

Data-Driven Asset Management

Possible finally matches vision

Richard G. Lamb

Chapter 3
The “R” Software in Action
Second Edition

ii

 This work is licensed by Richard G. Lamb under a Creative Commons

Attribution 4.0 International License (CC BY). Readers are free to copy and redistribute

the material in any medium or format and to remix, transform, and build upon the ma-

terial for any purpose, even commercially.

Information contained in this work has been obtained from sources believed to be reli-

able. Neither the author nor publisher guarantee the accuracy or completeness of any

information published herein and neither the author nor publisher shall be responsible

for any errors, omissions, or damages arising out of the use of this information. The

work is published with the understanding the author and publisher are supplying infor-

mation, but not attempting to render professional legal, accounting, engineering or any

other professional services. If such services are required, the assistance of an appropri-

ate professional should be sought.

Trademarks: Microsoft, Microsoft Office, Excel Access, Oracle, SAP, Tableau,

Power BI, Maximo and Track are registered trademarks in the United States and other

countries.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

iii

Contents

Chapter 3 The “R” Software in Action ... 1

3.1. Approach to Reach Critical Mass 1

3.2. “R” Installation and Session ... 3

3.3. Basics of “R” Demonstrated ... 7

3.3.1. Demonstration Case ... 7

3.3.2. Import Data to the Session ... 9

3.3.3. Know-Thy-Data Analysis .. 11

3.3.4. Correlation Analysis .. 16

3.3.5. Partial Correlation Analysis 23

3.3.6. Regression Analysis ... 27

3.4. Challenge Taken ... 32

Bibliography .. 33

Chapter 3
The “R” Software in Action

To qualify as data-driven, an asset management organization must ac-

quire a critical-mass of skills in the “R” software as its analytic core. The

purpose of this chapter is to hand the skills of “R” off to its readers.

The chapter will begin by explaining how the hand-off of skills will

be accomplished. It will next explain the process to install “R” on per-

sonal computers and then run a session.

The remainder of the chapter will work through a hands-on case in

correlation analysis and linear regression. Furthermore, the readers can

use the case, as a go-by, to work with the data of their own roles.

The data that was formed to demonstrate the methods of the chapter

are available in the file Chap3AnxietyParCorr.csv. The file is available

for download at https://analytics4strategy.com/ddassetmgt.

The R script which is explained throughout the chapter is also

available from the same webpage as the file Chap3RInAction.R.txt. The

extension “.txt” has been added to allow placement on the webpage as a

notepad file. The extension must be removed from the file name to make

it directly loadable into an R session as explained in section 3.2.

Additionally, the path element in the R script are the author’s. The

reader must replace them with their own path. The cases are flagged as

<path> in the code presented throughout the chapter and the book.

3.1. Approach to Reach Critical Mass

The approach to the chapter is to capitalize on the plentiful published

literature that draw upon the ”R” software to explain and demonstrate

every type of statistical analysis. Just as important, the same body of lit-

erature explains the “R” code to each topic of analysis.

Chapter 3

2

Accordingly, the chapter will draw upon published examples of

correlation, partial correlation and linear regression to hand off to its

readers the critical-mass skills in the “R” software.

The explanation is not intended to be a full-depth explanation of

the principles and practices of the demonstrated analyses. Instead, the

demonstration is limited to working with “R” while explaining each in-

troduced analytic to a critical mass of depth. The overarching objective

of the chapter is to cause its readers to “run around in R.” Throughout

the explanation, readers will be introduced to the most commonly and

frequently occurring code in “R.”

The principles and analytics engaged in the case of the chapter are

explained to full depth by Chapters 6 and 7 of the book, “Discover Sta-

tistics with R, [Fields and Miles, 2012]. There will be section references

to full-depth explanations throughout the chapter.

The Fields and Miles text is being drawn upon for a reason besides

being well written and a friendly read. It has a quality synonymous to all

literature drawn upon by this book. The Fields and Miles book is written

to explain what readers should want to know rather than everything there

is to know. In contrast, this book is written to explain what readers must

know to act on the data-driven methods introduced throughout the book.

Throughout the book, the Fields and Miles text will be referenced

for a full grasp of statistical principles, correlation analyses, regression

and ANOVA. Other texts will be referenced for time series, survival-

hazard and hidden variables analyses.

The published example of the chapter qualifies as a standard of

methodology. Although it is not from the domain of asset management,

it is exactly the steps we would take to measure and test the correlation

and linear fit of the variables that are normal to asset management. As

the chapter progresses, the reader can take what is being presented and

put it to work in the evaluation of their own operation.

Just as for this chapter, the book will often present published, non-

asset-management examples. This is so that the reader can have an ex-

planation beyond the actionable go-by-level explanations of this book.

The R Software in Action

3

3.2. “R” Installation and Session

There need not be an organization, rather than grassroot, initiative to ac-

quire the “R” software. This is because “R” is freely available for

download at https://www.r-project.org/.

Also, at the site are instructions for download, as well as, manuals

for working with “R.” Be aware that there are YouTube videos to demon-

strate the download and installation process. Furthermore, friendlier

texts on the subject of working with “R” are listed in the chapter’s bibli-

ography.

As employees, our computers are integrated within an IT system.

Consequently, we will likely need the system administrator to our com-

puter to conduct the download and installation of “R.” The administrator

will also be required to load packages into the installed software. Pack-

ages will be explained later in the section. In all cases, the administrator’s

task is minor and quick.

Like all modern software a session is opened by clicking its icon.

Figure 3-1 shows the opening view—the console.

Figure 3-1: The console view of “R.”

https://www.r-project.org/

Chapter 3

4

The nature of the console is that each line of code runs upon press-

ing the Enter key. At the end of a completed function, the associated

output is returned in the console. It is not possible to place a set of com-

mands and then get the collective output. In other words, the console is

not a friendly place to work; so we don’t.

The hugely more workable view is the script window. It is shown

in Figure 3-2. As can be seen, we can start a new script or open an exist-

ing one.

Upon clicking the Open Script option, we navigate through our lo-

cal or server directory to upload the script we want. If we are writing a

new script, upon selecting New Script, a blank script view will open. We

ultimately save the script as a new file. The procedures are identical to

what we are all accustomed to.

Figure 3-2: Script view, were we do our work.

The figure shows the action of opening a script file that was previ-

ously developed and saved. A little geek-talk here. A script file is

distinguished by its .R extension—seen in the window frame. If we fur-

ther extend the script name with .txt we would get a Notepad file of the

code.

The script window is where we can write, edit and run code instead

of working in the console view. In contrast to the console, we can work

The R Software in Action

5

in a fully flexible manner. We also control when we want the output to

be generated relative to the command code.

Along with the code of the analysis, the script can also serve as a

document of explanation and paper trail. Notice the hash marks in the

code. They convert code to unexecuted text and, thus, allow us to place

notes and explanations throughout the script.

We also see the hash marks preceding some command codes. For

example, hash marks are placed before the install.packages() function.

The placement prevents a one-time command from running indiscrimi-

nately as part of every full run. At the same time, we make the command

in the working code a paper trail to the code.

There are two ways to run the code. First, highlight the code to be

run. Thence, press the run icon on the icon bar at the top of the “R” win-

dow for script. The other is to place the cursor in the code line and press

the ctrl-r keys.

Chapter 2 explained that everything in “R” is done with functions.

In turn, the functions are available from their resident packages. There

were approximately 10,000 packages as of 2020.

The most commonly called functions are automatically installed

with the initial installation of “R” and automatically opened in all ses-

sions. Others are installed as they are needed for the analytics at hand.

Six packages are required for the analyses demonstrated in this

chapter. The code to call them is the install.packages function applied

as follows:

install.packages("ggm")

install.packages("polycor")

install.packages("Hmisc")

install.packages("psych")

install.packages("ggplot2")

install.packages("rlm")

install.packages(MASS)

An important detail can be now introduced. “R” is case sensitive.

We will get an error message if we violate case. Upon an error message,

checking for case is part and partial to checking our code for spelling and

Chapter 3

6

punctuation vis-a-vis the go-by—in geek, checking our syntax. Further-

more, we can check each function as we code it and then move to the

next.

As we work through the go-by literature to an analytic, the pack-

ages will be identified as the code is being presented. Often the packages

are arcane. For example, the ggm package is required for “graphical Mar-

kov models.” However, we have no need to know what that means or

what that is—only that we must call it up.

Figure 3-3 shows the process to install a package. For example, the

install.packages() function with reference to ggm in the brackets is high-

lighted and run. The window appears offering choices of mirror servers

located around the world. We pick one, click OK and the package will

be automatically downloaded and installed in the “R” software. As men-

tioned, most of us would turn to our system administrator for the task.

Figure 3-3: Packages are downloaded

and installed from a mirror server.

Once installed, it is necessary to open the package in a session. A

package only needs to be installed to “R” when it is used for the first

time. Thence, for any session using the package, it is only necessary to

The R Software in Action

7

open it once upstream to its role. The shown library function does that

for each package with the code:

library(ggm); library(Hmisc); library(polycor)

library(psych); library(ggplot2); library(rlm)

library(MASS)

3.3. Basics of “R” Demonstrated

Packaged as correlation and regression analyses, the section will intro-

duce the most commonly observed coding. As they emerge in the

demonstration, the code will be explained. In this way the reader will

become comfortable with following published explanations as actiona-

ble go-byes to apply in asset management.

The demonstration will begin with introducing the case and the

questions we want to ask and answer with the data. Thence, it will ex-

plain how to load data into the session and gain an initial “know-thy-

data” perspective of it. Next correlation and partial correlation analyses

will be introduced and conducted. Finally, to demonstrate fundamental

principles and code to setting up most types of models, the chapter will

step lightly into linear regression.

3.3.1. Demonstration Case

Suppose we are given the data set charted in Figure 3-4. They are

the cross plots of anxiety to exam performance and revision to exam per-

formance. Revision is a British term for one’s approach to studying a

topic. The straight line is the linear regression fitted to the cross-plotted

points.

The case will follow the published example of Sections 6.5 and 6.6

of Fields and Miles. The data is available for download as Exam Anxi-

ety.dat from the book’s website. For the case, the data has been converted

to an Excel file, AnxietyParCorr.csv, and made available on the website

analytics4strategy.com.

Obviously, the example is not from an asset management opera-

tion. However, it is directly relevant whenever our interest is the

correlation between variables. We would load our table as directed for

Chapter 3

8

the example and change the names of the variables in the code. In other

words, the example can be used as our go-by or tool.

In fact, there is a case in asset management literature that explores

the comparative correlations of maintenance task types to injuries. The

example should be applied to confirm for ourselves the inferences made

so confidently in the literature but without the same inspection.

Figure 3-4: Cross plots of paired variables with a fitted line.

Answers to the following questions will emerge as the case un-

folds:

The R Software in Action

9

• What is the statistical nature of the data—average, median,

spread, etc.?

• Is the data normally distributed?

• Are anxiety and revision significantly correlated to exam per-

formance?

• How much of the variance in performance is shared by anxiety

and revision time?

• Do the correlations hold if we isolate what is unique between

each combination—partial correlation?

• Are anxiety and revision significantly predictive of exam per-

formance?

The code to ask and answer the questions will be presented and

explained in the sections to come.

3.3.2. Import Data to the Session

The first action is to import our data into the “R” session. The code

to do so is:

examData <- ead.csv("C:\\<path>\\Chap3AnxietyParCorr.csv",

 header=TRUE, sep=",")

We are showing the case in which our data, a super table, is im-

ported into “R” with the read.csv function. The function is used because

the super table is a file of comma-separated variables from Excel.

However, there are functions for other types of files. They are

read.xlsx for .xlsx files and read.delim for .txt and .dat files. For Access

files we would install and open the RODBC package and set up the lo-

cation and arguments for importing a query or table from Access.

There are three arguments in the read.csv function just as there are

for the other read-type functions. The first is the file and its location. The

second tells the function if the super table has headers. The third indi-

cates commas or something other as the separator.

The second and third arguments are shown for completeness. How-

ever, they are the default arguments. The arguments need not be coded

unless our data are exceptions to them.

Chapter 3

10

Let’s talk about the file and location argument. There are options

in “R” to identify the files with respect to a “working directory” rather

than code out the entire location. However, the full address is shown in

the code.

This is preferable because it places a paper trail in the code. This

makes it simple to locate the file after we have long forgotten its name

and location or to make it possible for recipients of the analytic to find

the data without knowing of some working directory and file. In the code,

the ellipse represents the complete address for the reader to fill in.

Also note the syntax of the file argument. The location string for

Microsoft typically codes with backward slashes. In “R” they must be

changed to either a double backward slash as shown in the code or a

forward slash.

Another fundamental. Notice the code string “<-“ in the code line.

It assigns what is created by the code to its right to be the “object” to its

left. By virtue of the element in the code, the imported table—Anxie-

tyParCorr.csv—is now an object called examData. Notice that

throughout the code we refer to the object rather than the csv file.

A comment. Tables can be built from scratch in “R” with standard

query language (SQL) by using the sqldf function. Beyond what is pos-

sible with SQL, we can do much more with “R” code.

As mentioned in Chapter 2, building super tables with SQL and

additionally with R coding requires substantial skills. As a measure, the

skills for each require six weeks of structured formal training. Therefore,

because Access moves SQL coding to the background, we are better

served by building super tables in Access and subsequently importing

them to R. When additional treatment is called for, the go-by that is being

followed for the subject analysis will provide the necessary code.

The data of one or more imported super tables will be manipulated

in the conduct of an analytic. However, the code will typically be such

that the imported data will remain unchanged—as examData in this case.

The tables built with an analytic can be exported with the write

function. We may do so to make our super table more super. For

The R Software in Action

11

example, we would likely want to join the findings of an apparency in-

sight deliverable to the super table.

3.3.3. Know-Thy-Data Analysis

This section will demonstrate a range of descriptive, statistical and

graphic insights—know-thy-data. What is demonstrated should be basic

to all data to be engaged in insight. It will be apparent that doing so is an

easy task of importing the data and subjecting it to the functions of this

section as a go-by or tool.

The section will look at data along three dimensions. First is to

view the content and type of the variables. Second is to view the data per

statistical measures. And third is to view the data graphically.

As always, there are functions to the three dimensions. For the first,

we want to be sure we know what is in the table. Three functions imme-

diately come to mind. One, the head function, will return the first six

rows (records). The other shoe to the function is the tail function to

return the last six rows. We not are limited to six rows. The argument n=

allows us to specify a different number of rows.

The str function, shows the number and nature of the variables and

number of records. Its information complements the insight provided by

the head function.

Both are returned by the following lines of code and the outputs

are shown in Figure 3-5:

head(examData) ##Shows first six cases

str(examData) ##Shows makeup of the variables

The head() function returns a small table representative of the par-

ent table. We can see that one, Code, is a house-keeping variable of no

use to us. We can also see that we could run our analytics while control-

ling for gender; which we will not in this example.

From the str function we get further descriptions of the variables.

We see that we have what is called by “R” a “data frame” with 103 ob-

servations (records). Three of the variables are integers, one a numeric

Chapter 3

12

and one a factor. For the factor variable, gender, we see that the catego-

ries are female and male. For all, we see the first ten records.

Figure 3-5: Head and summary views the data.

The second dimension of insight gives us a statistical overview of

our data set rather than the basic “what it is” presentation. Two such

functions are summary and describe. They are coded as follows and the

outputs are shown in Figure 3-6:

summary(examData) ##Descriptive statistics

describe(examData) ##Table of descriptive statistics

The summary function provides shape-type insight. They are min-

max, mean, median and quartiles for integer and numeric variables. The

categories and counts are returned for the factor variable.

The describe function provides additional information. Of those

returned, the returned non-esoteric insights to the variables are number

of observations, number missing, number of distinct cases and quantiles.

For the factor variables we receive a count, proportion of the categories

and count of missing records (empty cells). The figure has been snipped

to show only two of the five variables in the returned table.

Finally, we want graphic insight. Figure 3-4 was a traditional pre-

liminary insight. We will demonstrate two additional cases. First is the

case of a pairs-panel as shown in Figure 3-7. Second is a graphical as-

sessment of the distribution of the variables as a normal distribution. It

is shown in Figure 3-8.

The R Software in Action

13

Figure 3-6: Two statistical views of the data set.

First let’s look at the graphic from the pairs.panel function of the

psych package for a tremendous amount of insight. In it, we can inspect

the shape or distribution of each variable in the data set. We can inspect

the cross-plot relationship of each variable with all other variables. The

fitted smooth line gives a sense of pattern to the cross plots. The oval

shape is called the correlation ellipse; the more elongated the greater cor-

relation. The large dot indicates the mean value of plot points.

The code to return the pairs panel of Figure 3-7 is as follows:

#Figure 3-7

pairs.panels(examData[c("Exam","Anxiety","Revise")])

It is good practice to confirm that our data is normally distributed.

Doing so is a mandatory step to evaluate the truthfulness of an analytic.

If the finding is not a normal distribution, we use an alternative method

to the analytic or transform the variables within the analytic.

We were given the cross-plot and line fit (Figure 3-4) of anxiety

and revision plotted to exam. Upon inspection, we can see that the points

do not fall in a consistent band around the plotted linear fit. This was the

Chapter 3

14

first clue that the data are not normally distributed. Furthermore, the his-

tograms of Figure 3-7 do not look like normal distributions.

Figure 3-7: Pairs panel perspective of the nu-

meric variables in the data set.

We can test normalcy with graphic insight. However, we should

note that the shapiro.test function can be used to test if the data is sig-

nificantly different from the normal distribution.1

The graphic method is to build and view a q-q graphic as shown in

Figure 3-8. If the points of a variable fall along its line, the data is nor-

mally distributed.

In the following code to the generate the figure there are several

basic elements of coding to recognize:

par(mfrow = c(2, 2))

anx<- qqnorm(examData$Anxiety, main = "Q-Q Anxiety ");

qqline(examData$Anxiety)

rev<- qqnorm(examData$Revise, main = "Q-Q Revise ");

qqline(examData$Revise)

1 See Field and Miles, Section 5.6 for a full explanation of the shapiro.test()

function.

The R Software in Action

15

exm<- qqnorm(examData$Exam, main = "Q-Q Exam ");

qqline(examData$Exam)

par(mfrow = c(1, 1)) #returns to 1 x 1 pictures

Figure 3-8: A plot point of a normal distributed variable

will fall along the straight line.

First, how did we get the three charts in one figure? The answer is

the par function in the first line and its argument mfrow = c(2,2)). The

code creates a 2-by-2 matrix of graphics. If we change the c() element

we can create any combination of rows and columns.

We have built an output sandwich with the par function. Note that

the par function appears again at the end of the block of code. By coding

c(1,1), any graphic after the line of code will present in a single frame.

We can also see layered charting in action. Inspect the line of code

beginning just after anx<-. In it is the code to generate the q-q graph for

the anxiety variable.

The code line includes the qqnorm and qqline functions. Both are

individual graphs of the subject variable to the line of code.

Chapter 3

16

If we highlighted and ran the qqnorm code, we would get the plotted

of points. If we did the same with qqline code, we would get a straight

line. It represents how a plot of data with the mean and variance of the

data should form as quantiles if it were a normal distribution.

As a coded command, the qqline element overlays the straight line

on the plotted points. In this case, we can readily conclude the data is not

normally distributed.

There is another element to recognize in the code. It is one of the

ways we can specify variables to functions.

Notice the syntax examData$Anxiety in the code to the first graphic.

Also notice the same pattern in the code in which the other two variables

are engaged for evaluation. The code line tells the function that we are

working with a variable (after the $) from a table (before the $)

There are other ways to identify variables. Some will arise as the

chapter progresses. However, the advantage of the table$variable syn-

tax is that we leave a paper trail in the code.

3.3.4. Correlation Analysis

Now to conduct two correlation analyses. One between anxiety and

exam. The other between revision and exam. However, before jumping

in, let’s make sure we do not confuse correlation analysis with regression

analysis.

Correlation is the extent that two variables move together with re-

spect to their own means. The similarity may have no meaning—be

incidental. In contrast, regression quantifies how strongly a predictor

variable is related to an outcome variable.

The fitted line in Figure 3-4 is a regression relationship to the

cross-plot points. The horizontal axis is the predictor variable to the

plots. The R value (correlation coefficient) that is inserted in the figure

is a computation upon the collective paired points.2

We will take a step here that is a necessary demonstration of “R”

more than it is necessary to conduct a correlation analysis. We will filter

2 See Fields and Miles Section 6.3 for a full explanation of the correlation coef-

ficient.

The R Software in Action

17

the examData table to a new table object—examData2—with only the

three variables of the correlation analysis to come. We will, thence, sub-

ject it to correlation analysis.

When data is assigned to an object—examData—the object looks

like a table as shown in the upper part of Figure 3-9. It looks like a table

to us, but it is called a “data frame” by “R.”

Figure 3-9: Table built by filtering another.

We want to extract the data frame (examData2) in the lower part

of the figure from the data frame (examData) in the upper part. The code

to return examData2 is:

#Figure 3-9 lower

examData2<- examData[,c("Exam","Anxiety","Revise")]

We are taking the extraneous step of forming the new data frame

object because the code to do so demonstrates two fundamentals of “R.”

They are the square brackets, [], and the combine function, c().

What can be seen within the brackets is the act of filtering a table

by row and column. Notice the comma that divides the bracketed space

into right and left sides. The distinction is for filtering rows and columns.

The absence of code to the left of the comma in this case causes all

rows of the source table to appear in the newly created data frame.

Chapter 3

18

However, filters placed in the position can be character, numeric or cal-

culated.

In this case, by the code placed to the right of the comma, we are

commanding a table with variables and order of exam, anxiety and revi-

sion. The enabling combine function, c(), plays large in “R.” We saw it

previously but will explain it now. In this case, the function presents a

list of variables. It keeps coding simple. Also notice that the elements,

when text, are coded with parenthesis.

As noted already, the order has been changed by which the varia-

bles will appear as columns in the new table. We could have referred to

the positions of each variable in the source data frame and specified the

order in the new data frame with c(3,4,2). The numbers refer to column

positions of the source table. The order of appearance in the c() function

decides the order of appearance in the new table. Also notice that when

coding the function with numbers, no parentheses are involved.3

This is a good place to explain how to find guidance to any func-

tion. First, of course, we need to know there is a function or have an idea

of a function. We can start with an open-ended query of the internet from

which we will likely discover an appropriate function to work with.

Thence, we can get a full-depth explanation of the discovered function

using the help function. Alternately, we can query the internet for the

same detail.

In this case, the help function would have taken us to a website

with explanation, examples and data for the examples. Calling the code

help(cor), we would receive the following explanation of the cor func-

tion:

cor(x, y, use = "everything", method = “correlation type")

Arguments:

X A numeric variable, matrix or data frame.

Y NULL (default) or a vector, matrix or data frame with

compatible dimensions to x.

3 See Field and Miles, Sections 3.5 and 3.9 for additional methods to work with

tables.

The R Software in Action

19

Use An optional character string giving a method for compu-

ting in the presence of missing values. This must be (an

abbreviation of) one of the strings "everything", "all.obs",

"complete.obs", "na.or.complete", or "pairwise.com-

plete.obs.“4

Method A character string indicating which correlation coeffi-

cient is to be computed. One of "pearson" (default),

"kendall", or "spearman": can be abbreviated.5

Now to put the correlation function, cor, to work. Because the ear-

lier know-thy-data stage of the procedure revealed the variables to not

be normally distributed, we will use the Pearson and Spearman methods;

the latter because of non-normality. The ‘Use’ argument is omitted be-

cause the data frame has no missing data. The ‘X’ and ‘Y’ arguments are

not necessary because we are using the data frame examData2 as the

source data.

The code is as follows and the output is shown in Figure 3-10:

#Figure 3-10

cor(examData2, method="pearson")

cor(examData2, method="spearman")

Figure 3-10: Output of the correlation analysis.

Notice that the tables return different correlation coefficients. This

is because our data is not a normal distribution. To deal with the non-

4 See Field and Miles Section 6.5.3 for an explanation of each case to the “Use”

argument.
5 See Field and Miles, Sections 6.5.4-6 for an explanation of Pearson, Kendall

and Spearman correlation.

Chapter 3

20

normal, the Spearman uses a non-parametric method. The strength of the

correlations returned by the more realistic Spearman method show to be

less than reported with Pearson.

It is always necessary to confirm that the coefficients are signifi-

cant. How strongly is the correlation between each pair of variables? It

is more than just by chance?

This is evaluated with hypotheses testing. The principle is to test

the computed correlation against the null hypotheses. It is that there is

no correlation between two variables. In other words, the null hypotheses

is that the correlation is insignificant; “0.”

As in Figure 3-10, we are given coefficients. However, that does

not mean they are significant because they are not “0.” We must always

confirm another measure of significance.

We must test that “0” does not appear between the upper and lower

limits of a confidence level—e.g., 95 percent. If “0” appears, it means

that our correlation is non-existent. We are drowning in a pool with an

average depth of one foot.

The test to conduct of the correlation coefficients of Figure 3-10 is

what is called the p-value. The smaller the value, the greater the signifi-

cance. In this example, the p-value for acceptance as significant must be

5 percent or less. This is because we have decided that our statistic much

have a confidence of 95 percent.

Before jumping in to the functions to test for significance, it is nec-

essary to introduce another fundamental of “R.” Matrix and vector in

contrast to data frame.

A matrix and data frame look alike but are different in nature. A

matrix is a table of purely numeric values. As already seen, a data frame

is a table of character, integer and numeric values.

A vector can be character or numeric. However, if you saw one you

would describe it as a table with a single variable. In fact, the data frame

and matrix objects are actually a construct of vectors. However, a vector

need not be thought of as a row or a column.

The R Software in Action

21

Now we will convert the data frame to a matrix with the as.matrix()

function and assign the result to a new table object, examMatrix. The

code is as follows:

examMatrix<- as.matrix(examData2)

We are making the conversion because the function we will use to

determine p-values, requires a matrix. Running the code with a data

frame would return an error message.

We will generate our p-values with the rcorr() function and the

Pearson and Spearmen coefficients. The code is as follows and the output

is shown in Figure 3-11:

#Figure 3-11

rcorr(examMatrix, type = "pearson")

rcorr(examMatrix, type = "spearman")

The output includes the correlation matrices previously returned by

rcor. The important new information are the p-values.

Both Pearson or Spearman return a p-value far smaller than 5 per-

cent. Therefore, the coefficients are highly significant. However, the

significance is shown by the Spearman method as weaker than Pearson.

Let’s clarify the p-value in the table as compared to an acceptable

value of 5 percent. The computed p-value indicates the confidence inter-

val we can give to the correlation as not including “0.” As an example,

for a p-value of 1.2 percent, our confidence is 98.8 percent.

We would also like to get insight into the upper and lower limits of

confidence. Let’s state in plain English the meaning of p-value and con-

fidence with respect to the limits.

For our given 95 percent confidence, the limits will not include

“0.” The confidence from the computed p-value, if it were the basis for

the confidence limit, is the limits at which a notch farther would cause

“0” to appear within the limits.

We can use the cor.test function to get the confidence limits, but

only one pair at a time. We could have used the function to get the

Chapter 3

22

correlation coefficients and p-values. However, it requires more coding

of a lazy SME such as me.

Figure 3-11: P-values show significance un-

der Pearson and Spearman.

Note that we can only get an interval for the Pearson method. The

code for all three pairs is as follows and the output for the Anxiety, Exam

pair is shown in Figure 3-12.

#Figure 3-12

cor.test(examData$Anxiety, examData$Exam,

method="pearson")
cor.test(examData$Anxiety, examData$Revise,

method="pearson")

cor.test(examData$Revise, examData$Exam, method="pearson")

The R Software in Action

23

Figure 3-12: Confidence limits to the Anxiety-Exam pair.

In the output we receive once again the coefficient and p-value to

the pair. Additionally, we now receive the upper and lower limits to

95 percent confidence. If we want to explore the limits for the computed

p-value, we would do so by the setting the “conf.level=” argument in the

cor.test() function to the confidence level equal to one minus the p-value.

There is another fundamental point to make. Notice that “0” does

not appear between the limits of a 95 percent confidence interval. We

would expect this because the computed p-value is 5 percent or less.

3.3.5. Partial Correlation Analysis

Now is the time to introduce two types of correlation and the dif-

ference. They are correlation (R) and correlation-squared (R2).

As previously defined, correlation is a measure of the extent to

which two variables move together with respect to their own means. Cor-

relation-squared is the extent that the variance in one is shared by the

other.

The latter of the two is computed as cor squared. The code using

Pearson and Spearman is simply as follows and the output is shown in

Figure 3-13:

#Figure 3-13

cor(examData2, method="pearson")^2

cor(examData2, method="spearman")^2

Chapter 3

24

Figure 3-13: Correlation squared for shared var-

iance.

Both measures of correlation can be misleading because pairs hide

their correlation to a third or more variables. Therefore, we need to de-

termine the unique correlation between two variables rather than

disregard the correlation shared with other variables. The concept is

shown in Figure 3-14.

Figure 3-14: Full- and partial-correlation between two variables.

To the left we see the comparative paired correlations between anx-

iety and exam, and revision and exam. Shown is what the calculation of

correlation and correlation-squared have been to this point. It is also the

typical perspective of the meaning of correlation.

To the right in the figure we can see the lurking issue. Some part

of the correlation of the paired set of exam to anxiety is shared with re-

vision.

The R Software in Action

25

Therefore, correlation and correlation-squared can be misleading if

we disregard associations with other variables. There are, of course,

functions for that. We want to determine what is called partial correlation

and confirm its significance.

Let’s look at the partials of the exam-anxiety pair. The code is as

follows and the output is presented in Figure 3-15:

#Figure 3-15

cor(examData2, method="pearson")

pcExAn<- pcor(c("Exam", "Anxiety", "Revise"),

var(examData2))

pcExAn

pcExAn^2

pcor.test(pcExAn, 1, 103)

The cor line of the code returns the full correlation that was gener-

ated with the same function earlier in the chapter. The pcor function will

return a partial correlation. The output of the pcor function is assigned to

the pcExAn object.

Figure 3-15: Partial correlation to exam-anxiety pair.

The partial correlation is returned when the object is called up by

the next line of code. In the figure it is apparent that the full- and partial-

correlations are very different. The true correlation is far weaker than we

would be led to believe with full correlation. In fact, it is below the rule-

of-thumb threshold of 30 percent as a strong correlation.

Chapter 3

26

Mathematically we know that the before and after correlation-

squared will also be even more disparate. When calling the code line

pcExAn^2, the correlation-squared measure is returned.

Now let’s look at the pcor function. It has two arguments. The sec-

ond tells the function from which table the variables are taken from. The

first shows three variables in the c() function. The first two are the var-

iables of interest. The third is the variable for which there is shared

correlation and the one we want to exclude from the partial-correlation.

However, know that the pcor function does not limit us to sets of

three variables. The function allows us to engage any number of varia-

bles. The first two in the list are always the partial correlation variables.

The function pcor.test returns three insights. The important one

is $pvalue. It shows that the partial correlation holds. It is less than the

5 percent to judge the correlation as significant. However, because it is

substantially greater than the p-value (<0.001) of the full correlation, the

significance of correlation is much less.

To determine the confidence limits to the partial correlation, there

are three arguments to the pcor.test function. The first is the object

model pcExAn. The second is the number of controlled variables; “1”.

And the third is the number of observations.

The Excel table of Figure 3-16 summarizes the findings for the re-

spective pairs. Anxiety has a significant unique correlation to exam

performance, whereas, revision does not.

Figure 3-16: Findings from full- and partial-correla-

tion analysis.

If we were a subject matter expert in testing, we would ponder why

what seems intuitively correlated to us is not. We would have discovered

to seek other variables with respect to revision because not all ap-

proaches appear to be equally effective.

The R Software in Action

27

3.3.6. Regression Analysis

The section will demonstrate regression analysis in contrast to cor-

relation analysis. 6 It is an opportunity to introduce the structure of

“formulas” that appears typically in most analytic models.

There are multiple steps to build and evaluate linear regression.

Here we will look only at the first step which is to determine the best

predictor variables to the model. The step may begin with the correlation

analyses of variables as shown throughout the chapter. Thence, we

would evaluate the model with different configurations of variables. Fi-

nally, we would retain the predictive variables that are significant to the

outcome variable.

Although not introduced here, a number of steps take place to dis-

cover and work around issues to the model until it is judged as valid.

Although not introduced in this chapter, the steps are explained in Chap-

ter 8.

As mentioned earlier, we must not to forget that the coefficients of

regression and correlation are different measures. A correlation coeffi-

cient indicates the extent to which two variables move together with

respect to their own means. A regression coefficient indicates the rela-

tionship of a unit change in a predictor variable to the outcome variable.

However, the issues of significance and confidence are equally involved.

A reason for demonstrating regression is that, as models, they are

set up in much the same way for most types of models and by most soft-

ware. The help(lm) code would take us to the site to present and explain

the following code:

lm(formula, data, subset, weights, na.action, method =

"qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,

singular.ok = TRUE, contrasts = NULL, offset, ...)

Just as for correlation analysis, the lm function is set up by the

choices we make for its arguments. Explanations and examples of the

6 See Field and Miles Chapters 7 and 8 for a full explanation of linear and logistic

regression.

Chapter 3

28

options are readily available from the internet and will not be presented

here. However, as for many functions, we rarely touch most of the argu-

ments because the defaults typically apply. Accordingly, the shown code

may reduce to lm(formula, data).

The model to this example reduces to the following:

#Figure 3-17 main effects

examPred <- lm(Exam ~ Anxiety + Revise, examData)

summary(examPred)

confint(examPred)

We are left with two arguments in the model function, lm(). One is

the reference to the source table of data; examData. The other is the

model or formula of variables.

The code is assigned to an object we have named examPred. It is

our model. In it, we will learn the strength of relation the predictor vari-

ables, anxiety and revision, have with the exam variables.

In the model, the syntax “~” is the equivalent to “=.” To the right

of the symbol are the predictor variables. To the left is the outcome var-

iable.

The summary function, with our model as its argument, calls up the

model shown in Figure 3-17. Also shown, the confint function, with the

model as its argument, returns the 95 percent confidence interval.

Without getting deeply into the interpretation of regression, the

first point of interest is the regression coefficients to the predictor varia-

bles. The regression coefficients tell us that for one unit of change in the

predictor variable, the outcome will change by the amount of the coeffi-

cient.

The second point is significance. It is interpreted through the

p-value just as it was for correlation. Third are the upper and lower limits

to the 95 percent confidence interval.

Whether the regression coefficients are significant is shown by the

p-value and if “0” appears in the 95 percent confidence intervals. Notice

that they replicate the partial correlations. Anxiety is significant to the

outcome, whereas, revision is not.

The R Software in Action

29

In modeling, insignificant variables are removed. Therefore, our

regression model would be reduced to anxiety as the predictor variable

and exam as the outcome variable.

Figure 3-17: The linear regression model of main effects.

Let’s demonstrate another aspect of modeling—interaction be-

tween variables. In statistics, an interaction may arise when considering

the relationship among three or more variables. It describes a situation in

which the effect of one predictor variable on an outcome depends on the

state of a second predictor variable.An interaction can entail two or more

predictor variables.

Let’s look at the set up and interpretation of models with an inter-

action. Essentially, we run a model with interactive variables and

determine their presence by virtue of the significance reported for each.

The immediate difference is apparent in the coded formula.

#Figure 3-18 with interaction

examPredIntr <- lm(Exam ~ Anxiety * Revise, examData)

summary(examPredIntr)

confint(examPredIntr)

Chapter 3

30

Notice that the “+” in the model is replaced with “*.” This creates

a new variable in the model which is the interactive variable. The substi-

tution would be the case if we had additional predictor variables.

The output of the interaction model to interpret is shown in Fig-

ure 3-18.

Figure 3-18: Model with interaction of two predictor variables.

There are three things to note. First, a new variable appears in the

output as the interactive variable; anxiety:revise. Second, the p-value

to the interaction is greater than 5 percent and its coefficient shows a

weak relationship to exam. Third, the findings for the interactive variable

are accentuated by the presence of “0” within the confidence interval. In

other words, the signs change for the upper and lower limits.

At this point we need to make a note concerning interpretation. As

long as there are interactive variables in a model, we cannot draw mean-

ing from the “main effect” variables—anxiety and revision.

The R Software in Action

31

Let’s expand the preceding two findings to three predictor variable

models. There would be one three-way interactive variable and three

two-way interactive variables. We would evaluate and eliminate interac-

tive and main effect variables downward from the three-way variable.

The significance to any lower-level variable to a higher-level variable

cannot be interpreted until any associated higher-level variables are re-

moved.

We may choose to run the interaction model first rather than sec-

ond. Based on finding insignificance we would return to the model of

Figure 3-17 in which only main effects are modeled. In turn, the model

of Figure 3-17 revealed that we would reduce the model to anxiety as the

predictor variable to exam as the outcome variable.

Recall that during the know-thy-data phase of analysis we discov-

ered the three variables to the model are not normally distributed. In such

a case, we should go to a “robust” linear regression—meaning the

model’s algorithm is not influenced by the distribution. Therefore, let’s

subject our data to the rlm function for robust models.

The code is as follows and the output is shown in Figure 3-19:

#Figure 3-19

rlm.examlm <- rlm(Exam ~ Anxiety + Revise, data =

examData)

summary(rlm.examlm)

The output does not include a p-value. Instead, the t-value tells the

story. We can make our interpretation on the t-value because it resides

behind the curtains in the calculation of p-value.

A p-value equal to or less than 0.05 with 100 degrees of freedom

is indicated when the t-value is greater than or equal to the cut-off at

1.962 absolute. Anxiety shows to be significant because it exceeds the

cut-off. Revise does not.

However, the t-value for regular regression is greater than it will

be for robust regression. This demonstrates that robust regression would

more realistically deal with the non-normal distribution of the model var-

iables.

Chapter 3

32

Figure 3-19: Robust regression tells the same story but different strength

of relationship.

3.4. Challenge Taken

The challenge the book has taken on is how to explain data-driven asset

management to a workable depth because a full depth explanation would

require that I write, and you read approximately 2,500 pages—and that

is not going to happen. The chapter has demonstrated how the challenge

will be met throughout the book.

The obvious purpose of the chapter was to bring its readers to have

a working critical-mass of skills with “R.” If the asset management or-

ganization does not gain and migrate the skills of “R,” beginning with a

few role holders, it cannot move beyond system reports and recountive

insight deliverables.

Although critical mass skills with the analytic software are a pre-

requisite to data-driven operations, notice that another purpose of the

chapter is to present and explain three of the many insight deliverables

for asset management that will arise with each chapter of the book. For

this chapter, they are to know-thy-data and to evaluate the correlation

and strength of relationship between variables. Skills in the software are

accumulated in the context of conducting the methods.

Accordingly, the chapter is representative of how the book will

take on the challenge of providing a working depth of explanation to

data-driven asset management. Each chapter, as its objective, will intro-

duce insight deliverables applicable to functional aspects of asset

management. Thence, they will present an integrated explanation of the

The R Software in Action

33

insight, the associated data analytic methods and their conduct with the

triad of software. Along the way, the book will refer readers to published

full-depth explanations.

For reasons of practicality, some of the examples are representative

rather depicting an actual functional aspect of asset management. That

has been the case for the chapter.

However, the insight methods of the chapter and are written to be

universally applicable. Thus, they are direct go-byes to functional as-

pects of asset management. Consequently, readers can apply them

directly to their own roles by merely swapping in their own data.

There is another reason for representative examples over asset-

management-specific cases. When a topic insight deliverable entails an-

alytics, some readers will want a full-depth explanation of the underlying

principles. Accordingly, the critical-mass explanation of the insight can

track a referenced full-depth explanation of their principles.

Bibliography

de Vries, Andries and Meys, Joris. R for Dummies. John Wiley & Son,

Inc. 2015.

Field, Andy and Miles, Jeremy. Discovering Statistics Using R. Sage

Publications, Inc. 2012.

Matloff, Norman. Art of Programing R. No Starch Press. 2011.

