Google Scholar Thatcher SR, Mansfield RK, Miller RB, Davis CW, Baertschi SW (2001) Pharmaceutical photostability: a technical guide and practical interpretation of the ICH guideline and its application to pharmaceutical stability - Part I. *Pharm Technol N Am* 25:98-110.CAS Google Scholar Baertschi SW (2005) Pharmaceutical stress testing: predicting drug degradation. *Taylor & Francis, Boca Raton*. Google Scholar FDA (2003) Guidance for industry INDs for phase 2 and 3 studies; chemistry, manufacturing, and control information. KM, Martin L, Baertschi SW (2003) A stress testing benchmarking study. *Pharm Technol* 27:60-72.CAS Google Scholar Kats M (2005) Forced degradation studies: regulatory considerations and implementation. *BioPharm Int* 18:7.

African Journal of Pharmacy and Pharmacology Vol. 3(12), pp. 643-650, December, 2009

Available online <http://www.academijournals.org/app>  
ISSN 1996-0816 © 2009 Academic Journals

Full Length Research Paper

**Stability-indicating HPLC method for the determination of efavirenz in bulk drug and in pharmaceutical dosage form**

B. Udaykumar Rao and Anna Pratima Nikalje\*

Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Bagh, Aurangabad, M.S. India.

Accepted 1 December, 2009

A rapid and accurate isocratic HPLC method was developed and validated for the assay of Efavirenz (EFA) in bulk and pharmaceutical dosage forms. The chromatographic conditions comprise of a Novapak phenyl column. A mixture of phosphate buffer and Acetonitrile was used as mobile phase. Quantitation was assessed by UV detection at 247 nm. A linear response ( $r^2 \geq 0.999$ ) was observed in the range of 0.05-1.5 mg/ml for the method. The detection limit was 0.025 mg/ml. The proposed method can be used for quality control assay of EFA in bulk and in finished dosage form and for the stability studies as the method separates EFA from its degradation products and excipients.

**Key words:** Efavirenz, stability indicating HPLC, dosage form, UV detection.

**INTRODUCTION**

Chemically, efavirenz is (S)-6-chlorocyclopropylmethyl)-1,4-dihydro-4-(trifluoromethyl)-2H,1-benzodiazepin-2-one. EFA is a nonnucleoside reverse transcriptase inhibitor (NNRTI) and is used as a class of highly active antiretroviral therapy for the treatment of a human immunodeficiency virus (Figure 1). The drug is used in combination with other anti-retroviral agents for the treatment of HIV infection. The usual dose of efavirenz is 600 mg per day (usually given at bed time).

Several methods have been reported for the assay of efavirenz. Caveni et al. (1993) achieved separation of alkenes by reversed phase HPLC using ruthenium complexes. Gita et al. (2008) and Agnani et al. (2008) reported separation of efavirenz in human plasma by using reversed phase HPLC with fluorescence detection. So far in our knowledge only one stability indicating method has been reported using cyano column for the determination of efavirenz (Montgomery ER et al., 2003). The total analysis time for the method is about 15 min and gradient separation. The Indian pharmacopoeia (Indian Pharmacopoeia, 2007) has published isocratic HPLC method for the assay of EFA.

The Run time is about 15 min. The present work describes a stability indicating LC method using phenyl column. The method is rapid, accurate and precise. The run time is 6 min and the drug is well separated from all of its degradants. Therefore the method can be employed as stability-indicating one.

**EXPERIMENTAL**

**Chemicals**

A sample of EFA, assayed purity 99.5% pharmaceutical grade was received from Arbinds Pharmaceuticals, Hyderabad, India. EFA filled tablet of strength 600 mg Sustive (Bristol-Myers Squibb-Germany) and 600 mg Cipra Ltd-India were purchased from the market. Potassium dihydrogen phosphate and sodium phosphate and sodium hydroxide of analytical grade were purchased from Merck (Mumbai, India). Acetonitrile and methanol were purchased from Merck (Mumbai, India). High purity water was prepared by Millipore milli Q plus purification system. (Millipore, France).

**Equipment**

The MS Shimadzu Japan HPLC system with a photodiode array detector system (SPD-M6A) was used for the method development and forced degradation studies. The LC system used for method validation was Shimadzu HPLC LC-2010CH with

\*Corresponding author. E-mail: ana@kst.

Am Pharm Rev 8:51-54. Google Scholar ICH Q5 (1996) Stability testing of biotechnological/biological products. Google Scholar ICH Q1A (2003) Stability testing of new drug substances and products. Google Scholar ICH Q1E (2003) Evaluation of stability data. Google Scholar ICH Q3A (R) (2003) Impurities in new drug substances. Google Scholar ICH Q3B (R) (2003) Impurities in new drug products. Google Scholar ICH Q6A (2000) Guidance on specifications: test procedures and acceptance criteria for new drug substance and products: chemical substances. Google Scholar ICH Q2A (R) (1995) Guideline for industry, text on validation of analytical procedures. Google Scholar ICH Q2B (R) (1996) Guideline on validation of analytical procedures: methodology. Google Scholar Reynolds DW, Faccine KL, Mullaney JF, Alsante KM, Hatajik TD, Moto MG (2002) Available guidance and best practices for conducting forced degradation studies. *Pharm Technol* 26:48-56. Google Scholar Reynolds DW (2004) Forced degradation of pharmaceuticals. *Am Pharm Rev* 7:56-61 Google Scholar Thatcher SR, Mansfield RK, Miller RB, Davis CW, Baertschi SW (2001) Pharmaceutical photostability: a technical guide and practical interpretation of the ICH guideline and its application to pharmaceutical stability - Part I. *Pharm Technol N Am* 25:98-110.CAS Google Scholar Baertschi SW (2005) Pharmaceutical stress testing: predicting drug degradation. *Taylor & Francis, Boca Raton*. Google Scholar FDA (2003) Guidance for industry INDs for phase 2 and 3 studies; chemistry, manufacturing, and control information. KM, Martin L, Baertschi SW (2003) A stress testing benchmarking study. *Pharm Technol* 27:60-72.CAS Google Scholar Kats M (2005) Forced degradation studies: regulatory considerations and implementation. *BioPharm Int* 18:7. Google Scholar Alsante KM, Ando A, Brown R, Ensing J, Hatajik TD, Kong W, Tsuda Y (2007) The role of degradation profiling in active pharmaceutical ingredients and drug products. *Adv Drug Deliv Rev* 59:29-37. Article CAS PubMed Google Scholar Dolan JW (2002) Stability-indicating assays. LCGC N Am 20:346-349.CAS Google Scholar Ruan J, Tattersall P, Lozano R, Shah P (2006) The role of forced degradation studies in stability indicating HPLC method development. *Am Pharm Rev* 9:46-53.CAS Google Scholar Wen C (2006) Designing HPLC methods for stability indication and forced degradation samples for API. *Am Pharm Rev* 9:137-140.CAS Google Scholar Baertschi SW, Boccardi G (2005) Oxidative susceptibility testing. In: Baertschi SW (ed) Pharmaceutical stress testing: predicting drug degradation. *Taylor & Francis, Boca Raton*.

Google Scholar Yoshioka S, Stella VJ (2000) Stability of drugs and dosage forms. Kluwer Academic/Plenum Publishers, New York. Google Scholar Stepenkys D, Chorny M, Dabour Z, Schumacher I (2004) Long-term stability study of L-adrenaline injections: kinetics of sulfonation and racemization pathways of drug degradation. *J Pharm Sci* 93:969-980. Article CAS PubMed Google Scholar Ali I, Gupta VK, Aboul-Enein HY (2007) Role of racemization in optically active drugs development. *Chirality* 18:41-46. Article CAS PubMed Google Scholar FDA (2007) Guidance for industry ANDAs: pharmaceutical solid polymorphism, chemistry, manufacturing, and controls information. EM, Dias CL, Rossi RC, Valente RS, Fröelich PE, Bergold AM (2006) LC method for studies on the stability of lopinavir and ritonavir in soft gelatin capsules. *Chromatographia* 63:437-443. Article CAS Google Scholar Storms ML, Stewart JT (2002) Stability-indicating HPLC assays for the determination of procaine and procaine drug combinations. *J Pharm Biomed Anal* 30:49-52. Article CAS PubMed Google Scholar Mohammadi A, Rezvan A, Ansari Dogahel M, Ghorbani Bidkhordeh F, Hashem M, Walker RB (2007) A stability-indicating high performance liquid chromatographic (HPLC) assay for the simultaneous determination of atorvastatin and amlodipine in commercial tablets. *J Chromatogr A* 1163:145-156. Article CAS Google Scholar Shaukat H, Hossain S, Hinde M, Byron M (2001) A stability-indicating HPLC assay method for besudone. *J Pharm Biomed Anal* 24:371-380. Article CAS PubMed Google Scholar Bashki M, Singh S (2002) Development of validated stability-indicating assay methods-critical review. *J Pharm Biomed Anal* 28:1011-1040. Article Google Scholar Hewitt EF, Lukulay P, Galushko S (2006) Implementation of a rapid and automated high performance liquid chromatography method development strategy for pharmaceutical drug candidates. *J Chromatogr A* 1107:79-87. Article CAS PubMed Google Scholar Brittain H (1974-2006) Analytical profiles of drug substances and excipients (vol 1 to 33). Elsevier, Amsterdam. Google Scholar Xu Q, Trissel L (2003) Stability-indicating HPLC methods for drug analysis. *Pharmaceutical Press, London*. Google Scholar Pasha K, Muzeesh S, Basha SJS, Shashikumar D, Mullangi R, Srivinas NR (2006) Analysis of five HMG-CoA reductase inhibitors-atorvastatin, lovastatin, pravastatin, rosuvastatin and simvastatin: pharmacological, pharmacokinetic and analytical overview and development of a new method for use in pharmaceutical formulations analysis and in vitro metabolism studies. *Biomed Chromatogr* 20:282-293. Article CAS PubMed Google Scholar Snyder L, Kirkland J, Glajch J (1997) Practical HPLC method development. Wiley-Interscience, New York. Google Scholar Ohannessian L, Streeter A (2002) Handbook of pharmaceutical analysis. Marcel Dekker, New York and Dong M (2006) Modern HPLC for practicing Scientists. John Wiley and Sons, Hoboken. Google Scholar Karcher BD, Davies ML, Venit JJ, and Delaney EJ (2004) Multi-dimensional screening and analysis (MDSA): an automated tool for HPLC. *J Chromatogr A* 1066:1-15. Article CAS Google Scholar Xiao JP, Xiong Y, Liu PZ, Rustum (2007) Efficient method development strategy for challenging separations of pharmaceutical molecules using advanced chromatographic technologies. *J Chromatogr A* 1163:29-33. Article CAS PubMed Google Scholar Polite L (2006) Liquid chromatography at high pressure. In: Miller J, Crowley JP, Casassa E (eds) *Chromatography in a GMP environment: a practical guide*. John Wiley & Sons, New York. Google Scholar Burana-Osot L, Ungboribhoopisal S, Sripong L (2006) A stability-indicating HPLC method for medroxyprogesterone acetate in bulk drug and injection formulation. *J Pharm Chromatogr A* 1106:1062-1072. Article CAS PubMed Google Scholar Sprangler M, Mularz E (2001) A validated, stability-indicating method for the assay of dexamethasone in drug substance and drug product analyses, and the assay of preservatives in drug products. *Chromatographia* 53:329-334. Article CAS PubMed Google Scholar Skridla P, Abraham A, Wu Y (2006) An HPLC chromatographic reaction approach for investigating the hydrolytic stability of a pharmaceutical compound. *J Pharm Biomed Anal* 41:383-390. Article CAS PubMed Google Scholar Bell F, Dolan JW (2006) On-column sample degradation. *LC GC N Am* 24:1184-1190. Google Scholar Lange J, Below E, Thele R (2004) Separate determination of mobile-phase reaction constants for reversible reactions. *J Liq Chromatol Relat Technol* 27:715-725. Article CAS Google Scholar Zhang J, Miller RB, Jacobus R (1997) Development and validation of a stability-indicating HPLC method for the determination of degradation products in dipyradomole injection. *Chromatographia* 44:247-252. Article CAS Google Scholar DiNunzio JE (1992) Pharmaceutical applications of high-performance liquid chromatography interfaced with fourier transform infrared spectroscopy. *J Chromatogr* 626:97-107. Article CAS Google Scholar Chen W, Zhou P, Wong-Moon KC, Cauchon NS (2007) Identification of volatile degradants in formulations containing sesame oil using SPME/GC/MS.

J Pharm Biomed Anal 44:450-455. Article CAS PubMed Google Scholar Kazakevich Y, LoBrutto R (2007) HPLC for pharmaceutical scientists. Wiley-Interscience, New York. Book Google Scholar Lukulay P, Hokanson G (2005) A perspective on reconciling mass balance in forced degradation studies. *Pharm Tech* 29:106-113. CAS Google Scholar 1. United States Pharmacopeia Convention. Vet. Syst. Flufenicol. United States Pharmacopeia Convention. p. 6. 2007.2. British Pharmacopoeia. Monograph on Flunixin meglumine. British Pharmacopoeia. 2013 doi: 10.1111/j.1365-2885.2000.00284.x. [CrossRef] [Google Scholar]3. United States Pharmacopeia Convention. Vet. Syst. Flunixin. United States Pharmacopeia Convention. p. 5. 2007.4. Nasim A, Aslam B, Javed I, et al. Determination of flufenicol residues in broiler meat and liver samples using RP-HPLC with UV-visible detection.

J Pharm Biomed Anal 2016;66(4):1284-1288. doi: 10.1016/j.jchromb.2016.09.013. [PubMed] [CrossRef] [Google Scholar]5. Orlando J, A. Costa Roque A. G., Losekann M. E., Colmoghi Simionato A. V. UPLC-MS/MS determination of flufenicol and flufenicol amine antimicrobial residues in tilapia muscle. *Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences*. 2016;1035:8-15. doi: 10.1016/j.jchromb.2016.09.013.

2014;doi: 10.1155/2014/580418 [CrossRef] [Google Scholar]7. Karami-Osbo R, Miri R, Jaydina K, Kobarfard F, Simultaneous chloramphenicol and flufenicol determination by a validated DLLME-HPLC-UV method in pasteurized milk. *Iranian Journal of Pharmaceutical Research*. 2016;15(3):361-368. [PMC free article] [PubMed]

[Google Scholar]8. Song J.-S., Park S.-J., Choi J.-Y., et al. Development of analytical method and monitoring of veterinary drug residues in Korean animal products. *Korean Journal for Food Science of Animal Resources*. 2016;36(3):319-325. doi: 10.5851/kojsa.2016.36.3.319. [PMC free article] [PubMed] [CrossRef] [Google Scholar]9. Meucci V, Vanni M., Sgorbini M., Odore R, Minunni M., Intorre L. Determination of phenylbutazone and flunixin meglumine by electrochemical-based sensing coupled to selective extraction with molecularly imprinted polymers. *Sensors and Actuators B: Chemical*. 2013;179:226-231. doi: 10.1016/j.snb.2012.09.015. [CrossRef] [Google Scholar]10. Belal F. F., Abd El-Raeez S. A., Fouad M. M., Fouad F. A. Micellar high performance liquid chromatographic determination of flunixin meglumine in bulk, pharmaceutical dosage forms, bovine liver and kidney. *Analytical Chemistry Research*. 2015;3:63-69. doi: 10.1016/j.ancr.2014.12.003. [CrossRef] [Google Scholar]11. Jedziniak P., Szprengier T., Olejnik M., Jaroszewski J. Determination of flunixin and 5-hydroxyflunixin in bovine plasma with UPLC-UV method development, validation and verification. *Bulletin of the Veterinary Institute in Pulawy*. 2007;51(2):261-266. [Google Scholar]12. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use Q1A (R2). [Google Scholar]15. FDA. Guidance for Industry Analytical Procedures and Methods Validation for Drugs and Biologics. 2014. [Google Scholar]16. Batravi N., Wahdan S., Al-Rimawi F. A stability-indicating hplc method for simultaneous determination of amoxicillin and enrofloxacin combination in an injectable suspension. *Scientia Pharmaceutica*. 2017;85(1): doi: 10.3390/scipharm5010006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]Page 2 HPLC chromatographic conditions of the current method. Chromatographic conditions Flow rate 1.0 mL/min Wavelength (λ) 268 nm Stationary phase RP18e, 5 μm, 250 × 4.6 mm Column temperature 25°C Injection volume 20 μL Run time 10 minutes High performance liquid chromatography (HPLC) method development can be a time-consuming process, particularly for stability-indicating analytical procedures of new chemical entities (NCEs). Most of the procedures for small-molecule drugs employ gradient reversed-phase liquid chromatography (RPLC) with ultraviolet (UV) detection. These methods are designed to separate and quantitate the active pharmaceutical ingredients (APIs) and all process impurities and degradation products in drug substance (DS) and drug product (DP) samples. This important HPLC method category provides quality assessment data required in product release and stability studies in regulatory filings and procedures (Table 1). Information on the HPLC method development process and requirements are available in many textbooks (1–6), journal articles (7–13), regulatory guidance documents (14–16), and other resources (17).

In this instalment, we strive to provide a concise but comprehensive overview of the essential steps of the method development process, supported with case studies, common practices, regulatory guidance, and citations of critical references. Why Gradient RPLC with UV Detection for Stability-Indicating Methods? Let us start with the fundamentals and the rationale for the use of RPLC and UV methods in stability-indicating analytical procedures, which must separate the API from all impurities, and meet stringent regulatory requirements in method performance (6,14–16). First, the primary retention mechanism in RPLC is hydrophobic interaction, particularly useful for compounds with intermediate polarities, and an excellent match of most small-molecule drugs with oral bioavailability (2). The weak dispersive forces in RPLC ensure that all components in the sample can be eluted from the column using strong purging solvents at the end of the gradient, thus yielding 100% recovery of the injected sample. Second, the elution order in RPLC is highly predictable. It follows the "Linear Solvent Strength Model" (4). In most cases, the log  $k$  (retention factor) of the analyte is inversely proportional to %MPB (mobile phase B or % of the strong organic modifier). In addition, most drugs are basic, but have sufficient hydrophobicity to be retained in RPLC in the ionized forms in acidic mobile phases. The retention of the "solvated" analytes can be manipulated to provide increased resolution by changing the composition of the mobile phase (for example, water, organic solvents, and pH), that interacts with the analytes in the "solvated" state, and moderates their retention on the stationary phase (1,2). Gradient elution is commonly used in stability-indicating assays to yield higher peak capacity and sensitivity for both hydrophilic and hydrophobic components in the sample (2). Third, most NCEs are chromophoric, having one or more conjugated double bonds or aromatic moieties in their structures, thus providing high detection sensitivity with UV detectors. A peak area precision of 0.1–0.5% relative standard deviation (RSD) is routinely achievable in HPLC-UV assays, because the entire injected sample passes through the UV flow cell. This high precision performance is necessary for quality control applications for DS release testing (with typical specifications of 98.0–102.0%). In contrast, the precision performance of <1% is difficult to achieve with mass spectrometry (MS) detection, because only a small fraction of the nebulized eluent stream is ionized and detected (2). Furthermore, a UV detector offers a wide linear response range exceeding five orders of magnitude (1 × 10<sup>5</sup> to ~2 absorbance units (AU)), allowing the use of a single-point calibration curve for early-phase assays, and normalized area % analysis for the determination of impurities (2). There are some notable exceptions to the adoption of RPLC-UV methods. For NCEs with no or low chromophoric properties, a gradient-compatible near-universal detector, such as a charged aerosol detector (CAD) or an evaporative light-scattering detector (ELSD), is typically employed (2). For the determination of enantiomers, a normal-phase separation using chiral LC or supercritical fluid chromatography (SFC) is generally preferred, because the analytes are present in an unassociated and non-ionized state, which often leads to higher selectivity differences between the enantiomers (2). Another exception is the determination of potentially genotoxic impurities at parts-per-million levels (not discussed here), which may require high-sensitivity analytical procedure, such as LC with mass spectrometry detection (LC-MS) (2). Objective of This Article The objective of this instalment is to describe the traditional five-step strategy for HPLC method development, according to Snyder and associates (1), and illustrate the use of selectivity-tuning for method optimization with case studies. The Traditional Five-Step Method Development Approach A traditional five-step approach for HPLC method development was proposed by Snyder and associates, based on the concept of selectivity-tuning to the method type. It is a preparative, qualitative, or quantitative method? The most common method type is a stability-indicating analytical procedure (also known as an assay and impurities determination) for the quantitation of the API and impurities in pharmaceuticals. It is a challenging method development task to develop this type of method, because all key components in the sample must be physically separated in one chromatogram with method performance compliant to the DS method (14). In comparison, other pharmaceutical analytical methods for identification, quantitation, and separation, namely the DS method, are developed first for the NCE, and the DP method is optimized based on the DS method. Step 2: Gathering Sample and Analytical Information The first step is to gather information on the sample and mobile-phase conditions such as pH, ionic strength, buffer strength, organic solvents, and organic functional groups. These characteristics can be helpful in the selection of column and mobile-phase conditions and provides a framework of potential stability or reactivity differences. Finally, knowing the presence and number of chiral centres is vital for planning an analytical procedure that includes diastereomeric separations. Though not entirely in the scope of this article, possible diastereomeric combinations may be separated with an achiral RPLC column (shown in the case study). Enantiomeric separation offers a different challenge that will require selecting the appropriate chiral-selective column for the determination of enantiomers of the API using a different analytical procedure. To determine the enantiomeric separation resources such as Certificate of Analysis (CoA) from suppliers or technical packages from the API manufacturers are invaluable in obtaining initial information regarding sample purity, methodologies, spectral and safety data, and other attributes of the API. Step 3: Initial Method Development This is the first laboratory-based step in the development process, and it involves performing "scouting" runs to obtain the first chromatograms. Details in column and mobile-phase selection are covered in many books (1–3). To illustrate the initial method development step, we will start here with the most common choice of a C18 column used with an acidiified aqueous mobile phase and organic solvent. Step #3, outlined here, is extracted from a case study published in reference 2. Here, a sample of the API is dissolved in a buffer diluent (in this case, 1 mg/ml, 50% acetonitrile in water) and injected into an HPLC-UV system (with a photodiode array (PDA) detector and an MS instrument). A common broad-gradient RPLC method can be used (such as mobile phase A [MPA] = 0.1% formic acid in water; mobile phase B [MPB] = acetonitrile; C18 column: 3-μm, 100 mm × 3.0 mm i.d., 5–100% acetonitrile in 10 min at 1 mL/min and a column temperature at 30 °C). Full spectra data in