
List of Tables
3-1. Hardware Information Helpful for an Install .. 16

3-2. Recommended Minimum System Requirements .. 19

viii

Installing Ubuntu 20.04 “Focal Fossa” For

arm64

We are delighted that you have decided to try Ubuntu, and are sure that you will find that Ubuntu’s

GNU/Linux distribution is unique. Ubuntu brings together high-quality free software from around the

world, integrating it into a coherent whole. We believe that you will find that the result is truly more

than the sum of the parts.

We understand that many of you want to install Ubuntu without reading this manual, and the Ubuntu

installer is designed to make this possible. If you don’t have time to read the whole Installation Guide

right now, we recommend that you read the Installation Howto, which will walk you through the basic

installation process, and links to the manual for more advanced topics or for when things go wrong.

The Installation Howto can be found in Appendix A.

With that said, we hope that you have the time to read most of this manual, and doing so will lead to

a more informed and likely more successful installation experience.

ix

Chapter 1. Welcome to Ubuntu

This chapter provides an overview of the Ubuntu Project, and the Debian Project upon which it is

based. If you already know about the Ubuntu Project’s history and the Ubuntu distribution, feel free

to skip to the next chapter.

1.1. What is Ubuntu?

Ubuntu is a complete Linux operating system, freely available with both community and professional

support. The Ubuntu community is built on the ideas enshrined in the Ubuntu Manifesto: that soft-

ware should be available free of charge, that software tools should be usable by people in their local

language and despite any disabilities, and that people should have the freedom to customize and alter

their software in whatever way they see fit.

• Ubuntu will always be free of charge, and there is no extra fee for the “enterprise edition”, we make

our very best work available to everyone on the same Free terms.

• Ubuntu includes the very best in translations and accessibility infrastructure that the Free Software

community has to offer, to make Ubuntu usable by as many people as possible.

• Ubuntu is shipped in stable and regular release cycles; a new release will be shipped every six

months. Every two even years an Ubuntu long term support (LTS) release will become available,

that is supported for 5 years. The Ubuntu releases in between (known as development or non-LTS

releases) are supported for 9 month each.

• Ubuntu is entirely committed to the principles of open source software development; we encourage

people to use open source software, improve it and pass it on.

Ubuntu is suitable for both desktop and server use. The current Ubuntu release supports Intel x86

(IBM-compatible PC), AMD64 (x86-64), ARMv7, ARMv8 (ARM64), IBM POWER8/POWER9

(ppc64el), IBM Z zEC12/zEC13/z14 and IBM LinuxONE Rockhopper I+II/Emporer I+II (s390x).

Ubuntu includes thousands of pieces of software, starting with the Linux kernel version 5.4 and

GNOME 3.28, and covering every standard desktop application from word processing and spread-

sheet applications to internet access applications, web server software, email software, programming

languages and tools and of course several games.

1.1.1. Sponsorship by Canonical

The Ubuntu Project is sponsored by Canonical Ltd (http://www.canonical.com/). Canonical will not

charge licence fees for Ubuntu, now or at any stage in the future. Canonical’s business model is to

provide technical support and professional services related to Ubuntu. We encourage more companies

also to offer support for Ubuntu, and will list those that do on the Support pages of this web site.

1.2. What is Debian?

Debian is an all-volunteer organization dedicated to developing free software and promoting the ide-

als of the Free Software community. The Debian Project began in 1993, when Ian Murdock issued

1

Chapter 1. Welcome to Ubuntu

an open invitation to software developers to contribute to a complete and coherent software distri-

bution based on the relatively new Linux kernel. That relatively small band of dedicated enthusiasts,

originally funded by the Free Software Foundation (http://www.fsf.org/) and influenced by the GNU

(http://www.gnu.org/gnu/the-gnu-project.html) philosophy, has grown over the years into an organi-

zation of around 1026 Debian Developers.

Debian Developers are involved in a variety of activities, including Web (http://www.debian.org/)

and FTP (ftp://ftp.debian.org/) site administration, graphic design, legal analysis of software licenses,

writing documentation, and, of course, maintaining software packages.

In the interest of communicating our philosophy and attracting developers who believe in the princi-

ples that Debian stands for, the Debian Project has published a number of documents that outline our

values and serve as guides to what it means to be a Debian Developer:

• The Debian Social Contract (http://www.debian.org/social_contract) is a statement of Debian’s

commitments to the Free Software Community. Anyone who agrees to abide to the Social Contract

may become a maintainer (http://www.debian.org/doc/maint-guide/). Any maintainer can introduce

new software into Debian — provided that the software meets our criteria for being free, and the

package follows our quality standards.

• The Debian Free Software Guidelines (http://www.debian.org/social_contract#guidelines) are a

clear and concise statement of Debian’s criteria for free software. The DFSG is a very influen-

tial document in the Free Software Movement, and was the foundation of the The Open Source

Definition (http://opensource.org/osd).

• The Debian Policy Manual (http://www.debian.org/doc/debian-policy/) is an extensive specifica-

tion of the Debian Project’s standards of quality.

Debian developers are also involved in a number of other projects; some specific to Debian, others

involving some or all of the Linux community. Some examples include:

• The Linux Standard Base (http://www.linuxbase.org/) (LSB) is a project aimed at standardizing the

basic GNU/Linux system, which will enable third-party software and hardware developers to easily

design programs and device drivers for Linux-in-general, rather than for a specific GNU/Linux

distribution.

• The Filesystem Hierarchy Standard (http://www.pathname.com/fhs/) (FHS) is an effort to standard-

ize the layout of the Linux file system. The FHS will allow software developers to concentrate their

efforts on designing programs, without having to worry about how the package will be installed in

different GNU/Linux distributions.

• Debian Jr. (http://www.debian.org/devel/debian-jr/) is an internal project, aimed at making sure

Debian has something to offer to our youngest users.

For more general information about Debian, see the Debian FAQ (http://www.debian.org/doc/FAQ/).

1.2.1. Ubuntu and Debian

Ubuntu and Debian are distinct but parallel and closely linked systems. The Ubuntu project seeks to

complement the Debian project in the following areas:

2

Chapter 1. Welcome to Ubuntu

1.2.1.1. Package selection

Ubuntu does not provide security updates and professional support for every package available in

the open source world, but selects a complete set of packages making up a solid and comprehensive

system and provides support for that set of packages.

For users that want access to every known package, Ubuntu provides a "universe" component (set of

packages) where users of Ubuntu systems install the latest version of any package that is not in the

supported set. Most of the packages in Ubuntu universe are also in Debian, although there are other

sources for universe too. See the Ubuntu Components page for more detail on the structure of the

Ubuntu web distribution.

1.2.1.2. Releases

Ubuntu makes a release every six months, and supports those releases for 18 months with daily secu-

rity fixes and patches to critical bugs.

As Ubuntu prepares for release, we “freeze” a snapshot of Debian’s development archive (“sid”). We

start from “sid” in order to give ourselves the freedom to make our own decisions with regard to

release management, independent of Debian’s release-in-preparation. This is necessary because our

release criteria are very different from Debian’s.

As a simple example, a package might be excluded from Debian “testing” due to a build failure on

any of the 11 architectures supported by Debian “sarge”, but it is still suitable for Ubuntu if it builds

and works on only three of them. A package will also be prevented from entering Debian “testing” if

it has release-critical bugs according to Debian criteria, but a bug which is release-critical for Debian

may not be as important for Ubuntu.

As a community, we choose places to diverge from Debian in ways that minimize the difference

between Debian and Ubuntu. For example, we usually choose to update to the very latest version of

Gnome rather than the older version in Debian, and we might do the same for key other pieces of

infrastructure such as X or GCC. Those decisions are listed as Feature Goals for that release, and we

work as a community to make sure that they are in place before the release happens.

1.2.1.3. Development community

Many Ubuntu developers are also recognized members of the Debian community. They continue to

stay active in contributing to Debian both in the course of their work on Ubuntu and directly in Debian.

When Ubuntu developers fix bugs that are also present in Debian packages -- and since the projects

are linked, this happens often -- they send their bugfixes to the Debian developers responsible for

that package in Debian and record the patch URL in the Debian bug system. The long term goal of

that work is to ensure that patches made by the full-time Ubuntu team members are immediately also

included in Debian packages where the Debian maintainer likes the work.

In Ubuntu, team members can make a change to any package, even if it is one maintained by some-

one else. Once you are an Ubuntu maintainer it’s encouraged that you fix problems you encounter,

although we also encourage polite discussions between people with an interest in a given package to

improve cooperation and reduce friction between maintainers.

1.2.1.4. Freedom and Philosophy

Debian and Ubuntu are grounded on the same free software philosophy. Both groups are explicitly

committed to building an operating system of free software.

3

Chapter 1. Welcome to Ubuntu

Differences between the groups lie in their treatment of non-computer applications (like documenta-

tion, fonts and binary firmware) and non-free software. Debian distributes a small amount of non-free

software from their Internet servers. Ubuntu will also distribute binary drivers in the "restricted" com-

ponent on its Internet servers but will not distribute any other software applications that do not meet

its own Ubuntu Licensing Guidelines.

1.2.1.5. Ubuntu and other Debian derivatives

There are many other distributions that also share the same basic infrastructure (package and archive

format). Ubuntu is distinguished from them in a number of ways.

First, Ubuntu contributes patches directly to Debian as bugs are fixed during the Ubuntu release pro-

cess, not just when the release is actually made. With other Debian-style distributions, the source code

and patches are made available in a "big bang" at release time, which makes them difficult to integrate

into the upstream HEAD.

Second, Ubuntu includes a number of full-time contributors who are also Debian developers. Many of

the other distributions that use Debian-style packaging do not include any active Debian contributors.

Third, Ubuntu makes much more frequent and fresher releases. Our release policy of releasing every

six months is (at the time of writing :-) unique in the Linux distribution world. Ubuntu aims to provide

you with a regular stable and security-supported snapshot of the best of the open source world.

1.3. What is GNU/Linux?

Linux is an operating system: a series of programs that let you interact with your computer and run

other programs.

An operating system consists of various fundamental programs which are needed by your computer

so that it can communicate and receive instructions from users; read and write data to hard disks,

tapes, and printers; control the use of memory; and run other software. The most important part of

an operating system is the kernel. In a GNU/Linux system, Linux is the kernel component. The rest

of the system consists of other programs, many of which were written by or for the GNU Project.

Because the Linux kernel alone does not form a working operating system, we prefer to use the term

“GNU/Linux” to refer to systems that many people casually refer to as “Linux”.

Linux is modelled on the Unix operating system. From the start, Linux was designed to be a multi-

tasking, multi-user system. These facts are enough to make Linux different from other well-known

operating systems. However, Linux is even more different than you might imagine. In contrast to other

operating systems, nobody owns Linux. Much of its development is done by unpaid volunteers.

Development of what later became GNU/Linux began in 1984, when the Free Software Foundation

(http://www.fsf.org/) began development of a free Unix-like operating system called GNU.

The GNU Project (http://www.gnu.org/) has developed a comprehensive set of free software tools for

use with Unix™ and Unix-like operating systems such as Linux. These tools enable users to perform

tasks ranging from the mundane (such as copying or removing files from the system) to the arcane

(such as writing and compiling programs or doing sophisticated editing in a variety of document

formats).

While many groups and individuals have contributed to Linux, the largest single contributor is still

the Free Software Foundation, which created not only most of the tools used in Linux, but also the

philosophy and the community that made Linux possible.

4

Chapter 3. Before Installing Ubuntu

tions without existing environment data. It is possible to manually set bootm_size to the new U-Boot’s

default value by running the command “env default bootm_size; saveenv” at the U-Boot prompt.

Another possibility to circumvent relocation-related problems is to run the command “setenv fdt_high

ffffffff; setenv initrd_high 0xffffffff; saveenv” at the U-Boot prompt to completely disable the reloca-

tion of the initial ramdisk and the device-tree blob.

3.7.2. Systems with UEFI firmware

UEFI (“Unified Extensible Firmware Interface”) is a new kind of system firmware that is used on

many modern systems and is - among other uses - intended to replace the classic PC BIOS.

Currently most PC systems that use UEFI also have a so-called “Compatibility Support Module”

(CSM) in the firmware, which provides excatly the same interfaces to an operating system as a classic

PC BIOS, so that software written for the classic PC BIOS can be used unchanged. Nonetheless UEFI

is intended to one day completely replace the old PC BIOS without being fully backwards-compatible

and there are already a lot of systems with UEFI but without CSM.

On systems with UEFI there are a few things to take into consideration when installing an operating

system. The way the firmware loads an operating system is fundamentally different between the clas-

sic BIOS (or UEFI in CSM mode) and native UEFI. One major difference is the way the harddisk

partitions are recorded on the harddisk. While the classic BIOS and UEFI in CSM mode use a DOS

partition table, native UEFI uses a different partitioning scheme called “GUID Partition Table” (GPT).

On a single disk, for all practical purposes only one of the two can be used and in case of a multi-boot

setup with different operating systems on one disk, all of them must therefore use the same type of

partition table. Booting from a disk with GPT is only possible in native UEFI mode, but using GPT

becomes more and more common as hard disk sizes grow, because the classic DOS partition table

cannot address disks larger than about 2 Terabytes while GPT allows for far larger disks. The other

major difference between BIOS (or UEFI in CSM mode) and native UEFI is the location where boot

code is stored and in which format it has to be. This means that different bootloaders are needed for

each system.

The latter becomes important when booting debian-installer on a UEFI system with CSM be-

cause debian-installer checks whether it was started on a BIOS- or on a native UEFI system and

installs the corresponding bootloader. Normally this simply works but there can be a problem in multi-

boot environments. On some UEFI systems with CSM the default boot mode for removable devices

can be different from what is actually used when booting from hard disk, so when booting the in-

staller from a USB stick in a different mode from what is used when booting another already installed

operating system from the hard disk, the wrong bootloader might be installed and the system might

be unbootable after finishing the installation. When choosing the boot device from a firmware boot

menu, some systems offer two seperate choices for each device, so that the user can select whether

booting shall happen in CSM or in native UEFI mode.

22

Chapter 4. Obtaining System Installation

Media

4.1. Official Ubuntu CD-ROMs

By far the easiest way to install Ubuntu is from an Official Ubuntu CD-ROM

(http://releases.ubuntu.com/focal/) . You may download the CD-ROM image from an Ubuntu mirror

and make your own CD, if you have a fast network connection and a CD burner. If you have an

Ubuntu CD and CDs are bootable on your machine , you can skip right to Chapter 5; much effort has

been expended to ensure the files most people need are there on the CD.

If your machine doesn’t support CD booting, but you do have a CD or an ISO image, you can use

an alternative strategy such as net boot, or manually loading the kernel from the CD to initially boot

the system installer. The files you need for booting by another means are also on the CD; the Ubuntu

network archive and CD folder organization are identical. So when archive file paths are given below

for particular files you need for booting, look for those files in the same directories and subdirectories

on your CD.

Once the installer is booted, it will be able to obtain all the other files it needs from the CD.

If you don’t have a CD, then you will need to download the installer system files and place them on a

a connected computer, so they can be used to find and boot the installer.

4.2. Downloading Files from Ubuntu Mirrors

To find the nearest (and thus probably the fastest) mirror, see the list of Ubuntu mirrors

(http://wiki.ubuntu.com/Archive).

When downloading files from an Ubuntu mirror using FTP, be sure to download the files in binary

mode, not text or automatic mode.

4.2.1. Where to Find Installation Images

The installation images are located on each Ubuntu mirror in the directory

ubuntu/dists/focal/main/installer-arm64/current/images/ (http://ports.ubuntu.com/ubuntu-

ports/dists/focal/main/installer-arm64/current/images) — the MANIFEST

(http://ports.ubuntu.com/ubuntu-ports/dists/focal/main/installer-arm64/current/images/MANIFEST)

lists each image and its purpose.

The HWE installation images are located on each Ubuntu mirror in the directory

ubuntu/dists/focal-updates/main/installer-arm64/current/images/hwe-netboot/

(http://ports.ubuntu.com/ubuntu-ports/dists/focal-updates/main/installer-arm64/current/images/hwe-

netboot/). The image will be available soon after HWE kernel is available and before second point

release.

23

Chapter 4. Obtaining System Installation Media

4.3. Preparing Files for TFTP Net Booting

If your machine is connected to a local area network, you may be able to boot it over the network from

another machine, using TFTP. If you intend to boot the installation system from another machine, the

boot files will need to be placed in specific locations on that machine, and the machine configured to

support booting of your specific machine.

You need to set up a TFTP server, and for many machines a DHCP server, or RARP server, or BOOTP

server.

The Reverse Address Resolution Protocol (RARP) is one way to tell your client what IP address to

use for itself. Another way is to use the BOOTP protocol. BOOTP is an IP protocol that informs a

computer of its IP address and where on the network to obtain a boot image. The DHCP (Dynamic

Host Configuration Protocol) is a more flexible, backwards-compatible extension of BOOTP. Some

systems can only be configured via DHCP.

The Trivial File Transfer Protocol (TFTP) is used to serve the boot image to the client. Theoretically,

any server, on any platform, which implements these protocols, may be used. In the examples in this

section, we shall provide commands for SunOS 4.x, SunOS 5.x (a.k.a. Solaris), and GNU/Linux.

4.3.1. Setting up RARP server

To set up RARP, you need to know the Ethernet address (a.k.a. the MAC address) of the client com-

puters to be installed. If you don’t know this information, you can boot into “Rescue” mode (e.g.,

from the rescue floppy) and use the command ip addr show dev eth0.

On a RARP server system using a Linux kernel or Solaris/SunOS, you use the rarpd program. You

need to ensure that the Ethernet hardware address for the client is listed in the “ethers” database

(either in the /etc/ethers file, or via NIS/NIS+) and in the “hosts” database. Then you need to start

the RARP daemon. Issue the command (as root): /usr/sbin/rarpd -a on most Linux systems and

SunOS 5 (Solaris 2), /usr/sbin/in.rarpd -a on some other Linux systems, or /usr/etc/rarpd

-a in SunOS 4 (Solaris 1).

4.3.2. Setting up a DHCP server

One free software DHCP server is ISC dhcpd. For Ubuntu, the isc-dhcp-server package is rec-

ommended. Here is a sample configuration file for it (see /etc/dhcp/dhcpd.conf):

option domain-name "example.com";

option domain-name-servers ns1.example.com;

option subnet-mask 255.255.255.0;

default-lease-time 600;

max-lease-time 7200;

server-name "servername";

subnet 192.168.1.0 netmask 255.255.255.0 {

range 192.168.1.200 192.168.1.253;

option routers 192.168.1.1;

}

host clientname {

filename "/tftpboot.img";

server-name "servername";

next-server servername;

24

Chapter 4. Obtaining System Installation Media

hardware ethernet 01:23:45:67:89:AB;

fixed-address 192.168.1.90;

}

In this example, there is one server servername which performs all of the work of DHCP server,

TFTP server, and network gateway. You will almost certainly need to change the domain-name op-

tions, as well as the server name and client hardware address. The filename option should be the

name of the file which will be retrieved via TFTP.

After you have edited the dhcpd configuration file, restart it with /etc/init.d/isc-dhcp-server

restart.

4.3.3. Setting up a BOOTP server

There are two BOOTP servers available for GNU/Linux. The first is CMU bootpd. The other is actu-

ally a DHCP server: ISC dhcpd. In Ubuntu these are contained in the bootp and isc-dhcp-server

packages respectively.

To use CMU bootpd, you must first uncomment (or add) the relevant line in /etc/inetd.conf. On

Debian or Ubuntu, you can run update-inetd --enable bootps, then /etc/init.d/inetd

reload to do so. Just in case your BOOTP server does not run Debian or Ubuntu, the line in question

should look like:

bootps dgram udp wait root /usr/sbin/bootpd bootpd -i -t 120

Now, you must create an /etc/bootptab file. This has the same sort of familiar and cryptic format

as the good old BSD printcap, termcap, and disktab files. See the bootptab manual page for

more information. For CMU bootpd, you will need to know the hardware (MAC) address of the

client. Here is an example /etc/bootptab:

client:\

hd=/tftpboot:\

bf=tftpboot.img:\

ip=192.168.1.90:\

sm=255.255.255.0:\

sa=192.168.1.1:\

ha=0123456789AB:

You will need to change at least the “ha” option, which specifies the hardware address of the client.

The “bf” option specifies the file a client should retrieve via TFTP; see Section 4.3.5 for more details.

By contrast, setting up BOOTP with ISC dhcpd is really easy, because it treats BOOTP clients as

a moderately special case of DHCP clients. Some architectures require a complex configuration for

booting clients via BOOTP. If yours is one of those, read the section Section 4.3.2. Otherwise you

will probably be able to get away with simply adding the allow bootp directive to the configura-

tion block for the subnet containing the client in /etc/dhcp/dhcpd.conf, and restart dhcpd with

/etc/init.d/isc-dhcp-server restart.

4.3.4. Enabling the TFTP Server

To get the TFTP server ready to go, you should first make sure that tftpd is enabled.

25

Chapter 4. Obtaining System Installation Media

In the case of tftpd-hpa there are two ways the service can be run. It can be started on demand by

the system’s inetd daemon, or it can be set up to run as an independent daemon. Which of these

methods is used is selected when the package is installed and can be changed by reconfiguring the

package.

Note: Historically, TFTP servers used /tftpboot as directory to serve images from. However,

Ubuntu packages may use other directories to comply with the Filesystem Hierarchy Standard

(http://www.pathname.com/fhs/). For example, tftpd-hpa by default uses /srv/tftp. You may

have to adjust the configuration examples in this section accordingly.

All in.tftpd alternatives available in Ubuntu should log TFTP requests to the system logs by default.

Some of them support a -v argument to increase verbosity. It is recommended to check these log

messages in case of boot problems as they are a good starting point for diagnosing the cause of errors.

4.3.5. Move TFTP Images Into Place

Next, place the TFTP boot image you need, as found in Section 4.2.1, in the tftpd boot image di-

rectory. You may have to make a link from that file to the file which tftpd will use for booting a

particular client. Unfortunately, the file name is determined by the TFTP client, and there are no

strong standards.

4.4. Automatic Installation

For unattended installs on multiple computers it’s possible to do fully automatic installations using

the Ubuntu Installer itself.

4.4.1. Automatic Installation Using the Ubuntu Installer

The Ubuntu Installer supports automating installs via preconfiguration files. A preconfiguration file

can be loaded from the network or from removable media, and used to fill in answers to questions

asked during the installation process.

Full documentation on preseeding including a working example that you can edit is in Appendix B.

4.4.2. Automatic Installation Using Kickstart

The Ubuntu installer supports automating installs using Kickstart files, as designed by Red Hat for use

in their Anaconda installer. This method is not as flexible as the preconfiguration file method above,

but it requires less knowledge of how the installer works.

This section documents only the basics, and differences between Anaconda and the

Ubuntu installer. Refer to the Red Hat documentation (http://docs.redhat.com/docs/en-

US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/ch-kickstart2.html) for detailed

instructions.

To generate a Kickstart file, install the system-config-kickstart package and run

system-config-kickstart. This offers you a graphical user interface to the various options

available.

26

Chapter 4. Obtaining System Installation Media

Once you have a Kickstart file, you can edit it if necessary, and place it on a web, FTP, or NFS server,

or copy it onto the installer’s boot media. Wherever you place the file, you need to pass a parameter

to the installer at boot time to tell it to use the file.

To make the installer use a Kickstart file downloaded from a web or FTP server, add

ks=http://url/to/ks.cfg or ks=ftp://url/to/ks.cfg respectively to the kernel boot parameters. This

requires the installer to be able to set up the network via DHCP on the first connected interface

without asking any questions; you may also need to add ksdevice=eth1 or similar if the installer fails

to determine the correct interface automatically.

Similarly, to make the installer use a Kickstart file on an NFS server, add ks=nfs:server:/path/to/ks.cfg

to the kernel boot parameters. The method supported by Anaconda of adding a plain "ks" boot param-

eter to work out the location of the Kickstart file from a DHCP response is not yet supported by the

Ubuntu installer.

To place a Kickstart file on a CD, you would need to remaster the ISO image to include your Kickstart

file, and add ks=cdrom:/path/to/ks.cfg to the kernel boot parameters. See the manual page for mkisofs

for details.

4.4.2.1. Additions

The Ubuntu installer supports a few extensions to Kickstart that were needed to support automatic

installations of Ubuntu:

• The rootpw command now takes the --disabled option to disable the root password. If this is

used, the initial user will be given root privileges via sudo.

• A new user command has been added to control the creation of the initial user:

user joe --fullname "Joe User" --password iamjoe

The --disabled option prevents any non-root users from being created. The --fullname option

specifies the user’s full name, as opposed to the Unix username. The --password option supplies

the user’s password, by default in the clear (in which case make sure your Kickstart file is kept

confidential!); the --iscrypted option may be used to state that the password is already MD5-

hashed.

• A new preseed command has been added to provide a convenient way to preseed additional items

in the debconf database that are not directly accessible using the ordinary Kickstart syntax:

preseed --owner gdm shared/default-x-display-manager select gdm

Note that if the value contains any special characters, then the value must be quoted, as follows:

preseed preseed/late_command string "sed -i ’s/foo/bar/g’ /target/etc/hosts"

The --owner option sets the name of the package that owns the question; if omitted, it defaults

to d-i, which is generally appropriate for items affecting the first stage of the installer. The three

mandatory arguments are the question name, question type, and answer, in that order, just as would

be supplied as input to the debconf-set-selections command.

• As of Ubuntu 6.10, the keyboard option takes X layout names. To use an X keyboard variant, set

this option to layout_variant, with appropriate values of layout and variant. For example,

in_guj selects the Gujarati variant of the Indian layout.

27

Chapter 4. Obtaining System Installation Media

• You may use the apt-install command to install packages in %post --nochroot scripts (although

you might also choose to generate a %packages section in a %pre script and include it using

%include). Note that this does not work if the post-installation script is run in the chroot environ-

ment.

4.4.2.2. Missing features

As yet, the Ubuntu installer only supports a subset of Kickstart’s features. The following is a brief

summary of features that are known to be missing:

• LDAP, Kerberos 5, Hesiod, and Samba authentication.

• The auth --enablecache command to enable nscd.

• Upgrades. To upgrade from one Ubuntu release to another, use the facilities provided by apt and

its frontends.

• Partitioning of multiple drives. Due to current limitations in the partition manager, it is only possible

to partition a single drive.

• Using the device command to install extra kernel modules.

• Driver disks.

• Firewall configuration.

• Installation from an archive on a local hard disk or from an NFS archive.

• The logvol --percent, --bytes-per-inode, and --fsoptions options for certain kinds

of detailed Logical Volume Management (LVM) configuration. (LVM configuration in general is

experimentally supported as of Ubuntu 9.04; please let us know about your experiences with it.)

• Restrictions of a partition to a particular disk or device, and specifications of the starting or ending

cylinder for a partition.

• Checking a partition for bad sectors.

• RAID configuration.

• Exclusions in %packages sections are no longer supported as of Ubuntu 6.10, as a casualty of other

improvements. You may need to use a %post script instead to remove unnecessary packages.

• Pre-installation scripts and non-chrooted post-installation scripts may only be shell scripts; other

interpreters are not available at this point in the installation.

4.4.2.3. Example

Here is an example Kickstart file that can be used as a starting point:

#

#Generic Kickstart template for Ubuntu

#Platform: x86 and x86-64

#

#System language

lang en_US

28

Chapter 4. Obtaining System Installation Media

#Language modules to install

langsupport en_US

#System keyboard

keyboard us

#System mouse

mouse

#System timezone

timezone America/New_York

#Root password

rootpw --disabled

#Initial user (user with sudo capabilities)

user ubuntu --fullname "Ubuntu User" --password root4me2

#Reboot after installation

reboot

#Use text mode install

text

#Install OS instead of upgrade

install

#Installation media

cdrom

#nfs --server=server.com --dir=/path/to/ubuntu/

#url --url http://server.com/path/to/ubuntu/

#url --url ftp://server.com/path/to/ubuntu/

#System bootloader configuration

bootloader --location=mbr

#Clear the Master Boot Record

zerombr yes

#Partition clearing information

clearpart --all --initlabel

#Basic disk partition

part / --fstype ext4 --size 1 --grow --asprimary

part swap --size 1024

part /boot --fstype ext4 --size 256 --asprimary

#Advanced partition

#part /boot --fstype=ext4 --size=500 --asprimary

#part pv.aQcByA-UM0N-siuB-Y96L-rmd3-n6vz-NMo8Vr --grow --size=1

#volgroup vg_mygroup --pesize=4096 pv.aQcByA-UM0N-siuB-Y96L-rmd3-n6vz-NMo8Vr

#logvol / --fstype=ext4 --name=lv_root --vgname=vg_mygroup --grow --size=10240 \

--maxsize=20480

#logvol swap --name=lv_swap --vgname=vg_mygroup --grow --size=1024 --maxsize=8192

#System authorization infomation

29

Chapter 4. Obtaining System Installation Media

auth --useshadow --enablemd5

#Network information

network --bootproto=dhcp --device=eth0

#Firewall configuration

firewall --disabled --trust=eth0 --ssh

#Do not configure the X Window System

skipx

30

Chapter 5. Booting the Installation System

5.1. Booting the Installer on 64-bit ARM

5.1.1. Console configuration

The graphical installer is not enabled on the arm64 debian-installer images for 20.04 so the

serial console is used. The console device should be detected automatically from the firmware, but

if it is not then after you boot linux from the GRUB menu you will see a “Booting Linux” message,

then nothing more.

If you hit this issue you will need to set a specific console config on the kernel command line. Hit e

for “Edit Kernel command-line” at the GRUB menu, and change

--- quiet

to

console=<device>,<speed>

e.g.

console=ttyAMA0,115200n8

. When finished hit Control-x to continue booting with new setting.

5.1.2. Juno Installation

Juno has UEFI so the install is straightforward. The most practical method is installing

from USB stick. You need up to date firmware for USB-booting to work. Builds from

http://releases.linaro.org/latest/members/arm/ after March 2015 tested OK. Consult Juno

documentation on firmware updating.

Prepare a standard arm64 CD image on a USB stick. Insert it in one of the USB ports on the back.

Plug a serial cable into the upper 9-pin serial port on the back. If you need networking (netboot image)

plug the ethernet cable into the socket on the front of the machine.

Run a serial console at 115200, 8bit no parity, and boot the Juno. It should boot from the USB stick

to a GRUB menu. The console config is not correctly detected on Juno so just hitting return will show

no kernel output. Set the console to

console=ttyAMA0,115200n8

as described in (Section 5.1.1). Control-x to boot should show you the debian-installer screens,

and allow you to proceed with a standard installation.

31

Chapter 5. Booting the Installation System

If this is the first time you’re booting the system, try the default boot parameters (i.e., don’t try setting

parameters) and see if it works correctly. It probably will. If not, you can reboot later and look for any

special parameters that inform the system about your hardware.

Information on many boot parameters can be found in the Linux BootPrompt HOWTO

(http://www.tldp.org/HOWTO/BootPrompt-HOWTO.html), including tips for obscure hardware.

This section contains only a sketch of the most salient parameters. Some common gotchas are

included below in Section 5.4.

5.3.1. Boot console

If you are booting with a serial console, generally the kernel will autodetect this. If you have a video-

card (framebuffer) and a keyboard also attached to the computer which you wish to boot via serial

console, you may have to pass the console=device argument to the kernel, where device is your

serial device, which is usually something like ttyS0.

You may need to specify parameters for the serial port, such as speed and parity, for instance

console=ttyS0,9600n8; other typical speeds may be 57600 or 115200. Be sure to specify this

option after “---”, so that it is copied into the bootloader configuration for the installed system (if

supported by the installer for the bootloader).

In order to ensure the terminal type used by the installer matches your terminal emulator, the pa-

rameter TERM=type can be added. Note that the installer only supports the following terminal types:

linux, bterm, ansi, vt102 and dumb. The default for serial console in debian-installer is

vt102. If you are using a virtualization tool which does not provide conversion into such terminals

types itself, e.g. QEMU/KVM, you can start it inside a screen session. That will indeed perform

translation into the screen terminal type, which is very close to vt102.

5.3.2. Ubuntu Installer Parameters

The installation system recognizes a few additional boot parameters1 which may be useful.

A number of parameters have a “short form” (or alias) that helps avoid the limitations of the kernel

command line options and makes entering the parameters easier. If a parameter has a short form, it

will be listed in brackets behind the (normal) long form. Examples in this manual will normally use

the short form too.

debconf/priority (priority)

This parameter sets the lowest priority of messages to be displayed.

The default installation uses priority=high. This means that both high and critical priority

messages are shown, but medium and low priority messages are skipped. If problems are en-

countered, the installer adjusts the priority as needed.

If you add priority=medium as boot parameter, you will be shown the installation menu and
gain more control over the installation. When priority=low is used, all messages are shown
(this is equivalent to the expert boot method). With priority=critical, the installation sys-
tem will display only critical messages and try to do the right thing without fuss.

Note: In order to get asked for a VLAN configuration during the network setup a priority of

medium or low is needed.

1. With current kernels (2.6.9 or newer) you can use 32 command line options and 32 environment options. If these numbers

are exceeded, the kernel will panic.

35

Chapter 5. Booting the Installation System

DEBIAN_FRONTEND

This boot parameter controls the type of user interface used for the installer. The current possible

parameter settings are:

• DEBIAN_FRONTEND=noninteractive

• DEBIAN_FRONTEND=text

• DEBIAN_FRONTEND=newt

• DEBIAN_FRONTEND=gtk

The default frontend is DEBIAN_FRONTEND=newt. DEBIAN_FRONTEND=text may be prefer-

able for serial console installs . Some specialized types of install media may only offer a limited

selection of frontends, but the newt and text frontends are available on most default install

media. On architectures that support it, the graphical installer uses the gtk frontend.

BOOT_DEBUG

Setting this boot parameter to 2 will cause the installer’s boot process to be verbosely logged.

Setting it to 3 makes debug shells available at strategic points in the boot process. (Exit the shells

to continue the boot process.)

BOOT_DEBUG=0

This is the default.

BOOT_DEBUG=1

More verbose than usual.

BOOT_DEBUG=2

Lots of debugging information.

BOOT_DEBUG=3

Shells are run at various points in the boot process to allow detailed debugging. Exit the

shell to continue the boot.

INSTALL_MEDIA_DEV

The value of the parameter is the path to the device to load the Ubuntu installer from. For exam-

ple,

log_host

log_port

Causes the installer to send log messages to a remote syslog on the specified host and port as

well as to a local file. If not specified, the port defaults to the standard syslog port 514.

lowmem

Can be used to force the installer to a lowmem level higher than the one the installer sets by

default based on available memory. Possible values are 1 and 2. See also Section 6.3.1.1.

36

Chapter 5. Booting the Installation System

noshell

Prevents the installer from offering interactive shells on tty2 and tty3. Useful for unattended

installations where physical security is limited.

debian-installer/framebuffer (fb)

Some architectures use the kernel framebuffer to offer installation in a number of languages. If

framebuffer causes a problem on your system you can disable the feature using the parameter

fb=false. Problem symptoms are error messages about bterm or bogl, a blank screen, or a

freeze within a few minutes after starting the install.

debian-installer/theme (theme)

A theme determines how the user interface of the installer looks (colors, icons, etc.). What themes

are available differs per frontend. Currently both the newt and gtk frontends only have a “dark”

theme that was designed for visually impaired users. Set the theme by booting with theme=dark.

netcfg/disable_autoconfig

By default, the debian-installer automatically probes for network configuration via IPv6

autoconfiguration and DHCP. If the probe succeeds, you won’t have a chance to review and

change the obtained settings. You can get to the manual network setup only in case the automatic

configuration fails.

If you have an IPv6 router or a DHCP server on your local network, but want

to avoid them because e.g. they give wrong answers, you can use the parameter

netcfg/disable_autoconfig=true to prevent any automatic configuration of the network

(neither v4 nor v6) and to enter the information manually.

disk-detect/dmraid/enable (dmraid)

Set to true to enable support for Serial ATA RAID (also called ATA RAID, BIOS RAID or

fake RAID) disks in the installer. Note that this support is currently experimental. Additional

information can be found on the Debian Installer Wiki (http://wiki.debian.org/DebianInstaller/).

preseed/url (url)

Specify the url to a preconfiguration file to download and use for automating the install. See

Section 4.4.

preseed/file (file)

Specify the path to a preconfiguration file to load for automating the install. See Section 4.4.

preseed/interactive

Set to true to display questions even if they have been preseeded. Can be useful for testing or

debugging a preconfiguration file. Note that this will have no effect on parameters that are passed

as boot parameters, but for those a special syntax can be used. See Section B.5.2 for details.

auto-install/enable (auto)

Delay questions that are normally asked before preseeding is possible until after the network is

configured. See Section B.2.3 for details about using this to automate installs.

finish-install/keep-consoles

During installations from serial or management console, the regular virtual consoles (VT1 to

VT6) are normally disabled in /etc/inittab. Set to true to prevent this.

37

Chapter 5. Booting the Installation System

cdrom-detect/eject

By default, before rebooting, debian-installer automatically ejects the optical media used

during the installation. This can be unnecessary if the system does not automatically boot off the

CD. In some cases it may even be undesirable, for example if the optical drive cannot reinsert

the media itself and the user is not there (since working from remote) to do it manually. Many

slot loading, slim-line, and caddy style drives cannot reload media automatically.

Set to false to disable automatic ejection, and be aware that you may need to ensure that the

system does not automatically boot from the optical drive after the initial installation.

base-installer/install-recommends (recommends)

By setting this option to false, the package management system will be configured to not

automatically install “Recommends”, both during the installation and for the installed system.

See also Section 6.3.4.

Note that this option allows to have a leaner system, but can also result in features being missing

that you might normally expect to be available. You may have to manually install some of the

recommended packages to obtain the full functionality you want. This option should therefore

only be used by very experienced users.

debian-installer/allow_unauthenticated

By default the installer requires that repositories be authenticated using a known gpg key. Set to

true to disable that authentication. Warning: insecure, not recommended.

rescue/enable

Set to true to enter rescue mode rather than performing a normal installation. See Section 8.7.

5.3.3. Using boot parameters to answer questions

With some exceptions, a value can be set at the boot prompt for any question asked during the instal-

lation, though this is only really useful in specific cases. General instructions how to do this can be

found in Section B.2.2. Some specific examples are listed below.

debian-installer/language (language)

debian-installer/country (country)

debian-installer/locale (locale)

There are two ways to specify the language, country and locale to use for the installation and the

installed system.

The first and easiest is to pass only the parameter locale. Language and country will then be

derived from its value. You can for example use locale=de_CH to select German as language

and Switzerland as country (de_CH.UTF-8 will be set as default locale for the installed system).

Limitation is that not all possible combinations of language, country and locale can be achieved

this way.

The second, more flexible option is to specify language and country separately. In this case

locale can optionally be added to specify a specific default locale for the installed system.

Example: language=en country=DE locale=en_GB.UTF-8.

38

