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Preface 

Does the steady drumbeat for data and analytics in your newsfeed make you uneasy? Are 
you worried that data and analytics will be the new Excel for which skills went from 
optional to mandatary for everyone’s career? Are you searching for a way in but have not 
yet found a door other than some prohibitively huge and long undertaking to reach critical 
mass? 

In other words, should you be worried for your career health? Yes, if your role 
engages with operating systems and Excel. And yes again, if your role in a managerial 
position entails decision-making upon the interpretation of standard reports from the 
operating system or Excel deliverables from other role holders. 

You should be worried. As a few of these role holders progressively bring data and 
analytics skills into their roles, they will set a new standard that is immediate, visible and 
significant to the enterprise. Without the same skills you will not be able to meet the 
standard. Better yet, the best assurance of career security is to be one of those who sets the 
standard. 

Maybe this is not new bad news to you. You see it coming. Your problem is that you 
have not yet stumbled across a way into the skills, short of awful. However, there is good 
news. Because I decided to take the long and awful path, this book is your serendipitous 
good luck. My bad luck was that a book such as this had never been written. 

Why the book is your good luck is evident by my experience up to writing it. As an 
operational role holder, rather than data scientist, I had to learn much of everything there 
is to know about data and analytics before I could reduce the explanation of data and 
analytics to what you, in your operational role, need to know. 

It took me six years to learn much of what there is to know. It then took me another 
more than a year to reduce what I had to learn to what you need to know to vaccinate your 
career against obsolescence and decline. 

Philosophy and Approach 
The book is written to explain and demonstrate data and analytics as methods that are 
relevant to all enterprise operations rather than the universe of all human endeavors. The 
strategy works because all operations must deal with the same issues and sub-operations. 
Every operation has, in some form, requirements for setting direction, aggregate planning, 
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budget and variance control, planning, scheduling and executing the core task, staffing and 
optimizing the retention time of the core task in the stages through the operation. 

It follows that all operations will thrive on the same data and analytics skills. 
Regardless of the type of operation, it is obviously impactful that its role holders be able to 
extract, explore, cleanse and mold to purpose the data captured in their operating systems. 
Regardless of the type of operation, it is obviously impactful that role holders be able to 
augment their experience and judgement with the insight that data and analytics make 
possible. Furthermore, the best augmenting insights are not and never will be available 
from the operating systems their roles depend upon. 

Accordingly, a full explanation by demonstration of what you need to know, must 
necessarily be in the context of an operational domain. Therefore, as a context to all 
explanations by demonstration, the book has selected a domain in the management of 
manufacturing plants as a production asset. The type of operation is known as asset 
management. For those in the field of asset management, the book is a doubly serendipitous 
good fortune. 

Chapter 1, Operational Availability is the Purpose, introduces asset management with 
respect to how it plays in the enterprise. It then establishes the measures of performance 
and the driving aspects to the measures. Because data and analytics should ride on purpose, 
you are advised to think out the equivalent framing of the operation in which you hold a 
role and the operations around it. 

Of course, data and especially analytics are not, nor can be made, easy subjects. That 
is even after being bound within only what you need to know rather than all there is to 
know. As someone who read the book said, “You have to shut the door and turn off the 
TV.” 

However, you will not need to go far before you begin experiencing the payback of 
your concentration. At each chapter you will return to work with an actionable idea to 
upgrade the output of your role and the roles of others. 

Let’s talk about approaching the book to maximally bring about immediate payback 
to your organization and you as well. The book is written as the sequence of bringing the 
practices of asset management to be data driven. Asset management practitioners have got 
to love that. However, there is alternative path through the chapters for maximal “next-
day” payback upon each stepwise accumulation of skills. 

You should begin with Chapter 2, Data, Analytics and Software to be Data Driven. 
You need to know the territory. Just as important, you will discover that you already have 
at hand everything you need without first engaging management for permission to act on 
your payback idea or plead with them to buy you specialized software. Also important, the 
chapter will establish the definitions and demarcations with which you will be able calm 
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management down by explaining why it is that data drivenness entails learned skills with 
immediate operational ramifications rather than capital and costs for exotic software and 
endeavors. 

Here is one thing I discovered while learning much of what there is to know about 
data and analytics. Most of the power of data-drivenness is achievable with only the skills 
of working with data. Only a small number of ideas, less than 20 percent, call for analytics. 
In other words, if the forces of the universe commanded that I was to be forever limited to 
what I could make happen with data, I would be disappointed but still excited about what 
I have been left with. 

Data Skills and Methods 
When you know how to extract, explore and mold data into a dataset for purpose, your 
operation will immediately jump forward in its ramification for the enterprise. As a thought 
exercise, while you work through Chapter 3, Super Table from Operational Data, imagine 
what your operation would look like and perform like if every role holder were able to 
skillfully work with data as normal to their role. In fact, it is a readily achievable vision. 

Working through Chapters 3, 8, 9 and 11, you will see in action almost every 
technique of building what the book calls super tables. The techniques are demonstrated in 
MS Access because the software is available to everyone by virtue of their organization’s 
MS Office license. Furthermore, the principles of data that are demonstrated in Access 
travel easily to other software such as Tableau and Power BI. 

Chapter 3, Super Tables from Operational Data, explains how data is extracted from 
operating systems, pulled into Access and joined together in a super table of all related 
variables. This is in contrast to Excel which leaves us divided and conquered because our 
data, although related, is present to us in disconnected tables. The chapter then explains 
how to create summary variables in the super table, a technique which loom huge in the 
ability to build insight from the data. 

Chapter 8, Achieve Entirety of Data, is an important chapter because we must make 
all of our operational data available to building super tables. The chapter presents three 
frequently observed obstacles to entirety. To confront them, you will learn what changes 
must be made to operational roles and systems as necessary to achieve entirety. 

Chapter 9, Workload-Based Budget and Variance, and Chapter 11, Budget-Based 
Schedule and Craft Capacity, demonstrate data skills in the context of expanding super 
tables to perform tedious, complex operational tasks. The value of data skills is highlighted 
by demonstrating a collection of related organizational tasks that are not otherwise possible 
in asset management and their absence has been a big impediment to enterprise 
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performance. It will jump out at you that complex laborious reporting and control tasks can 
be reduced to merely updating the source tables at the input side of the super table. 

Analytics Skills and Methods 
What will be your career health at this juncture of acquired skills? It will be excellent. 
However, reaching preeminence would be even more excellent. More enticing is that 
preeminence is within your grasp because now “you know data.” 

Some time ago, I met a person in a large corporation whose meal ticket was his ability 
to produce Excel pivot charts and tables. The tables were not even super tables, nor did he 
know how to build them. Furthermore, the graphic capability of Excel to the fellow’s claim 
to fame was based on single-perspective charting that was invented over 100 years ago, 
some as far back as the 1600’s. Dashboards are an attempt to get past the limitation by 
placing multiple single-perspective charts in a single display. This is in contrast with 
layered perspectives in a single chart. 

Thumb through Chapter 5, Layered Charting to Know Thy Data. You will see in 
action what is ggplot2 in the R software. The differences and ramifications will jump out 
at you. Imaging pulling such power to visualize data and measures into your role. In 
contrast, my buddy with his Excel pivots would be lost in your dust. 

However, there is a bit of bad news. To get to layered visualization, you must step 
into the R software. As you will know from Chapter 2, R is a powerful and open software 
available for you or your firm to download without cost, limitations or strings. 

The purpose of Chapter 4, The R Software in Action, is to get you up and running in 
R. Once again, the chapter is used to explain real life insights by demonstration. The 
chapter demonstrates the procedure to inspect a dataset statistically, reveal missing data, 
test variables for normal distribution and inspect the correlations between variables. 

The philosophy of the book is that frequently occurring code will emerge from the 
explanations. Additional commonly occurring coding will emerge in the code for layered 
charting with the previously mentioned ggplot2 as well as from all of the other chapters to 
explain analytics. And just as for the Access code of the previously introduced chapters, 
you are left with R templates to substitute in your own variables, and R skills and code you 
will need to know. 

You will arrive at another milestone upon working through Chapters 4 and 5. You 
will have accumulated the chops to begin moving into analytics. This is good because there 
is still an elephant in the room that requires analytics. It is to find and cleanse bad data. Of 
course, we should think of our best solutions for bad data are action taken to prevent a 
future of bad data in the operating system. 
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If there is bad data, what will be our strategy to rectify it? Chapter 6, Unearth and 
Rectify Bad Data, presents the types, decisions and schemes to rectify bad data. Several 
straightforward methods for some types of bad data were offered by Chapter 3. All others 
will require analytics to find and rectify them. 

When some cases to a variable are bad, the question is what should they be? The 
cleansing process will lean on methods to replace bad cases, if necessary. However, the 
analytic is a core type for much more than replacing bad data with good. It is regression 
analytics to determine how strongly, if at all, specific operational variables are related to 
an outcome variable. Stated in the context of cleansing, the “outcome” variable can be the 
one with bad cases and we use the regression to estimate what they should be. 

The chapters that explain two types of regressions are next in line to strengthen your 
career security. The analytics for relationships play in advancing operational effectiveness. 
For an outcome measure of performance, identifying the variables that matter most, or 
least, is powerful insight for assuring that your role is doing the right things right. 

There are three mainstream regressions: linear, logistic and Poisson. The book will 
demonstrate linear and logistic. Chapter 7, Relate Operational Variables to Outcome, 
explains linear regression. Chapter 14, Recover Lost Classifications, explains logistic 
regression. 

Regressions are a big step forward in your skills because they provide one of the most 
fundamental insights in operational capability. However, regression is not as simple as it 
would seem. We do not push all seemingly relevant variables into the model, run it and 
read the answer. Instead, there are considerable steps to choose and evaluate variables, and 
confirm fit: defined as how well the model accurately predicts the data. 

Chapter 7 explains the process step by step. The same process generally applies to all 
regressions. I have never seen it mentioned in traditional texts that we can use the validation 
processes of regression to find outliers to the regression rather than only outliers to its 
variables. These are cases that the model would have never predicted and cases that have 
too much influence on the parameters of the model. Both are important insight to an 
operation because outliers may be telling us were to question and improve our operational 
processes and controls. 

The difference between linear and logistic regression is their outcome variable. 
Linear predicts continuous numeric variables, whereas, logistic predicts classifications. 
Chapter 7 explains in detail the structure of the models and the distinction between them 
that rests upon the mathematics of prediction. 

Chapter 14, Recover Lost Classifications, explains logistic regression while 
demonstrating a purpose for it beyond exploring relationships and outliers to outcomes. It 
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can be used to determine what an incorrect classification to a variable should have been. 
The strength of relationship of predictive variables to good classifications is used to cleanse 
the bad cases. 

However, the purpose of the chapter is dual rather than merely to explain logistic 
regression. As the title suggests, the overarching purpose of the methods demonstrated is 
to recover lost classifications. 

Accordingly, the chapter will also introduce and demonstrate the method known as 
naïve Bayes probability. We use naïve Bayes to determine from unstructured free-text 
variables, such as descriptions and notes, what a classification should be upon the probable 
occurrence of words in the text. 

The next logical extension of your skills is to be able to prove there is a difference, 
or will be, as the consequence of change, improvement and enforcement of operational 
procedures and resources. Chapter 13, Prove There is a Difference, explains the body of 
analytics to make the determination vis-a-vis the operational situation. The analytics are a 
set of eight models from the types of two-means t test, ANOVA and multilevel. 

Chapter 10, Through the Lens of Time Series, introduces another method to spot 
change through data and analytics skills. We look for patterns in variables presented in 
time series. However, our interest is not limited to change because overall we want to know 
what has happened over time. 

Time series analytics are not to be confused with a line chart in Excel in which 
essential insights are lost in the simplicity. The chapter will explain by demonstration how 
to separate recurring cycles from the core pattern. It will explain how to measure the degree 
that one period reflects one or more previous periods. It will explain how the same principle 
is used to identify variables with a lead and lag relationship. 

Just as importantly, we need to assure that a core pattern to a series is deterministic 
rather than a random walk. This is because a random walk can look deterministic. If not 
deterministic, we need to know to not devise actions or attempt forecasts as if it were. 

Finally, in snaking through the chapters, we arrive at a final fundamental 
characteristic of any operation. It is the time it takes for each discrete core operational task 
to pass through the stages of the operation. Chapter 12, Elapsed Time Through Stages, 
explains by demonstration how to determine the statistics of retention in a stage and the 
chance of exit having remained in the stage for some duration. Just as important, the 
analytic enables us to determine which variables in the operation are most strongly related 
to retention and exit, thus, are the levers to reshape both characteristics of the stages that 
matter most. 
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Where to Go Next 
The book has bound its scope to the de facto favorite mainstream analytics and, for them, 
what you need to know to build and interpret them. References are provided if you want to 
take the watch apart rather than merely know how to tell time. What is most exciting is 
that, with each chapter, your ability to reach into, understand and engage additional 
methods outside the book’s scope will grow and solidify. 

I was once told that to qualify as an academic textbook there must be assignments 
with each chapter. We could say that replicating the demonstrations in each chapter is your 
assignment. My personal experience is that a powerful solidifying exercise is to emulate 
each demonstration and explore its code command by command. However, there is an 
assignment we could make for each chapter. 

First, you must ask yourself a question. For which roles of my operation do the 
chapter’s skills and methods apply, and how and why?” Second, you must act. The 
assignment is to return and install new methods in your role, thus, equip your organization 
with actionable insights it has never had before. Third, you must share the knowledge. The 
assignment is to pass each of your newly acquired skills to others by identifying roles for 
which the chapter’s methods could be impactful and helping the holders of the roles to 
increase their career security by bringing new value to the enterprise through their work in 
the role. 

Welcome to the new world that opens to you as a new age worker with all career 
security appertaining thereto. 

Data and Code to the Book 
From literature and the internet, there are massive resources to explain all principles and 
methods using the R software and, for that matter, just about any software. The standing 
rule in the R community is that every provided explanation from any source must be 
accompanied with an example, code and dataset. 

The book honors the rule by making the datasets and R code (scripts) to the chapters 
available to download from the webpage, https://analytics4strategy.com/data-and-code. 
You will need the datasets to emulate the demonstrations. The scripts are placed in the text 
for explanation by demonstration. However, since the code cannot be copied from the book 
and pasted into an R session, you have the option to copy and paste scripts into your R 
session. 
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Color and Format 
The book is a complex manuscript and, thus, presents challenges to formatting and cost. 
The body of the book is a progression through text explanations, supporting figures, output 
exhibits and the R and Access code that generated the exhibits. In formatting the pages, all 
demand a degree of sequential rigidity for being laced together in an explanation by 
demonstration that can be easily followed. 

One issue in formatting is that some output exhibits are visualizations that depend 
heavily on color to communicate the insight they are coded to give us. This is especially 
the case for visualizations that demonstrate the advance graphics of the ggplot2 package of 
the R software. 

Unfortunately, the cost to produce the book in color is prohibitive to pricing. To keep 
the price reasonable, the book is produced in grayscale. The readers, of course, can view 
each graphic in full color by running the provided R code. Alternatively, the reader can 
view any visualization in full color at webpage, https://analytics4strategy.com/book-look-
inside. 

Is it said in data and analytics, “the devil is in the details.” When something does not 
work, it is often a tiny error in typing. Given the number of code blocks and internet 
addresses, hyphenation has not been used in formatting the text. Accordingly, readers need 
not wonder if a hyphen in a line of code or an internet address are from formatting or is as 
it should be. However, this policy occasionally creates some ugly lines in the text that 
hyphenation would eliminate. I ask for your forbearance. 

In a few cases, the placement of output exhibits causes an over large empty white 
space at the bottom of a page. It is unavoidable given that some sequences must be honored 
with respect to the associated Access and R code upon which they are generated. Once 
again, I ask for your forbearance. 

 
So, now onward we go through the fog and the dark where skill and education win over 
ignorance and superstition every time. 

 
Richard G. Lamb, PE, CPA. 
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CHAPTER 1 
Operational Availability is the Purpose 

 
 
 

If we view a manufacturing enterprise as a system of money-making subsystems, it is easy 
to embrace the importance of asset management as the design, assurance and delivery of 
availability performance as its defining framework. This is because availability 
performance is one of the subsystems. The strategic significance is depicted in Figure 1-1 
as the interplay of four subsystems to realize return on investment and strategic results. 

 
Figure 1-1: Four subsystems determine financial 
and strategic success. 

First is the integration of the product line, and its fitness for use and producibility. 
Second is the integration of the supply chain and production operations. Third is the 
subsystem to make the firm’s production assets available to perform at levels established 
as necessary for business success. Fourth are the operations to sell and distribute the 
capacity to the firm’s market share. 

The four subsystems almost completely determine the firm’s competitive ability to 
realize income and productivity of assets by synergizing them in an overall competitive 
strategy. Furthermore, they must be synergized dynamically because short- and longer-
term change is the reality for all four subsystems.  

The parent firm’s business results will suffer mightily if any of the subsystems are 
not appropriately designed and managed. This has an implication for firm- and plant-level 
management. Of their roles, a major one is to identify business initiatives that will most 

Copyright 2021 Richard G. Lamb



2 | Chapter 1 

advance the firm’s ability to win returns greater than their industry’s average. Initiatives 
for availability performance will be among the most attractive candidates. 
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1.3. Top Factors of Operational Availability 
The chapter brings to the surface the overarching purpose of asset management. 

Aligned with the enterprise’s business strategy, its purpose is to plan, organize, 
conduct and control availability performance through the mean time between 
maintenance (MTBM) and mean time to maintain (MTTM). As a collaboration 
of reliability, maintenance and production operations, the firm’s asset management 
organization is responsible and accountable for the cross-enterprise top-level factors 
of operational availability. 
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Operational availability is the synthesis and optimization of the factors. This section 
will group the factors at the intersections of the mean time and life cycle dimensions of 
operational availability. We can imagine that for many factors, data and analytics allow us 
to maximize the enterprise’s operational outcome by optimizing the parts. . 

Reliability Maintainability 

Goal: Increase mean time between 
maintenance (MTBM). 

Goal: Reduce mean time to maintain 
(MTTM). 

Factors Driven by Design Decisions 

• Selection of equipment.
• Operating environment and context.
• Equipment rated capacity.
• Maintenance while function continues.
• Installed spare components within an

equipment item.
• Redundant equipment and subsystems.
• Simplicity of design and elimination

of weak points.

• Plant ingress and egress.
• Accessibility to work points.
• Features that make for ease of

maintenance.
• Work environment.

Factors Driven by Maintenance Decisions 

• Scheduled maintenance tasks decided
upon on survival-hazard analytics or
rational equivalent upon experience
and judgement.

• Skill-levels engaged in maintenance
tasks.

• Quality of conducted maintenance
tasks.

• How maintenance tasks are detailed,
developed and presented to the
maintenance technicians.

• Probability of human, parts and
materials, and facility resources being
available to maintenance tasks.

• Training program.
• Operational effectiveness of the

maintenance process and its
leadership.

• Durability of handling, support and
test equipment.

Factors Driven by Production Decisions 

• Use of equipment relative to its rated
capacity.

• Collaboration in the troubleshooting
process.
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• How spares are cycled in normal
process operation.

• Shutdown and startup procedures.
• Choices in production parts and raw

materials.

• Procedures to make equipment ready
for maintenance and return to capable.

Ideally, development of the top-level factors begins with incorporating availability 
engineering in the traditional design, build and startup stages of the capital project. 
Furthermore, its incorporation must be on par with the stature given the traditional 
disciplines to capital projects. 

Once the window of opportunity has closed, the top-level factors for maintenance 
and production are still pliable. Relative to the production factors, the maintenance factors 
offer the greatest potential of the two. Unfortunately, some business ramifications of asset 
management are permanently lost. 

1.4. Cost-Effectiveness in the Definition 
Let’s revisit the definition of availability performance. Availability is the probability that 
a plant, subsystem or item will be in a state to perform a required function at specified 
standards of performance under given conditions when called for; assuming cost-effective 
support with respect to working conditions, processes and resources. . 

Notice the expression “cost-effective support” in the definition. Recall that cost 
effectiveness in the definition of availability rolls up through the definition of 
maintainability as the probability of retention and the probability of the availability and 
cost of resources. 

Cost-effective support is not automatic to reaching and holding the enterprise’s 
quested operational availability. Without cost-effective support in the definition of 
maintainability, the default is to incur maintenance cost in excess of necessary. Of course, 
planned support can also fall short of necessary but tends to be self-limiting or self-
correcting because the consequences inevitably become unavoidably apparent. 

Cost-effectiveness is measured up through the high-level factors of operational 
availability. There are two categories of cost—operating expense and expensed capital 
spending. Operating expense is a cost that flows directly from incurrence to the income 
statement. Expensed capital spending is a cost that is allocated to income statements as an 
expense over the accounting life of capital assets. 

Now to define cost-effective with respect to operational availability. Cost-
effectiveness relates measures of plant, system or asset performance or merit to the total 
life cycle cost. 
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The book is of special interest for industries in which the capitalized value of 
production assets looms large in the balance sheet and the expenses of asset availability 
loom large for the income statement. For these industries, the profit margins may be so 
tight that cost-effective support can be the difference between strong or dismal financials 
and return on investment. 

With the system design as fixed by the decisions at the design stage, the decisions for 
the top-level factors of maintenance most decide cost effectiveness. There are two areas 
for evaluating the cost effectiveness of the decisions for the top-level factors of 
maintenance operations. They are proficiency in the conduct of the system’s designed 
workload and the magnitude of support resources engaged or consumed to conduct the 
workload. 

Proficiency of the maintenance operation is the outcome of engaged skill levels, the 
quality of maintenance, how maintenance work is detailed and presented, and the 
effectiveness and efficiency of the maintenance work processes. For these, cost 
effectiveness is quantitatively and qualitatively evaluated in ways that relate the price of 
enhanced proficiency to a unit change in the probability of operational availability. 

The second area of cost effectiveness are the decisions that result in the probability 
of human, parts and materials, and facility and equipment resources being available to the 
timely and efficient conduct of the maintenance workload. 

The competitive ramifications of probability of available craft resources loom largest 
among all resources. The first determinate of cost effectiveness is the probability of being 
able to execute a representative day’s workload. The second determinate is the match of 
actual and planned crafts count and hours to a statistical sample of work orders. In other 
words, an optimally sized craft body with respect to persistently, rather than sporadically, 
delivering the daily workload is a primary measure of cost effectiveness. 

Cost effectiveness for parts and materials is also an issue for support resources, but 
differently so. The issue is not so much the total value and per-item cost of the maintenance 
inventory as it is for production and finished goods inventory. This is because maintenance 
inventory is often a small percent of total assets. Significance to assets in the balance sheet 
of reducing the inventory is measured by the before and after calculations of revenues 
divided by total assets with respect to a change in maintenance inventory. Otherwise, the 
expense of maintenance parts and materials is largely fixed by plant design and assigned 
maintenance tasks. 

Instead of dollar value, inventory is best evaluated with respect to the statistical play 
in the probability of operational availability. Once set on probability, the magnitude of the 
administrative, logistic and holding expenses of maintenance inventory are evaluated for 
their ramifications to profit margin. 
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Cost effectiveness for facilities and equipment entail a mixture of expenses and 
expensed capital. The measure of cost effectiveness in both cases is largely a measure of 
too little or too much. However, expensed capital is locked in as depreciation expense. The 
direct expenses are largely for light, heat, etc. Whether there is room for sharpening the 
overall cost effectiveness of maintainability would be measured against effect on profit 
margin. 

1.5. Data-Driven as the Means 
Data-driven asset management is defined as using the firm’s operational data to augment 
the experience and judgement of its operatives, managers, analysts and engineers as they 
plan, organize, conduct and control the functions, processes and resources of operational 
availability. The difference between data-driven and traditional asset management is that 
“possible matches vision.” 

Only by being data-driven is it possible to drill into the top-level factors of 
operational availability, discover and subject what matters to data-enabled analyses and 
reengineer for better outcomes. Only by being data-driven is it possible to confirm that the 
reengineered outcomes are truly shifting achievable availability upward and toward its 
peak while reducing the gap between achievable and operational availability. Only by 
being data-driven is it possible to assure that all is taking place that must take place daily, 
weekly, monthly and annually to reach and sustain greater and cost-effective operational 
availability. This is equally so for any type of enterprise operation rather than unique to 
asset management operations. 

The book is timely because the information technology, software and knowledge 
making “possible match vision” have emerged since 2010. The operational systems we 
work with as role holders capture every piece of data that is inherent to the functions they 
support—creating the effect of the plant as model. Our organizations already make 
software (e.g., Excel and Access of MS Office) available to us as role holders with which 
to extract and join the data from our systems into the tables of data our systems cannot and 
never will be able to give us. Full-power analytic software, such as R, is available free 
without restriction. With it, we gain insights, and ask and answer questions of operational 
availability we could not before. Just as important, the how-to skills to work with data and 
analytics are readily available in literature and media. 

The remaining chapters will explain and explore the principles and practices of the 
top-level factors to availability performance as data driven. As already mentioned, the 
chapters are relevant and applicable to almost any type of enterprise operation. 
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Note:

The advance graphics created with the ggplot2 package of the R 
software depend heavily on color to communicate the insight they are 
coded to give us.  Some such graphics appear in the chapter.

Unfortunately, the cost to produce the book in color is prohibitive to 
pricing. To keep the price reasonable, the book is produced in 
grayscale. The readers, of course, can view each graphic in full color by 
running the provided R code. Alternatively, the reader can view any 
visualization in full color at webpage, https://analytics4strategy.com/
book-look-inside.

For convenience, the herein excerpts will present the color version.



Chapter 2 
Data, Analytics and Software to be Data Driven 

Data-driven asset management is defined as using the firm’s operational data to augment 
the experience and judgement of its operatives, managers, analysts and engineers as they 
plan, organize, conduct and control the functions, processes and resources of operational 
availability. The difference between data-driven and traditional asset management and all 
operations is that “possible finally matches vision.” 

Only by being data-driven is it possible to drill into the top-level factors of 
operational availability, discover and subject what matters most to data-enabled analyses 
and reengineer for better outcomes. Only by being data-driven is it possible to confirm that 
the reengineered outcomes are truly shifting achievable availability upward and moving it 
toward its peak while reducing the gap between achievable and operational availability. 
Only by being data-driven is it possible to assure that all is taking place that must take place 
daily, weekly, monthly and annually to reach and sustain greater and cost-effective 
operational availability. 

At this juncture it is necessary to establish an initial understanding of data, analytics 
and insight. Accordingly, the chapter will introduce what we are trying to do and the 
methods and software with which they are done. The remaining chapters will dive much 
deeper into what is introduced in this chapter. 

2.1. Big Picture 
Let’s draw a big picture of the what data-driven asset management looks like. To begin, 
the section depicts a data-driven operation. Next, it will introduce the critical-mass 
knowledge, skills and software to reach the depicted operation, virtually without cost and 
up from the grassroots. And finally, the section will establish the basic definitions of data 
and analytics and, thus, separate the meaningful few from the distracting many. 

2.1.1. What It Looks Like 
Data-driven asset management was defined in the opening paragraph to the chapter. 

Figure 2-1 depicts a data-driven operation or process. 
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Figure 2-1: What a data-driven operation or process looks like. 

What  we see is that the processes of a data-driven operation are improved in a 
particular way. The judgement and experience of the role holders along the process are 
augmented with insight deliverables. 

All activities to beget and manage operational availability flow along the processes 
of data-driven asset management. At some places along the processes, the best outcomes 
can only be realized when experience and judgement are augmented with insight 
deliverables. At each such place, the value of one or more insight deliverable is recognized, 
built and worked to realize the best of outcomes. 

This implies a criterion for any developed insight. Each insight is justified if it makes 
a difference for the firm’s financials and return on investment. 

Also depicted in the figure is that the insight deliverables are built upon the data 
captured in the firm’s operating systems. This is because the systems across an enterprise 
collectively capture every data point generated in the conduct of the collective operational 
processes. Furthermore, modern systems are designed to make it easy to retrieve their data 
as standard reports. 

Also depicted is that some data may be captured in Excel tables. These tables can be 
positioned for ready access. 

2.2.2. Critical Mass and Grass Root 
Say “data-driven” to management and they cringe. They envision a complex, high-

tech, deep-capital initiative and every horror that goes with it. However, this is a gross 
misperception. It has been propagated by purveyors and media as they speak of grand and 
glorious initiatives. 

The reality is opposite to the perception. Almost every imaginable insight deliverable 
to an operation can be built and managed at the grassroots.  This is because the “critical-
mass” to becoming data-driven is not high-tech or new-tech. It is the exercise of modern-
day knowledge, skills and software. The book is written to explain the critical-mass of data-
driven asset management rather than stories of the grand and glorious. 
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Critical-mass is defined as the threshold knowledge, skills and software that must be 
in place for an operation to be fully, effectively and efficiently data-driven. 

Critical mass has two qualifying characteristics. First, should they happen, the 
threshold knowledge and skills will travel to up-teched and up-scaled strategies. Second, 
up-teching from critical-mass will not practicably increase the power of the insight that is 
extracted from the operation’s data. 

What is critical mass for data-driven operations is such that the most subordinate 
processes can be reengineered as a grass root initiative. This is because critical-mass rests 
upon a triad of software which is already normal to our work and organizations or which 
we have free rights to them. Figure 2-2 shows the triad to almost any given insight 
deliverable. 

The data to all insight deliverables are readily accessible from the operating systems 
and Excel files that have captured them. When located, they are extracted from their 
sources and joined together in a super table with MS Access. 

 
Figure 2-2: The critical mass triad of software to data-driven operations. 

Then we will go down one of two paths for each insight deliverable. One is the path 
to Excel to build dashboards. Alternately, we may go down the path to subject the data to 
analytics using the free, open-system software known as “R.” By whichever path, there is 
an insight deliverable at the end of the trail. 

This is good place to make a point with respect to grass-root and critical mass. 
Remember the expression, “Systems talking to each other?” There has been a great deal of 
progress over the decades toward the vision. However, we are still far from the prerequisite 
degree of systems integration needed for unconstrained data-driven asset management. 
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However, in Figure 2-2 we can see that there is de facto systems integration. The 
constraints to data-drivenness no longer exist. 

This because systems “talk to each other” through their data bases. Reaching for data 
from any available source and building super tables constitutes pseudo systems integration 
for data-driven asset management. In line with the principle of grassroots, the integration 
is achieved with easily learned skills rather than big capital. 

Of course, there are commercial alternatives for each software of the triad. However, 
we must be sure that the difference is more than just “prettier.” An organization may opt 
for a commercial alternative for strategic reasons. However, short of some strategic 
rationale, everything a commercial offering can do can be done by the triad. 

The ramifications and distinction for critical-mass-supported insight deliverables are 
clear if we compare the software triad to the industrial internet-of-things (IIoT) for 
condition-based maintenance (CBM). Recall that CBM is depicted in Figure 1-4 as, inspect 
items at regular intervals to find potential failures. 

The grassroot triad of Figure 2-2 entails no infrastructure beyond what is natural to 
any organization. In contrast, IIoT-supported CBM, as shown in Figure 2-3, requires 
infrastructure in addition to a firm’s existing infrastructure. 

 
Figure 2-3: Insight deliverables built upon IIoT infrastructure. 

New sensors are placed on the process or asset to continually monitor asset and 
process characteristics. The data of the sensors flow through new gateway infrastructure. 
Thence, there is additional new infrastructure to deal with the massive streaming, disparate 
data from the sensors and transforming them to workable structured form. Finally, there 
are new proprietary analytic software to conduct the analytics of the envisioned insight. 
Data may also be extracted from the firm’s operating systems and pulled into the analytics. 

This is a good place to accentuate a point, In the domain of asset management, CBM 
is the only type of insight that may require a system akin to Figure 2-3. Therefore, it is 
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extremely important that we do not allow CBM to be mistaken by management as the 
essence, definition and overarching purpose of data-driven asset management. 

In turn, it is also important that we do not allow IIoT-supported CBM to be mistaken 
as on-condition maintenance. CBM is one of four alternatives for an on-condition 
maintenance task to a failure mode—CBM, product quality, primary effects and inspection. 
The choices are made on worth with respect to safety, environment, operational capability 
and collateral damage. 

Taken a step farther, IIoT-supported CBM is a choice to automate some or all aspects 
of a CBM solution. Consequently, the issue is the relative worth of IIoT-supported CBM 
in contrast with conducting CBM tasks with the many less grand and glorious offerings to 
achieve the same end. 

Moubray’s experience is that CBM is feasible for 20 percent of failure modes and 
worth doing for less than half of them. The four categories of on-condition maintenance 
are suitable for 25 to 35 percent of failures modes.1 

Because IIoT-supported CBM entails the extreme shown in Figure 2-3, it will rarely 
be a large-scale choice. It may be a worthwhile for a percent or so of cases. Consequently, 
it is important to not be distracted from the fact that almost 100 percent of insight 
deliverables to asset management can be done with the triad. For them, the worth is huge, 
and the cost is almost nothing other than the enterprise’s commitment to learn new skills 
with standing software. 

2.2.3. Essential Definitions 
There is tremendous hyperbole around data and analytics. Ironically, the hyperbole 

may be a cause for managements’ instinctive aversion to the discussion of data-driven 
operations. It has also caused tremendous confusion as an obstacle to become data-driven. 
To get beyond the aversion and confusion it is now necessary to narrow the hyperbole to 
the meaningful few definitions. With respect to them, the terminology of the hyperbole are 
expressions of the same thing but with different and flashy wording. 

The essential definitions can be narrowed to four. They are data and big data, machine 
learning, artificial intelligence and algorithms. Many terms have come and gone over the 
last several years, but the four will remain as the language of data-driven asset 
management. 

 
1 Moubray, John. Reliability-Centered Maintenance. Second edition. Industrial Press. 1997. Page 155 
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Data and Big Data. Data and big data are distinctively different with respect to necessity, 
technology and organizational abilities. It is an important distinction. This is because big 
data entails high-tech systems and infrastructure, specialized skills and capital. Data does 
not. 

We tend to think of “big data” in a colloquial sense from working with Excel. In the 
context of Excel, thousands or hundreds of thousands of rows are “BIG.” It is difficult to 
work with that much data in an Excel worksheet. Things are laborious once we get beyond 
a few hundred rows. 

However, lots of data does not make it big data. Big data is the case in which data are 
prohibitively massive or unstructured. A professor of data science proposed a simple litmus 
test of data versus big data. It is big data if the data or the analytics of the data cannot be 
worked on our notebook computers. 

Unstructured data include disparate types of data such as streaming sensor data, e-
mail, document, video, photo, audio and webpage. This is compared to the structured alpha 
and numeric data that is predominate to operating systems. The purpose of analytics of 
unstructured data is to transform them to be structured data with which other analytics can 
be conducted. 

The types of data analytics conducted in either arena are the same. The type does not 
decide whether it is data or big data. However, the important notable reality for data-driven 
asset management is that there are very few imaginable needs for big data. 

Let’s look at a situation that is not big data, but the definition of unstructured data 
may cause us to assume it is. Other than the massive, streaming data of CBM systems, the 
only unstructured data in most operating systems are the free-text variables of work order 
descriptions and notes. Text mining analytics may be used to classify the work orders by 
the failure mode that triggered them. Remembering the professor’s litmus test, although 
free text is unstructured, it is possible to conduct text mining on our notebook computers. 

The IIoT-supported CBM of Figure 2-3 is an example of big data. Streaming data is 
massive because the data points are almost infinite in number. Additionally, for some types 
of monitoring, the data is not structured data and must be transformed by analytics before 
it can be subjected to the ultimately planned analytics. 

Therefore, when the expression “big data” is casually tossed about, we must ask an 
inspectorial question. Is it hyperbole or big data? If it is truly big data, then we cannot take 
the grassroot strategy as it is otherwise possible with the triad of software. 

And once again, a very important point must be repeated. Almost never will the 
insight deliverables to asset management entail big data. This is a fundamental reason that 
data-driven asset management can be grown from the grassroots. 
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Machine learning, artificial intelligence and algorithms. We need to clarify the 
interrelated terminology of machine learning, artificial intelligence and algorithms. We 
will use the two-variable regression analysis shown Figure 2-4 as a frame of reference. 

 
Figure 2-4: A two-variable regression demonstrates 
machine learning, artificial intelligence and algorithms. 

We have all at some time touched regression modeling. However, the concept is the 
same regardless of the type of model and the number of predictor variables placed in the 
model. 

Machine learning (ML)  takes place when we feed the predictor and outcome 
variables to the regression. The gut algorithm conducts a trial-and-error calculation until 
“learning” the best fit and returns a formula of an intercept and slope coefficient. The 
predictive and outcome variables are the axes and the points are their cross-plots. The line 
fit to the plotted points is the learned outcome of the algorithm. 

Most often our interest ends with the returned coefficients for each variable (one in 
this case) and associated inferences for how strongly, if at all, the predictor variable is 
related to the outcome variable. Confidence interval to the coefficient will also get our 
attention. In contrast, artificial intelligence (AI)  feeds new cases to the fitted model to 
predict outcomes upon the “learned” formula. 

AI does not distinguish the model. All types of models entail machine learning, and 
most can be deployed as AI. 

When the model is to be deployed as AI, the learning process for some types entail 
an additional stage of analytics. A portion of the original dataset is held out from the 
machine learning stage to be a test set. The remaining portion is fed to the model for 
learning. The test set is subsequently fed to the learned model to evaluate how accurately 
the “trained” model estimates or classifies the actual outcome of each case in the test set. 
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If accuracy is acceptable to the intended use, the model is deployed to serve its 
purpose—augment human experience and judgement. Results better than 85 percent are 
typically considered acceptable. This is why we must always think of AI in terms of 
“augmenting” rather than “supplanting” experience and judgement. Hyperbole may lead 
us to unrealistically expect “supplant.” 

2.2. What and Why of Access and “R”  
We are all experienced users of Excel. In contrast, experience with Access is unusual and 
awareness of “R” is rare. Consequently, now is the time in the explanation of data-driven 
asset management to introduce the means to move data from its source to its use, Access 
and the analytic core, R. 

The section will be an overview of the Access software and R. The discussion of “R” 
will be extended to introduce what the book calls layered charting. Written for self-directed 
learners, the remaining chapters will dive deeper into both software in the context of 
explaining by demonstration data-driven asset management practices made possible by 
them. 

2.2.1. MS Access for Super Tables 
There can be no dashboards and analytics without a table inclusive of the variables 

they are to be built with. This book will call them super tables in contrast to the sub tables 
that are combined in the super table. 

Super tables can be built in “R” with the structured query language (SQL) capability 
and with additional coding in the rare occasions when it is necessary to go beyond the 
ability of SQL. The variables from their sources are imported into Excel Pivot and “R.” 

However, this requires substantial skills with SQL and “R” coding. That is why MS 
Access is one of the triad software. The skill requirements shrink to minor and largely 
entail skills that have become normal to most of us. Therefore, the more practical strategy 
is to learn how to build tables in Access and then import them to “R” with the “read” 
function. 

This section will introduce the concept and process of building super tables. The 
Chapter 3 will go deeply into the how-to of super tables. Subsequent chapters will 
strengthen the readers skills with super tables through the explanations by demonstration 
of data-driven asset management practices. 

Figure 2-5 is a pictorial summary of what is to be done. Any insight deliverable 
requires all needed variables in a single table. The table must be formatted with variables 
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as columns and cases as rows. There are no row titles or space and sum lines. All tables in 
the figure meet the standards. 

The figure shows the typical hurdle to building insight deliverables. The needed 
variables exist in three sub tables. They must be brought together in a single super table. 
Otherwise, asset management is divided and conquered by the firm’s operating systems. 

 
Figure 2-5: Three sub tables combined in a single super table. 

Another perspective is that the needed super table does not, cannot and never will 
exist in any operating system. Furthermore, for those who say, “I would do it in Excel,” 
there are four points to make. 

First, building the envisioned table in Excel is too laborious and limited to be 
practical. Second, it was said earlier that very quickly a block of data becomes “big” 
relative to working with data in Excel. Third, Excel is limited to 1.1 million rows of data. 
Finally, on a personal level, we need to stay modern if we want to stay relevant. 

There is a process for building super tables. It is shown in Figure 2-6.  
The first step is to locate where the variables of interest reside across the enterprise. 

Once found, the second step is to identify the standard reports by which to extract the data 
from their resident operating systems. The third step is to bring them into a query software 
such a MS Access. 

 
Figure 2-6: The process to build super tables. 
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Figure 2-7 shows the action to be taken. The tables of Figure 2-5 are standard reports 
that, once recognized, are imported into Access. The figure also show that two other non-
system tables have been pulled in the query. They were built to make it possible to 
categorize and clarify the data in ways that were not, and never will be, configured into the 
home systems. 

 
Figure 2-7: Tables imported to the query software and joined as a single 
table. 

Notice the lines between the tables that were pulled into the work area. The line 
symbolizes that the tables are joined in a massive raw table. Each pair of tables is joined 
by a unique identifying variable they have in common. 

The super table is built in step three. Variables are selected to be in the table as shown 
in Figure 2-8. By click and drag all desired variables from the joined tables are pulled into 
the evolving super table That is the purpose of the design grid at the top of the figure. 

A lot goes on in the design grid. However, we would find that almost all of what is 
done draws upon the skills most of us have accumulated throughout our working lives. 
When the run icon (not shown) is clicked, the super table shown in the bottom part of the 
figure is generated. 

Until confirmed, it is never assumed that the data pulled into the super table is 
accurate and complete. The next step is to explore the data for issues needing a treatment 
strategy. 

Most times there are simple solutions such as translation tables to be introduced in 
Chapter 4. In other cases, the table may be pulled into “R” for cleansing with machine 
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learning and artificial intelligence. For some insight analytics, there is a choice to omit bad 
data after evaluating the ramifications to the subject insight. 

 
Figure 2-8: Variables pulled into the super table molded for insight. 

The sixth step is to build aggregation variables in the super table. The idea is to create 
new variables in the table. They are totals, counts, averages, standard deviations, , min-
max and first-last for groups created upon a set of predictor variables. 

All sorts of insight variables are possible when the super table is extended with 
aggregations. An example is to generate the computed variables for workload-based 
budgeting and control on actual versus budget. Dual-dimensional budget and variance will 
be a subject of a later chapter. 

Steps two through six are done with standard query language (SQL).  The only 
exception is that some types of cleansing require data analytics. This suggests that one 
hurdle to data-driven asset management is to grow SQL skills across the organization. 

How the hurdle is jumped is the reason for MS Access in the triad of software. This 
is because SQL runs in the background as we work at the foreground with the skills, we all 
have as modern workers. Furthermore, besides already part of the Microsoft Office 
software, it is arguably the easiest of all query software to learn and work with. 

Another advantage is that Access stays close to how the sausage is made rather than 
be hidden from us inside a black box. Accordingly, what is done in the foreground 
somewhat mirrors the clauses of SQL. 

The final step recognizes that any one super table is likely to be built to serve multiple 
insight deliverables and ad hoc analyses. Therefore, the final step is to form one or more 

Copyright 2021 Richard G. Lamb



26 | Chapter 2 
 

 

processes to manage each super table through its build and refine, update and disseminate 
stages. The process may be owned by the primary beneficiary or by someone with the role 
of building and administering the table on behalf of all players across and beyond the asset 
management organization. 

This brings another point to the surface. The SQL code, automatically formed in the 
background as we work in foreground, is available as a view option. Consequently, the 
super table can be distributed as a txt file just as for an “R” script. The recipient can paste 
the text in the SQL view and run it. In turn, the recipient can modify the super table in the 
design view. 

There is a partnership between “R” and Access in the triad. At times we may want to 
formulate variables or reshape the table in ways that are beyond the ability of SQL. When 
more is needed, the super table can be built in Access, pulled into “R” and powered up. As 
previously mentioned, we may also want to subject the table to cleansing analytics that are 
beyond the ability of SQL. 

Some analytics are built with data that must be shaped specifically to a model’s 
algorithm. When the case, the bibliography literature explaining the model will, of course, 
introduce and explain the “R” functions to reshape the data. 

2.2.2. “R” for the Analytic Core 
Something fascinating has happened. Software have become available that are open 

systems and freely available to any individual to install on their computer and any 
organization can make part of its IT system. They are also being pulled into commercial 
software.  

These software are not being offered under some sales strategy such as a “trial 
period” and a “free” compared to a “professional version.” Nor are they weak compared to 
their strongest commercial competitors. 

The analytic software “R” is one of such offerings. A testimonial to its strength and 
unrestricted accessibility is that Tableau and Power BI have seamlessly incorporated “R” 
into their offerings rather than develop a comparable proprietary capability. 

“R” can be downloaded and installed from the website https://www.r-project.org/. 
There are YouTube videos explaining the simple download process which takes less than 
15 minutes. 

Other than full-powered, open and free, there are additional reasons that make “R” 
critical-mass to data-driven asset management. The pinnacle aspect is that through “R” the 
asset management organization gets its capability for descriptive statistics, layered 
charting, data cleansing, and machine learning and AI. 
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“R” is actually a collection of thousands of “packages” for working with almost every 
imaginable analytic. Every analytic is conducted with a “function” and its associated 
“arguments.” We identify the packages and functions we need to conduct an envisioned 
insight deliverable. Thence, we do not write code—we type or paste the function code in 
our R-session as a go-by and adjust it to purpose. 

Below is an example of a package, function and arguments. The lm function for linear 
repression is available from the “stat” package. The arguments are designated within the 
parenthesis of the function. The function and its arguments are. . . 

 
lm(formula, data, subset, weights, na.action, method = "qr", model 

= TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE, 
contrasts = NULL, offset, ...) 

 

Notice that a function is set up by the choices we make for its arguments. 
Explanations and examples of the options are readily available from the internet. However, 
we rarely touch most of the arguments because the defaults are typically the desired option. 
Accordingly, the shown code may reduce to lm(formula, data). 

The packages are created and maintained by individuals and organizations around the 
world in accordance with standards of creation and care. Each package is accompanied 
with a full explanation of its functions and arguments. Additionally, the explanation 
includes examples and data with which we can see them in action and experiment. 

An extremely important characteristic of “R” is that online support is highly evolved, 
vast and free. However, we are not limited to online sources. Literature explaining the 
principals and methods of statistic and analytics with “R” is plentiful. As they explain the 
principles of statistics, they demonstrate them with “R.” As they do, the texts additionally 
explain each line of code. Consequently, the texts serve concurrently as texts on analytics 
and the “R” software. 

The bibliography to the chapter includes the best available text for every type of 
analytic. “Best” is defined as a practical working depth explanation; able to be a go-by. 
This is compared to deep discussions of underlying theory and mathematics. 

This book parallels examples from the bibliography literature rather than examples 
from asset management operations. The generalized examples will have an obvious go-by 
fit to the aspects of asset management being discussed. Because generalized examples can 
be go-by’s, it is much more important that the readers have at their avail a full-depth 
explanation of the analytic rather than a domain-specific one. 
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The rationale of bibliography-paralleled examples is demonstrated by the seeming 
simplicity of the previous two-variable regression analysis. Setting up and interpreting the 
model is only a tip of the iceberg. Below the surface there are many matters of selecting 
variables and validating the model. Covering the full depth of every analytic would make 
the book a 2,500 or so page venture far beyond anyone’s willingness to write or read. 

Chapter 4 will present and explain how to work with “R.” The explanation of this 
chapter will be to give the reader the lay of the land. What is explained in the Chapter 4 
will be extended in subsequent chapters as R is put in play for data-driven asset 
management practices. 

Figure 2-9 show the primary three windows of “R.” Like all software they can be 
moved and sized. 

At the left side is the console window. In it, we can place all commands and get a 
continuation or output upon pressing “enter” at the end of each line of code. 

The center section is the script window.  We are not required to use it rather than the 
console. We do because the window allows us to work with code in a more friendly, 
flexible manner. Another reason is that what is coded can be saved as a script file. 

The difference between the script and console windows is that commands are typed 
in the console for each occasion, whereas they can be edited and run repeatedly from the 
script window. Otherwise, the difference is that the output of running the script appears in 
the console and graphic windows but never in the script window. 

If the script or console code contain commands for graphic outputs, they will appear 
in the graphic window. Obviously, it is the right-most window of the figure. 

 
Figure 2-9: Console, script and graphic windows of R. 
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The code of the script window can be commanded to run in its entirety or by 
highlighted lines. Just as valuable, the script allows a solution developed by one person to 
be distributed to others as a script file. Let’s note here that if the script file name is extended 
with .txt, it becomes a text file, able to be read and edited as a Notepad file. 

Although using code may appear to be geek-like scary, coded software has a big 
advantage over the graphical user interface (GUI) software we have grown accustomed to. 
Dispersing a GUI-based solution requires a lengthy instruction document and all the 
difficulties that entails. Scripts can be dispersed as a file of code with explanations placed 
in the code. Just as important, the recipient does not need to follow a documented 
instruction as one does for GUI. Instead, the user only needs to load and run the script. 

The first line of shown script code is a function that imports the data to the planned 
analytics. Beneath that, other functions explore and inspect the data in text and graphic 
form. At the bottom are the functions to the analytics we seek. The script’s content will be 
fully presented and explained Chapter 4. 

2.2.3. Layered Charting 
Now is a good time to introduce an important breakthrough to insight: layered 

charting.  Layered charting is a big leap in the ability to extract visual information from 
data. The “R” package to create layered charts is ggplot2. 

Most data are still visualized with types of charts invented as far back as the 1600s 
and no more recently than the 1800s. Now layered charting allows the visualization of data 
as information in almost endless ways. 

The book defines layered charting as presenting information in layers. The difference 
can be seen in Figure 2-10. Traditional and layered charting are shown side-by-side. 

The matrix of the figure summarizes the differences. For one, traditional charting is 
limited to the named types such as cross plot, bar and column, pie, line, spider, etc. The 
layered charts have no type or name because they are named by the insight they give. 

Traditional charts. are limited to the two variables of the axes. In contrast, the number 
of variables that can be pulled into a layered chart is only limited by practicality. 

Traditional legends are limited to the categories of the charted variables. Layered 
charting can use legends as variables. 

Another important differentiation is the capacity for a large number of data points. 
Visual granularity is lost when there are too many data points. Layered charting offers 
many ways to regain granularity. Some are shown in the figure. 
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Figure 2-10: Contrasts between traditional and layered charting. 

Figure 2-11 is an example of layered charting built upon the variables by which cars 
are evaluated and compared. It demonstrates possibilities for presenting the KPIs of asset 
management. 

 
Figure 2-11: Layered charting to present measures of performance. 

In the figure, we see the interplay of five variables: highway mileage, displacement, 
cylinders, drive and years. All are related to the axes of displacement and mileage. 
Accordingly, we see a cross plot relationship of the two variables with a linear fit and 
confidence intervals to the fit. Traditional charting would show a negative relationship—
mileage falls as displacement increases. 
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However, the shape of the points would suggest that there is more to the picture. A 
traditional two-variable cross plot and linear fit may be misinformation. 

The cylinders and drive are layered into the chart using legends as the method. A new 
picture emerges. The relationships vary with the added variables. In some clusters the 
relationship is positive rather than negative. When year is layered into the chart, it is 
revealed that the relationships have changed with time. One relationship has even changed 
direction. 

2.3. Insight Deliverables 
At the beginning of the chapter insight deliverables were depicted as woven into the 
processes of asset management. The principle is that the outcomes of the processes would 
be better than if without the insight. 

There are four types of insight deliverables. As named by this book, they are system 
reported, recountive, know-thy-data and modeled. 

Each will be introduced in this section. Subsequent chapters will further expand upon 
them in the context of explaining how to bring specific sub processes of asset management 
to be data driven. 

An observation. It is easy to envision data driven as exotic and grand. However, the 
majority of insight deliverables are recountive and know-thy-data. This is an extremely 
important point because the skills to build and work them are of the type that are easily and 
quickly absorbed and dispersed. Consequently, once we know what we want to achieve in 
the effectiveness and efficiency of a process, the recountive and know-thy-data 
deliverables are the easiest of the challenges for getting there. 

2.3.1. System Reported and Recountive Insight 
System reports  are the insights that our systems have been configured to give us. The 

number of asset management organizations for which system reports are the extent of 
insight is shrinking. 

The number of organizations that function with system reports and recountive insight 
is growing. This is evidenced by the growing use of Excel Pivot in contrast to spreadsheets 
in which the data and report are fused. Chapter 8 will introduce the problem and solution 
to fused data. 

In contrast to modeled insight, recountive insight is built directly upon the data of 
operational systems rather than processed through analytics. Consequently, recountive 
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insight limits the organization to asking and answering questions of who, what, when, 
where, how much and indicators. In other word they recount history. 

As shown in Figure 2-12, recountive insight is packaged and delivered with Excel 
Pivot or somewhat prettier commercial alternatives. If the data to the Pivot are super tables, 
the insights are beyond what can be revealed from individual system reports. This is 
because we are able to slice-dice-drill for insights that not visible in system reports, until 
their data are joined in a super table. 

We can power-up recountive insight by including layered charting. Excel Pivot and 
commercial dashboards are largely limited to traditional charting. The combination of 
conventional and new-age visualization is a good example of the critical-mass analytic 
software, “R,” making it possible to build data-driven processes up from the grass roots. 

 
Figure 2-12: Recountive insight deliverables with Pivot of the triad. 

2.3.2. Know-Thy-Data Insight 
One-time and periodic inspections of process data often beget deep insight. One 

reason is that the persistent compliance to operational processes is readily confirmed 
through its data. Another reason is that an initial and unfolding inspection of data often 
reveals hidden realities, findings contrary to common belief and lurking misinformation. 

Know-thy-data insight is the case of a table of data explored from descriptive, graphic 
and statistical perspectives. Figure 2-13 shows some of the possibilities generated with 
“R.” Query-type probing with Access and Pivot are also powerful methods to seeking 
know-thy-data insight. 
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The upper right is an example of data variables summarized descriptively when the 
super table is fed to the summary function of “R.” For each variable we can inspect the min-
max, median, mean, quartile, categories, counts and number of missing records. 

The lower left is an example of the data presented in graphic form. As previously 
mentioned, the possibilities for graphic exploration are intriguing because “R” brings non-
traditional graphics to the data. 

The upper left is a combination of numeric and graphic insight. In it there are eight 
insights to each variable and the correlations between them. 

 
Figure 2-13: Examples of know-thy-data generated with “R.” 

2.3.3. Modeled Insight 
The final category of insight deliverables, as named by this book, is modeled insight. 

Insight is gained as the data flows through analytic models for machine learning and AI. 
Consequently, and in contrast to recountive insight, we can ask and answer six 

additional types of insights—relationship, difference, time series, duration, classification 
and apparency. 
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Relationship Insight. Which asset and process variables are most strongly related to a 
performance of interest? Many of us have asked and answered such questions with linear 
regression. 

Figure 2-14 shows that there are three types of regression models. They are linear, 
logistic and Poisson. 

A model can entail multiple predictor variables. However, note that single predictor 
models are shown in the figure so that we can see the underlying fitted shapes of the three 
outcomes. The shapes hold with two or more predictor variables but are not graphically 
depictable. 

 
Figure 2-14: Three types of regressions for relationship questions. 

The three types could be subjected to the same sets of predictor variables. The 
difference is the report-out we seek from the outcome variable. 

Linear regressiondeals with numeric outcomes such as cost, hours, productivity and 
numeric indicators. The fit is linear, and its outcome can range from positive to negative 
infinity. 

What if the score is not linear and dually-infinite? What if the fit falls between 0 and 
1? In operational processes, many behaviors are binomial—e.g., working or not working. 
Many others are multinomial—e.g., option 1 or option 2 or option 3. 

Logistic regression reports out as the probability of binomial or multinomial 
outcomes—strength of conviction. For example, in a wrench study, the model can predict 
the likelihood of a “found-working” outcome. Another is to predict the likelihood an entry 
is out of compliance with what should have been recorded. 
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There may be missing or suspicious numerical or classification entries in the super 
table. Linear regression, as AI, can be used to impute missing entries. As AI, logistic 
regression can flag suspicious classifications and cleanse bad classifications. 

The Poisson regression models occurrences. They report out as counts or rates. For 
reliability or process compliance they are respectively probabilities for the number of 
occurring failures or noncompliances. Rate ties failures and noncompliances to time 
interval, area and other groupings. 

Often there is money in finding outliers. They can make the insights based on them 
to be misinformation, thus, a payoff upon spotting them. Or they may point us to some 
phenomenon that, although hidden, reveals intriguing ramifications. The regressions allow 
us to apply sophisticated methods to find outliers. 

Difference Insight. How do slice-dice combinations of asset and process variables 
comparatively effect a performance of interest? 

A whole window of inquiry opens once we discover a fundamental truth. Because 
two or more numeric outcomes are different does not mean they are different. For example, 
just because a KPI changes after an improvement program has been implemented does not 
mean a practicable difference has occurred. 

We will use Figure 2-15 to explain the overarching concept of analysis of variance 
(ANOVA) to engage in this extremely meaningful type of questioning. 

 
Figure 2-15: The concept of analysis of variance 
(ANOVA) 

Shown at the left, the outcome variable in the model has its statistical mean and 
confidence interval to the mean. In statistics this is called the base or null model. 
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What if we grouped the data upon one or more predictor variables? Shown in the 
figure is a model with four outcome groups to a predictor variable. They occurred out of 
the choice of predictor variables. Each group has its own mean and confidence interval to 
the mean. 

The big question is which pairs are truly different even though their means differ? 
Do the confidence intervals to the means of the pairs overlap? If so, they are only different 
due to sampling error. 

It would seem that we could answer the question by simply making pairwise 
determinations. The problem is that what is called “family error” is attached to each 
pairing. This makes it more likely we would conclude there are differences when there are 
not. 

An example of family error makes the point against simple pairwise analysis. Imagine 
that the confidence interval established for the analysis is 95 percent. However, the true 
confidence for each pairing is an unacceptable 74 percent (0.95^6). 

What’s called the two-mean t-test is used if, for example, Figure 2-15 were only a 
breakout of two groups. Comparisons between three or more groups must be evaluated 
with ANOVA-type and multilevel modeling rather than pairwise comparisons. 

The determinations are made with post-hoc adjustments and contrasts of variance. 
With post-hoc adjustments the confidence intervals are made statistically wider 
(conservative), thus, making it less likely to wrongly accept a pairings as different. 
Alternately, contrasts of variance evaluate groups by the comparative portion they explain 
of the total variance of the base (left most) model of Figure 2-15. 

Finally, we should note that there are circumstantial variations to ANOVA. They are 
one-way and multi-way ANOVA, ANCOVA, repeated measures and mixed multilevel, 
and MANOVA. All but MANOVA will be expanded upon in later chapters. 

Time Series Insights. What are the components that underlie the summary-level-
only history that operating systems are limited to providing? Figure 2-16 shows the primary 
components of a time series from which the question seeks to gain insight. 

First it is necessary to extract “cycles” from the summary plot in the top panel. Upon 
doing so, we can inspect the pattern of cycles. Are they staying steady with time or are they 
changing? Seen in the bottom panel, the cycle is swinging wider with time beginning with 
the step up in the trend. 

Cycle can be of great interest in a time series. Let’s take the occurrence of 
notifications for needed corrective maintenance. Intuitively, we would expect the 
notifications to occur randomly. Are we instead observing yearly, monthly and weekly 
cycles? More importantly, is there a message for asset management in the cycles. 
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Figure 2-16: Cycle removed from the summary level 
to reveal the trend of the series. 

This leaves the “trend.” We are interested in its shape and its message for asset 
management. However, it is necessary to confirm that it is what we think it is. Is it 
deterministic, random walk or random? 

Random is easy to spot. However, a random walk may appear as deterministic. Rather 
than deterministic, a trend’s shape may reflect what is called autocorrelation by which a 
period is influenced by one or more previous periods. 

As an example, let’s take a study of actual versus planned craft productivity per 
scheduled work order. After an initiative to improve job plans and field supervision, is the 
observed trend in productivity a deterministic one? Alternately, is the trend only reflecting 
autocorrelation rather than a deterministic input-output relationship? 

It is also necessary to question if there is autocorrelation. in the variance to the series. 
Undiscovered, we may otherwise be acting on misinformation. This is because 
autocorrelation will report out a different than true confidence interval for the series. 

The principle of autocorrelation has an additional and exciting ramification. The 
same mathematics can be applied between variables: cross-correlation: to find lead-lag 
relationships. The trend series of one variable demonstrates a pattern that appears later in 
another. For example, can we see a pattern in corrective maintenance workload that follows 
a pattern in plant capacity utilization? 

A final point. Prediction is often mistaken as forecasting. However, there is a 
definitional difference. The distinction is analysis within and beyond the data. 
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Prediction is what has been explained to this point—within the data. Forecasting uses 
the findings of prediction to project beyond the data and into the future. The future is being 
forecast upon what prediction has revealed of the past. 

A forecast is built by projecting the trend into the future. The cycle series is also 
projected into the future and attached to the projected trend. An appropriate confidence 
interval is placed on the forecast after adjustment for autocorrelation. Of course, we must 
first question if we can safely assume that the influences of the past will hold into the future. 

Finally, we should note here that there are a range of models with which to work with 
time series. They are Holt-Winter, series regression, ARMA and ARIMA. 

Duration Insight. What is the probability an asset or process condition will hold for 
some time and then what is the probability the condition will end? To answer the questions, 
Figure 2-16 shows the three plots to survival and hazard analysis: survival, hazard and 
cumulative hazard. 

As point of reference, the hazard function is the life curves of figure 1-3. Therefore, 
a good example is “on-condition” maintenance. Having survived to the time of inspection, 
the inevitability of a functional failure event may be revealed. Once revealed, cumulative 
hazard will give us a sense of the risk of a functional failure during the time allowed for 
the orderly corrective maintenance process—mean time to maintain. 

 
Figure 2-17: The three perspectives of duration analysis. 

If the cumulative hazard is too great, we will find ways to shorten the interval of the 
corrective maintenance process. Duration questioning will play heavily in reengineering 
the interval. Each stage along the critical path of administrative, logistic and maintenance 
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activities will likely be subjected to duration questioning. The insight will be the shape of 
the curves—what are they, what can they be and what will we reengineer them to be. 

Let’s make a side point. The data to reengineer the sub intervals of the maintainability 
interval are complete and accurate. This is because most computerized maintenance 
management systems automatically collect status history as a work order passes through 
its stages from notification to completion. 

There is another point to make. The mathematics of hazards make it possible to 
determine which contextual variables influence the patterns of Figure 2-16. This is exciting 
because we may find that it is possible to reshape the hazard curve and, in turn, the survival 
and cumulative hazard curves. 

We should note here that there are a range of models with which to work with 
duration questions. They are Cox regression, Cox proportional hazard, Cox mixed-effects, 
cumulative incidence, proportional hazard regression, Weibull and Crow-AMSAA. 

Classification Insight. Inherent to the data of any operation are the many 
classifications captured in its process management systems. They are the categorical 
variables in operational systems. If we comply with our operational procedures, the 
consequent quality of all classifications is almost unavoidably perfect. In turn, we set off a 
virtuous cycle of data-driven analysis, making and execution of strategic, tactical and real-
time decisions. 

The cold reality is that compliance is problematic for classifications that are not 
automatic within a system. Especially for those that entail some degree of still less than 
fully informed conclusions. The classifications that are most quick to mind are failure 
modes and codes. Any degree of sloppy misclassification is doubly problematic because 
so much of reliability engineering depends upon analytics to which the classifications are 
the essential feedstock data. 

What has been lost by incorrect or omitted classification can now be found. There 
are data analytic methods to recover the classifications. This book will present the de facto 
two favorite and most practical methods. They are logistic regression and naïve Bayes. 

They are distinctive by virtue of the types of data they enable us to work with to 
classify cases. Previously introduced logistic regression allows us to predict classifications 
on structured data. The outcome is returned as conviction of the outcome. Naïve Bayes 
classifies on the probabilities of occurrences of events in the data. Accordingly, it allows 
us to predict classifications upon the free-text variables in our dataset, regarding each word 
as an occurrence in the computation of probability of being one of two or more categories 
to a classification. 
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Both allow us to recover the classifications that are bad data. In fact, for various 
reasons, most of the classifications in operating systems are good data. Most notable is that 
they offer two opportunities for predictive insight. 

We may want to understand the strength of relationship of operational variables to a 
categorical outcome. That was introduced as an insight for relationship. However, we may 
want to further understand, case by case, the probability and confidence limits to an 
outcome classification for the different permutations of predictor variables. Logistic 
regression allows us to get the insight from our data. 

Apparency Insight. Are there hidden predictor variables to the performance of assets 
and processes? Figures 2-18 and 2-19 show two of the most popular models to seek out 
hidden variables—decision tree and K-Means. A distinction between them is to be directed 
and undirected. A decision tree model is given both predictor and outcome variables. In 
contrast, a K-Means model is given predictor variables but no outcome variable. 

Figure 2-18 is a decision tree model. We seek predictive rules as variables leading to 
numeric and categorical outcomes. 

 
Figure 2-18: Decision tree with numeric outcomes. 

At the tree branches, the model determines which one of all provided variables and 
their splits are most significant to the branching decision. Consequently, the variables are 
being sliced-diced into variables hidden within them. 

A K-Means model also seeks predictor variables by slice-dice. However, there is not 
an outcome variable against which to decide the slice-dice. Instead, the model reveals 
clusters of similarity. When the clusters emerge, it falls to the experts in the asset 
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management operation to determine and name what they indicate. Some readers will 
recognize the similarity in concept to principal component analysis (PCA). 

Figure 2-19 shows the case of six hidden variables teased out of two predictor 
variables. The decision to call for six clusters is determined by an “R” function that 
evaluates the data to determine the number of significant clusters to seek. However, there 
is no limit on the number of variables to model other than the interpretative challenge 
explodes. 

The revealed tree and cluster variables can be joined back into the super table. The 
consequence is to tease insightful variables out of the source data that the firm’s operating 
systems cannot. The purpose is to increase the insight power of the models. The variables 
may also be created to overcome technical problems to a model such as collinearity, too 
many variables, etc. 

 
Figure 2-19: Six hidden variables teased out two input variables. 

There are other models. They variously fall into categories of rule and cluster, and 
directed and undirected. If interested in them, the reader is directed to the book, Machine 
Learning with R, by Lantz text for explanation and demonstration. 
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3.3. Case 1: Foundation Super Table 
We begin by building the foundation super table. Along the way, the section will explain 
the process, and the principles and practices of building tables. 

3.3.1. Identify, Extract and Import or Link 
As the first step, we have found that all pertinent data to our envisioned super table 

reside in three tables to the CMMS. They are work orders, tasks to the orders and craft 
hours to the tasks. 

Operating systems typically give us a choice to download to Excel, Access and other 
destinations. The demonstration will take the trail through Excel. 

The next step is to download the identified source system tables to an Excel file. I 
recommend placing them in a single file. As a staging area, we may want to conduct basic 
preparations of the data. We may want to change headers. We may want to conduct some 
know-thy-data activities. Of course, we can conduct the same work in Access, but some 
tasks may be easier in Excel. 

The third step of the process is to pull the extracted tables into Access. Once again, a 
simple step. We merely follow pop-up windows. Start the process by clicking the New 
Data Source icon on the Access Ribbon under the External Data heading of the menu. 

We will be given four choices—from file, data base, other services and online 
services. Given that we have chosen to download our tables to Excel from the CMMS, we 
would now select the from file option and select Excel. If we had downloaded the system 
tables to another Access file, we would have selected the from Database option and selected 
Access. 

Figure 3-1 shows another important distinction for managing data-driven processes 
and insights. Notice the list of tables. There are two additional tables to the three we 
previously identified and extracted from the CMMS. They will be explained later in the 
chapter. 

At this point, an important point to notice is the symbol to the left of the bottom-two 
tables. This means that the tables have not been imported. Instead, they are linked to the 
source—in this case the Excel file at which they are managed. Each time the query is run, 
it will reach outside for the latest version of the data. The option to import or link is made 
available as we follow the process beginning with selecting a source. 

The difference is noteworthy because the seventh step is to administer sub tables and 
super tables. The users may link rather than import some or all tables so to be assured that 
they have the latest edition of a done-by-one, used-by-all source. If we import data and it 
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is later updated or kept clean elsewhere, our insights may be misinformation unless they 
are linked the done-by-one edition. 

The purpose of the two linked tables and how they are developed is explained in the 
next section. As external to the CMMS, they are what the book calls translation tables. 

Figure 3-1: Three downloaded tables and two clarifying 
tables. 

Now that the tables are loaded, we select the Create option in the menu and then the 
Query Design icon in the Queries section of the ribbon. As shown in Figure 3-2, the Select 
query will open automatically with the Show Table pop-up window. 

Figure 3-2: Tables imported and linked to Access for building 
super tables. 
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Notice that there are six types of queries. Most work is with select queries. The others 
have purposes supplemental to the select query. The query types will be explained as the 
chapter unfolds. 

The pop-up shows the five tables. We can highlight the tables we want in the super 
table and click Add (not shown in the figure). Alternately, we can drag the tables listed in 
the left-most view of available objects into the work area. 

Another point, we are not restricted to table objects. We can also pull queries into a 
query. 

3.3.2. Translation Tables 
Two of the five tables in the object view are what the book calls translation tables. 

They can be used to clarify variables in the final super table and, thus, insights delivered 
from it. They can be used to cleanse data. They can be used to create uniformity between 
organizational entities. I have used them to join the data of two CMMS generations, when 
the supplanting system would have otherwise left the organization without contiguous 
historical data. 

It is an easy, down-dirty method. To explain the concept, Figure 3-3 shows the table, 
tblMntcCode, to translate arcane order type code to plain English. 

Figure 3-3: Translation table for order type. 

Translation tables can be built and updated inside Access or elsewhere such as Excel. 
The explanation will assume the Excel strategy. To build, update and upgrade them in 
Access, the readers are referred to Chapter 3 of Alexander and Kusleika. Once built, they 
can be maintained and made available to any super table. 

The Excel process begins by building a list of all existing categories in Excel. The 
list is usually taken from the operating system or systems. 
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In the figure we have extracted the variable of order type code from the CMMS. 
Thence, we have created the two variables MntcType and MntcDescription as alternatives 
to the OrderType code. From Access, we can either import or link to the translation table. 

It follows that we can return at any time to the translation table and add clarifying 
variables. An example would be a variable based upon the distinctions of the task types for 
reliability-centered maintenance. 

The other translation table in the object pane allows the super table to classify craft 
types by useful categories. With the translation table, tblCraftInfo, the hours by individual 
crafts are translated to different designations rather forcing us to work with the many 
fragmented but equivalent titles in the CMMS. By the table, 42 craft titles have been 
translated to 8 categories. 

Over time, expect that an entity will develop and maintain a collection of translation 
tables. They will be called into existing and developing super tables. 

Accordingly, think in terms of storing the translation tables as a collection in a single 
Access file, place them for access by anyone and manage them as a role in the data-driven 
asset management operation. 

When we run a query linked to the translation tables, the latest version is pulled into 
the run. Consequently, users whose role entails tasks to update insight deliverables can 
know that the source data is up to date by virtue of being linked to the administered source. 

3.3.3. Overview of the Query Process 
The ribbon under the tab, Design, reveals that there are six types of queries. However, 

most of everything is done in a select query. The others are supplemental tools to build, 
update and administer the select query. How they play will be explained opportunistically 
as this and later chapters unfold. 

The definitions of the six types of queries (shown in Figure 3-4) are as follows: 
• Select: Builds the super table from one or more subtables. Aggregation is

constructed in the select query.
• Make Table: Converts a select query to a “hard” table.
• Append: Adds rows of data to an existing table.
• Update: Changes rows to variables in a table or query.
• Delete: Removes rows to variables in a table or query.
• Crosstab: Makes long tables wide—e.g., a variable of months transformed

to a table with variables for each month.
Our first intent is to open a new select query. Click Create in the menu bar and then 

Query Design in the Queries section of the ribbon. Access will open a new select query. 
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Right click the query’s name tab, select save and give the query its name 
(qryCase1_Foundation). 

Next, we drag the tables we want into the query and join them. Thence, we drag the 
variables we want into the design grid. In the grid, we mold the variables to our super table. 

Figure 3-4 shows the layout of the design view. We can see how the pieces come 
together. To get a deeper look, the sections of the layout will be enlarged and explained in 
the paragraphs to come. 

Figure 3-4: Design view to the super table. 

Figure 3-5 shows what geeks call objects—tables, queries, etc. On inspection of the 
objects view, we can see the original five source tables. However, other objects emerged 
as the queries of the chapter were developed. Section 3.8 will explain the objects view and 
how objects are organized as shown in the figure. 

This is an opportunity to recommend a good practice. Notice the “tbl” prefix to table 
objects and “qry’ prefix to the query object. In a list of objects, the prefixes allow us to 
readily distinguish one type of object from another. The value of the practice looms large 
when there are many objects in an Access file. 
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Figure 3-5: List of objects associated with 
the super table. 

Now let’s look at how the sub tables are joined in the super table. Figure 3-6 shows 
that all five tables have been pulled into the query. However, let’s note again that queries 
can also be pulled into a query. We are not limited to tables. This will be seen to happen 
for cases 2 and 3, and the comparison analysis. 

Figure 3-6: All five tables to the super table and their joins. 

Recall that tables are joined by an identifier variable they have in common. Upon 
inspection we can see the tblWrkOrder and tblWrkTask tables are joined on order number, 
and the tblWrkTask and tblCraftHour tables are joined on confirmation number. 
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The previously explained two translation tables are also engaged. The tblWrkOrder 
and tblMntcCode tables are joined on the order type variable. The tblCraftHour and 
tblCraftInfo tables are joined on their respective employee identifier variables. 

The last join demonstrates an important point. The joining variables need not be of 
the same name. They must only be of the same type—numeric or character. 

Joins between tables have types. They are classified as inner, left, right and outer. 
The types and ramifications of each will be explained in the next section. 

Figure 3-4 showed the design grid at the bottom of the design view. It is the area that 
the joined tables are molded into our envisioned super table. What we see in the grid is the 
code that will return the super table. 

Let’s establish a reference point. Standard Query Language (SQL) is the universal 
code to pull data from one or multiple relational databases and build tables. However, the 
intent of Access is that the code we place in the design grid has become normal to our daily 
tasks. 

When we are placing what we have become friendly with in the grid, the SQL code 
to actually do the deed is forming behind the curtain. This is called query by example 
(QBE). As we work in the grid, we are telling Access what we want to be coded as SQL. 
Therefore, we do not need to learn SQL because the QBE functionality does it for us. 

3.3.4. Joins and Their Ramifications 
Figure 3-6 showed the tables as joined by the line between a common variable to 

pairs of objects. However, there is more to it. As mentioned earlier, the join line represents 
one of four types of joins. We will use Figure 3-7 to explain them. Then we will see how 
to make the choices for our super table. 

To the left in the figure are two tables—TableA and TableB—with order number as 
the common identifier variable. However, the cell contents are not one for one. 
Consequently, the join we chose will return different super tables as shown at the right of 
the figure. 

The inner join will return a table in which the records are the ones in which both cells 
are populated with identical order numbers. Only the two such records are returned. All 
others do not appear in the super table. 

The left join returns all populated cells from the left table. The non-matching cells in 
the right table appear as empty cells. In contrast, the right join will return the opposite 
outcome to the left join. 
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Figure 3-7: Tables can be joined to return four different outcomes. 

The point of the left and right join is that one table is the basis of the other. When 
working with them, it is good practice to confirm we are getting what we want rather than 
the opposite. We make the confirmation by running and inspecting the returned super table. 

The nature of the outer join is apparent in the figure. Notice that all cases are returned. 
Non-matched cases to both tables are shown as empty (null) cells. 

Joins have ramifications for know-thy-data, audit and control. This is because our 
attention is drawn to a simple question. Why are there empty cells? When building and 
molding a super table it is good practice to vary the joins and look for nulls in the returned 
table. We often discover something. 

Figure 3-8 shows how we set the joins between tables with Access. The process 
begins with a right-click on a join line in Figure 3-6 and selecting the Join Properties 
option. The Join Properties window shown in Figure 3-8 will pop up for specifying the join 
we want. 

In the figure, notice that the first option is an inner join. It is also the default. It is not 
necessary to work in the window if the intended join is an inner join. 

In the pop-up, notice that Access regards tblWrkOrder as the left object to the join 
and tblWrkTask as the right object. It shows that the joining variables are the order number 
variable in each. 

If we want a join other than the inner join, we select one of the two remaining 
alternatives—left and right. However, notice there is no option for an outer join. The 
absence is one of the few disappointments of Access. 

However, there is an easy work around for creating an outer join. Do a left or right 
join. Thence, append it to the empty (null) variable rows to the opposite join. We would 
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create an outer join table, pull it into the query and join the tables through it. Chapter 11 
will demonstrate the power of outer joins to analyze work attainment. 

Figure 3-8: Select the join type, if not the default inner join. 

The joins to the super table, qryCase1_Foundation, are provided in Code 3-1. They 
are presented as they would appear in the Join Properties pop-up window (Figure 3-8). 
Code 3-1: qryCase1_Foundation_joins 
Side: Left Right 
Table: tblWrkOrder tblWrkTask 
Variable: Order Order 
Join: Inner 

Side: Left Right 
Table: tblWrkTask tblCratHour 
Variable: Confirmation Confirmation 
Join: Inner 

Side: Left Right 
Table: tblCratHour tblCraftInfo 
Variable: PerNo4 EmpNum4 
Join: Inner 

Side: Left Right 
Table: TblWrkOrder tblMntcCode 
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Variable: Order Type Order Type 
Join: Inner 

This is a good place to introduce the Append query. An append query is a simple 
matter. Rather than present a full discussion, the reader is advised to find a several-minute 
YouTube demonstration by browsing the internet for “append query access.” 

In this section, the Append query is introduced as a tool to build an outer join. More 
commonly, it will arise when we are updating tables in Access rather than in Excel. It is 
usually more practical to append updates in Access. Another reason is that a table, 
periodically appended in Excel, may eventually grow to hold more records than Excel has 
the capacity to hold. 

3.3.5. Coding the Design Grid 
It is a choice of personal style. When extracting each table from its source system, 

consider selecting all potentially useful variables rather than only the ones for the currently 
developing super table. As we build our super table or use the data for other super tables, 
we are often glad we did. 

Now we select the variables of interest to the super table named 
qryCase1_Foundation. This is done by dragging each variable from the design upper view 
into the Field row of the design grid. In most cases the Table row will populate 
automatically. Thence, four other aspects remain to be coded as it is necessary—Sort, 
Show, Criteria and Or. 

The code as placed in the design grid of the super table is provided in Code 3-2. The 
code will be explained by the paragraphs to come. The alternatives to the shown code will 
also be provided along the way. Therefore, the reader will be introduced to almost every 
code they will ever need for any envisioned insight. 
Code 3-2: qryCase1_Foundation—grid code. 

Join See Code 3-1 

Field CostCenter: CostCtr3 OrderNoDescript ion: 
[tblWrkOrder].[Order]&": 
"&[OrdrShrtTxt] 

TaskNoDescription: 
[Task]&": "&[TskShrtTxt] 

Table tblWrkOrder 
Sort Ascending Ascending Ascending 
Show Y Y Y 
Criteria 69887 Or 70543 Or 70107 

Or 69839 
Or 
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Field MntcType Status CraftType 
Table tblMntcCode tblWrkOrder ttblCraftInfo 
Sort 
Show Y Y Y 
Criteria “Prevent” or “Proactive” or 

“Reactive” 
Like(“*MCMP*”) 

Or 

Field Hours DaysPastCreated: 
[DateFinish]-[Created] 

Created 

Table tblCraftHour tblWrkOrder 
Sort 
Show Y Y Y 
Criteria Between #1/1/2011# And 

#2/27/2012# 
Or 

Field Order Confirmation 
Table tblWrkOrder tblWrkTask 
Sort 
Show Y Y 
Criteria 
Or 

The first variable identifies the cost center. The variable CostCtr3 was dragged down 
and its source table, tblWrkOrder, automatically populated the Table row of the grid.  

However, we want to give the variable clarity in the super table. We prefer 
CostCenter as the named variable. Accordingly, we rename it—give it an alias—by placing 
CostCenter: (name, colon and space) in the Field row of the grid. 

Not all variables in the grid may need to appear in the returned super table. 
Accordingly, the Show row allows us to cause a variable to not appear although it is in the 
grid. The default is to appear. Otherwise, we would deactivate the check box (depicted as 
Y/N in Code 3-2) to the variable. 

The Sort row commands the table to be returned with the variables as ascend, descend 
or no order if empty. In the code, the table will be sorted in ascending order from left to 
right—cost center, orders to cost center and tasks to order.  

In the Criteria row,  we mold the table by filtering the records to each variable. With 
respect to CostCenter we have reduced our table to 4 of the plant’s 95 cost centers. 

Notice the Or operator in the code of the Criteria row. The operator indicates that we 
want all the records to the four centers—all else excluded. An And operator in the variable 
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(column) makes no sense. It would mean we want records that are a combination of the 
four cost centers. We would get a table with no records. 

Figure 3-9 provides a list of criteria expressions for all data types. Connecting back 
to the Or operator, if we want to apply more than one criteria expression to a variable, we 
would insert the Or operator between each expression. 
 

Criteria name Code Effect 
Equals  “x” for text; x for numeric. Searches for values equal to x 
Does Not Equal Not in (“x”) for text. Not in (x) 

for numeric. 
Searches for all values except 
those equal to x 

Null  Is Null Searches for empty fields 
Not Null Is Not Null Searches for non-empty fields. 

Figure 3-9: Criteria expressions for all data types. 

The And condition exists between the columns of the design grid. Collectively, the 
criteria across the grid define the records to remain in the super table. Figure 3-4 and 
Code 3-2 showed the criteria that have been coded for 4 of the 11 variables. In the super 
table, they collectively set filters for cost center, maintenance type, status and dates created. 

Although not necessary for Case 1,what if we want an Or case between variables in 
the grid? The answer is the Or row of the grid. We can create groups with different And 
criteria between the variables. To do it, each group would be coded in a separate Or row. 

The next two variables in Code 3-2—OrderNoDescription and TaskNoDescription—
return a combination of variables as a single variable. Additionally, the code demonstrates 
some other important basics to building and molding super tables. 

Let’s look at the first of the two variables. The purpose of the code is to combine the 
order number and text description variables in a single variable. An example is the order 
and description variables coded to return a cell such as 6000937432: Pump1871 seal 
leaking. 

Notice the piece of code to the variable—[tblWrkOrder].[Order]. The code is 
necessary because a variable named Order occurs in more than one sub table.  When 
dragged into the grid, Access will tell us that it is not able to know which one we want until 
we provide additional information. The additional information is the source table as 
identified within the first pair of square brackets. The variable is identified within the 
second pair. Finally, to make it work, notice that ‘.’ (dot) is placed between the table and 
field brackets. 

Next notice the & operator.  The geek word for it is the concatenation operator. By 
placing the operator between two variables, they are returned as a single (concatenated) 
variable. 
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However, in this case we want some punctuation and spacing to make the variable 
more readable. This is done with the code—“: “ (colon space)—between the concatenation 
operators. The parentheses are required because the colon and space are text rather than 
numeric. Note that it is typical to all codes that text be bracketed with parentheses and the 
numbers be absent of parentheses. 

Now let’s look at the next three variables in the grid of Figure 3-4 and Code 3-2—
MntcType, Status and CraftType. All three are simple drags. MntcType includes a criteria 
using the Or operator. The code causes the table to return 3 types of maintenance from the 
17 categories that are inherent to the data extracted from the CMMS. 

Notice the parenthesis bookends to the desired types using the Or operator. Except 
the parentheses, this is the same pattern as seen previously for the CostCenter criteria. This 
is because the maintenance type variable is text rather than numeric. In contrast, cost center 
is a variable of numeric values. 

Next notice the code—Like(“*MCMP*”)—as the criteria to the Status variable. It is 
called the Contains criteria. We could have coded the Equals criteria—“MCMP”—that was 
included in Code 3-2.  

However, upon inspecting the data, some of the status cells to the variable were found 
to be populated with multiple statuses. The Equals criteria would not include them in a 
table, but the Contains criteria would. 

Among the raw data, the pattern was observed as occasionally including MCMP. 
Although a check of the forming super tables did not find the pattern, we want a criteria to 
recognize the pattern if it should arise in future monthly updates. 

Figure 3-10 provides the list of available text criteria.  We all know of many or all of 
them from our experience with Excel and other software. 

Criteria name Code Effect 
Contains Like (“*x*”) Searches for all values that contain x 
Does Not Contain Not like (“*x*”) Searches for all values that do not contain x 
Begins With Like (“x*”) Searches for all values beginning with x 
Ends With Like (“*x”) Searches for all values ending with x 
Comes After >= “x” Searches for all values that come before x in 

alphabetical order 
Comes Before <= “x” Searches for all values that come after x in alphabetical 

order 
Figure 3-10: Criteria for working with text strings. 

The next three variables in the design grid are Hours, DaysPastCreated and Created. 
Two additional and commonly occurring codes can be spotted in the design grid. One 
demonstrates the creation of calculated variables. The other is to specify date ranges. 
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The code in the Field row—DaysPastCreated: [DateFinish]-[Created]—is a 
calculation we have given the name DaysPastCreated. The big point is that any calculation 
is possible—simple or complex. There is no great magic. The expressions of our Excel 
experience and experience with other software will often transfer. If what we are 
attempting upon our experience does not work, we can query the internet for a solution—
query for “access expressions.” 

Even though they have not been called for the super table, two expressions will be 
introduced here because we find ourselves frequently using the first of them. They are the 
conditional expressions—IIF() and Switch(). They are coded as shown in Figure 3-11. 

Function name Code Effect 
If then IIF(logical test, value 

if true, value if false) 
Evaluates a specific condition and specify results 
whether the condition meets True or False values 

Switch Switch( logical test1, 
value1, logical test2, 
value2, ... logical 
test_n, value_n ) 

Evaluates a list of paired expressions and returns a 
value or an expression associated with the first 
expression in the list that is True 

Figure 3-11: The conditional expressions IIF() and Switch(). 

It is apparent from the table that the first IIF(), is familiar to most of us. Alternately, 
Switch() allows us to avoid IIF() expressions that get messy when we want to nest an IIF() 
within an IIF() and so on. 

For the variable, Created, we are working with dates.  Notice that # (pound) bookends 
the dates. This differs from the bookends for text and numeric variables. The expression 
calls for all records within and including the dates. 

This is a good place to introduce the body of criteria for bounding date and numeric 
variables. Figure 3-12: shows them for date variables and Figure 3-13 for numeric 
variables.  

Criteria name Code Effect 
Between Between 

“#mm/dd/yyyy#” and 
“#mm/dd/yyyy#” 

Searches for dates that fall between the specified dates 

Before < “#mm/dd/yyyy#” Searches for dates before a certain date 
After > “#mm/dd/yyyy#” Searches for dates after a certain date 
Today =Date() Searches for all records containing today’s date 
x Days Before Today <=Date()-x Searches for all records containing dates x or more days 

in the past 
Figure 3-12: Criteria for working with date variables. 
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Criteria name Code Effect 
Between Between x and y Searches for all values in the range between x and y 
Less Than < x Searches for all values smaller than x 
Less Than or Equal 
To 

<=x Searches for all values smaller than or equal to x 

Greater Than > x Searches for all values larger than x 
Greater Than or 
Equal To 

>=x Searches for all values larger than or equal to x 

Figure 3-13: Criteria for bounding numeric variables. 

Now for the final two variables to the super table. They are Order and Confirmation. 
Including the two variables in the super table is a proactive practice rather than 

necessary for the foundation super table. As we work along to build the super table, we 
may find that we need them. 

Another reason to include them is that we may find ourselves building other super 
tables with the foundation super table. It is very likely that the need for the inherent 
identifiers will arise. 

With qryCase1_Foundation, we could join on the concatenated variable. Or we could 
tease the order number out of the concatenated variable with string functions. However, it 
is good practice to bring along the untouched inherent identifiers. 

In the practice of building super tables with Access, we will find that the 
demonstrated and additional referenced code in this section covers most of everything we 
would ever call for. We will also recognize that most of what has been introduced matches 
or is very similar to what we know from working with Excel spreadsheets and other 
software. 

This brings us back to a point made earlier. Building super tables is more a matter of 
creativity with an insight deliverable in mind than it is to be a data geek. In fact, the skills 
of data science have little meaning to us normal people working with our data to reach an 
insight. We can function quite nicely and still be largely ignorant of data science beyond 
what we already know as modern role holders. 

3.3.6. Generate the Super Table 
Now to generate the foundation super table. However, rather than a final event, we 

should flip between the design and table views as we develop the table. One reason is to 
confirm, at each step, that we are getting what our code was intended to give us. Another 
reason is that we will often find ourselves following discoveries that take us to new insights 
and revelations. 
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Notice the table icon at the far left of the ribbon shown in Figure 3-4. It returns the 
super table as shown in Output 3-1. The figure cuts the table in two pieces and shows only 
the first 4 of its 687 rows. Notice the variables to the table are as we named them. 

This is a good place to introduce a functionality with which to confirm and explore 
the table. Notice the Totals option in the Records section of the ribbon (not shown in the 
figure). When selected, a Totals row will appear at the bottom of the table view. The row 
cell to each variable offers a pull-down menu of options for summarizing the variable. For 
numeric variables the options are sum, average, count, maximum, minimum, standard 
deviation and variance. For text variables it is count. 

Output 3-1: The table returned from the code. 

The super table can be imported into Excel or another Access file. In fact, all modern 
software has standard functionality to import an Access super table as their source data. 
For Excel and Access, go to the Get Data icon and follow the guided trail. Of course, the 
super table can be developed further in all final destinations. 

All software, including “R,” provide the option to link to the super table in Access. 
Linking is often preferred over importing. 

Imagine working with the table in Excel Pivot. We often discover that we want to 
modify the super table for a host of insightful reasons. We can pop the Access hood on the 
super table query and make the upgrades. 

In turn, the background data to our Pivot will be refreshed upon command or the next 
time the Pivot file is opened. If we are doing a monthly update, the link will update the 
Pivot whenever it is opened for a session or refreshed during a session. Consequently, the 
analyst does not need to distribute the Pivot report upon every update. 
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3.4. Case 2: Seek Outlier Work Orders 
Plants are often limited to seeking outlier orders with crude methods. One is to investigate 
the top ten orders in cost or proxy to cost. The problem is that maybe some or ten are 
supposed to be the top ten. Exploring them reveals no opportunities. 

With respect to the data of the super table, a better method is to seek the outliers with 
respect to cost center and maintenance type. Better yet is to include order lead craft type to 
the grouping. 

Unfortunately, the example CMMS is not configured with a variable for lead craft. 
Craft lead is only sporadically noted in the description to each order. By the way they are 
noted in the description text, we could tease out the classifications with string functions. 
However, the classifications would only be partial because compliance has been less than 
100 percent. 

This section will demonstrate and explain aggregation variables. It will conduct a 
search for outliers to demonstrate aggregation in action. Two cases will be presented in this 
and the next section. 

Case 2 of this section will demonstrate aggregation with the natural variables to the 
representative CMMS. Case 3 of the next section will apply aggregation to tease a craft 
lead variable out of the CMMS—find hidden variables. Although not demonstrated in the 
chapter, we would want to join the classifications as a variable to the super table—making 
it more super. 

However, let’s note the alternative to aggregation in Access. The aggregations of 
Access are also available in Excel Pivot. Furthermore, Pivot is the first choice because it 
allows greater interactive and visual exploration than is natural to Access. 

The difference is the that aggregations in Pivot cannot deal with complex 
developments such as Cases 2 and 3. Of course, aggregations developed in the Access 
super table can be explored and further aggregated in Pivot. 

3.4.1. Measurement for Outliers 
We will apply a statistical test for outlier orders with respect to variance from 

average—Z-Score standardized. The idea is that we want to spot the orders with spending 
beyond some percent of all orders in a group of orders. 

The Z-score test calculation is: 

Z-Score Standardized = (R - Avg)/Std Dev (3-1) 
Where:
R = Individual record.
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Avg = Average or mean of the records to each group. 
StdDev = Standard deviation of the records to each group. 

For the demonstration of aggregation, we will assume the data is normally 
distributed. In life, we would test the assumption and act accordingly. Chapter 4 introduces 
and demonstrates graphic methods to test the assumption with histograms  (Figure 4-7) and 
q-q plots (Figure 4-8). There is also the Shapiro-Wilk normality test function—
shapiro.test()—in “R.” The set up and interpretation of the function can be found on the
internet.

Next is the issue of deciding the percentage on which to base the Z-Score. It is a 
choice for the data-driven asset management organization to make. Figure 3-14 provides 
scores associated with a range of choices. 

The Z-scores will be associated with a group of orders. Case 2 is grouped upon cost 
center and maintenance type.  

Percent Z-Score (+/-)
One-sided Two-sided 

90.0 1.29 1.65 
95.0 1.65 1.96 
99.9 3.10 3.27 

Figure 3-14: Z-Score associated with percent outlier. 

The measured variable of interest to both outlier demonstrations will be craft hours. 
Hours, rather than dollars, are a better window into engaged maintenance capacity. 
Furthermore, hours submit well to related calculations such full time equivalent (FTE) 

For the demonstrated cases, it will be assumed that the asset management operation 
wishes to investigate orders for which hours equal or exceed 95 percent of all orders to 
their respective groups. Accordingly, we will demonstrate with one-sided 95 percent. The 
associated Z-score is equal to or greater than 1.65. 

If we were interested in orders beyond the two tails of the distribution, we would look 
for orders with a Z-score equal to or greater than 1.96 absolute. It is called the two-sided 
test. 

We may exercise the two-sided test to seek oversized and undersized orders. 
Undersized orders may flag a self-inflicted fatal problem to ever achieving maximally 
effective and efficient asset management operations. 

We may be observing the effects of craft hours not being accurately recorded to the 
orders that incurred them. This may, in turn, suggest that not all the orders at the upper 
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extreme truly overran the work plan. Some have recorded to them hours engaged by other 
orders. 

3.4.2. Activating Aggregation 
Aggregation variables are built within a select query as shown in Figure 3-15. With 

a table or query in the design view, we check the Totals (summation symbol) icon in the 
Access ribbon. Figure 3-15 shows the action to develop the query qryHoursOrder and the 
resulting table. The code is provided by Code 3-3, qryHoursOrder.  

Figure 3-15: Clicking the summation icon adds a new row in the 
design grid. 

Upon doing so, notice the change in the design grid. The Total row appears. 
The lower portion of the figure shows the result. Without aggregation, each order 

would appear as a record for each individual craft engaged for each day of the order—time 
sheet records. Instead, there is a single record for each order. The hours incurred for all 
individuals to each order have been summed. 
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In the Total row, for each variable, we select from ten options for summation—group-
by, sum, average, min, max, count, standard deviation, variance, first and last. 

Notice in the figure and the code, we have pulled the foundation super table into the 
query. In the figure we have grouped on cost center, order and maintenance type. 

The Hours variable is aggregated with the option to Sum. However, we are not 
limited to one aggregation per variable. We can repeat the Hours variable as any one of the 
non-grouping options for aggregations. This will be seen as the demonstration unfolds. 

Nor are we limited to a single non-group variable in the super table. For example, we 
could add another variable and select options for it (not demonstrated). 

The possibilities of aggregation will appear in action throughout the remaining 
chapter. Most noteworthy are the immense ramifications. This is because so many insights 
involve calculations with group variables. The two cases of the chapter are only several of 
almost infinite possibilities. 
Code 3-3: qryHoursOrder—join and grid code. 

Join None: qryCase1_Foundation is sole source. 

Field CostCenter Order MntcType Hours 
Table qryCase1_Foudatio

n 
qryCase1_Foudatio
n 

qryCase1_Foudatio
n 

qryCase1_Foudatio
n 

Total Group By Group By Group By Sum 
Show Y Y Y Y 

3.4.3. Planning the Aggregation 
The demonstrated foundation super table was a straightforward, follow-our-nose 

piece of work. However, sometimes it is good to flowchart what we are trying to do. 
Figure 3-16 is a flowchart of queries to be created and joined to arrive at the envisioned 
insight deliverable—qryZScoreOrder. 

Figure 3-16: Case 2 flowcharted to the 
final insight deliverable. 
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From the super table, qryCase1_Foundation, as its input, we will develop the 
qryHoursOrder object. It was previously shown in Figure 3-16 and followed with an 
explanation of its code. 

Thence, we will develop a table of statistical elements to the Z-score computed with 
Equation 3-1—qryOrderGrpStats. The query will return the group averages and standard 
deviations. 

Finally, qryHoursOrder and qryOrderGrpStats will be joined to generate 
qryZScoreOrder. The object will compute the Z-score for each order and return only those 
with a score equal or greater than 1.65. 
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4.3.2. Import Data to the Session 
The first action is to import our data into the “R” session. The code to do so is: 

TaskData <- read.csv("C:\\<PATH>\\ScoreComplexPrep_Dataset.csv", 

header=TRUE, sep=",") 

We are showing the case in which our data, a super table, is imported into “R” with 
the read.csv function. The function is used because the super table is a file of comma-
separated variables from Excel. 

However, there are functions for other types of files. They are read.xlsx for .xlsx 
files and read.delim for .txt and .dat files.  For Access files we would install and open the 
RODBC package and set up the location and arguments for importing a query or table from 
Access. 

There are three arguments in the read.csv function just as there are for the other read-
type functions. The first is the file and its location. The second tells the function if the super 
table has headers. The third indicates commas or something other as the separator. 

The second and third arguments are shown for completeness. However, they are the 
default arguments. The arguments need not be coded unless our data are exceptions to 
them. 

Let’s talk about the file and location argument. There are options in “R” to identify 
the files with respect to a “working directory” rather than code out the entire location. 
However, the full address is shown in the code. 

This is preferable because it places a paper trail in the code. This makes it simple to 
locate the file after we have long forgotten its name and location or to make it possible for 
recipients of the analytic to find the data without knowing of some working directory and 
file. In the code, <PATH>, represents the complete address for the reader to fill in. 

Also note the syntax of the file argument. The location string for Microsoft typically 
codes with backward slashes. In “R” they must be changed to either a double backward 
slash as shown in the code or a forward slash. 

Another fundamental. Notice the code string “<-“ in the code line. It assigns what 
is created by the code to its right to be the “object” to its left. By virtue of the element in 
the code, the imported table, ScoreComplexPrep_Dataset.csv, is now an object called 
TaskData. Notice that throughout the code we refer to the object rather than the csv file. 
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A comment. Tables can be built from scratch in “R” with standard query language 
(SQL) by using the sqldf function. Beyond what is possible with SQL, we can do much 
more with “R” code. 

As mentioned in Chapter 2, building super tables with SQL and additionally with R 
coding requires substantial skills. As a measure, the skills for each require six weeks of 
structured formal training. Therefore, because Access moves SQL coding to the 
background, we are better served by building super tables in Access and subsequently 
importing them to R. When additional treatment is called for, the go-by that is being 
followed for the subject analysis will provide the necessary code. 

The data of one or more imported super tables may be manipulated in the conduct of 
an analytic. However, the code will typically be such that the imported data will remain 
unchanged—as TaskData in this case. 

Although not demonstrated, the tables built with an analytic can be exported with the 
write function. The reader can easily query the internet for the code which is like the 
functions to read data into the session. We may do so to make our super table more super. 
For example, we would likely want to join the findings of a classification analytic to the 
super table. 

4.3.3. Know-Thy-Data Analysis 
This section will demonstrate a range of descriptive, statistical and graphic insights—

know-thy-data. What is demonstrated should be basic to all data to be engaged in insight. 
It will be apparent that doing so is an easy task of importing the data and subjecting it to 
the functions of this section as a go-by or tool. 

The section will look at data along three dimensions. First is to view the content and 
type of the variables. Second is to view the data per statistical measures. And third is to 
view the data graphically. 

As always, there are functions to the three dimensions. For the first, we want to be 
sure we know what is in the table. Three functions immediately come to mind. One, the 
head function, will return the first six rows (records). The other shoe to the function is the 
tail function to return the last six rows. We are not limited to six rows. The argument n= 
allows us to specify a different number of rows. 

The str function, shows the number and nature of the variables and number of 
records. Its information complements the insight provided by the head function.  

Both are returned by the following lines of code and the outputs are shown in 
Output 4-1: 

 

#INSPECT FIRST SIX CASES 
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head(TaskData) 

#INSPECT MAKEUP OF VARIABLES 

str(TaskData) 

The head function returns a small table representative of the parent table. We can see 
that one, Code, is a house-keeping variable of no use to us. We can also see that we could 
run our analytics while controlling for ProdUnit, which we will not in this example. 

From the str function we get further descriptions of the variables. We see that we 
have what is called by “R” a “data frame” with 103 observations (records). Three of the 
variables are integers, one a numeric and one a factor. For the factor variable, ProdUnit, 
we see that the categories are UnitA and UnitB. For all, we see the first some records as 
space allows. 

Output 4-1: Head and summary views the data. 

The second dimension of insight gives us a statistical overview of our dataset rather 
than the basic “what it is” presentation. Two such functions are summary and describe. 
They are coded as follows and the outputs are shown in Output 4-2: 

#DESCRIPTIVE STATISTICS 

summary(TaskData) 

#ADDITIONAL DESCRIPTIVE STATISTICS 

describe(TaskData) 

The summary function provides shape-type insight. They are min-max, mean, median 
and quartiles for integer and numeric variables. The categories and counts are returned for 
the factor variable. 

The describe function provides additional information. In contrast to the summary 
function, it provides standard deviation, mean trimmed of extremes, mean absolute 
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deviation from median, skew and kurtosis as measure of the variable from the normal 
distribution, range and standard error to the mean. 

Output 4-2: Two statistical views of the dataset. 

Finally, we want graphic insight. Figure 4-4 was a traditional preliminary insight. We 
will demonstrate two additional cases. First is the case of a pairs-panel as shown in 
Output 4-3. Second is a graphical assessment of the distribution of the variables as a normal 
distribution. It is shown in Output 4-4. 

First let’s look at the graphic from the pairs.panel function of the psych package for 
a tremendous amount of insight. In it, we can inspect the shape or distribution of each 
variable in the dataset. We can inspect the cross-plot relationship of each variable with all 
other variables. The fitted smooth line gives a sense of pattern to the cross plots. The oval 
shape is called the correlation ellipse, the more elongated the greater correlation. The large 
dot indicates the mean value of plot points. 

The code to return the pairs panel of Output 4-3 is as follows: 

#PAIRS PANELS 

pairs.panels(TaskData[c("Score","Complex","Prep")]) 

It is good practice to confirm that our data is normally distributed. Doing so is a 
mandatory step to evaluate the truthfulness of an analytic. If the finding is not a normal 
distribution, we use an alternative method to the analytic or transform the variables within 
the analytic. 
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We were given the cross-plot and line fit (Figure 4-4) of Complex and Prep plotted 
to Score. Upon inspection, we can see that the points do not fall in a consistent band around 
the plotted linear fit. This was the first clue that the data are not normally distributed. 
Furthermore, the histograms of Output 4-3 do not look like normal distributions. 

Output 4-3: Pairs panel perspective of the 
numeric variables in the dataset. 

We can test normalcy with graphic insight. However, we should note that the 
shapiro.test function can be used to test if the data is significantly different from the 
normal distribution. 

The graphic method is to build and view a q-q graphic as shown in Output 4-4.  If the 
points of a variable fall along its line, the data is normally distributed. 

In the following code to the generate the figure there are several basic elements of 
coding to recognize: 

#Q-Q GRAPHIC FOR NORMALITY 

par(mfrow = c(2, 2)) 

anx<- qqnorm(TaskData$Complex, main = "Q-Q Complexity "); 

qqline(TaskData$Complex) 

rev<- qqnorm(TaskData$Prep, main = "Q-Q Preparation "); 

qqline(TaskData$Prep) 

exm<- qqnorm(TaskData$Score, main = "Q-Q Efficiency Score "); 

qqline(TaskData$Score) 

par(mfrow = c(1, 1)) 
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First, how did we get the three charts in one figure? The answer is the par function 
in the first line and its argument mfrow = c(2,2)). The code creates a 2-by-2 matrix of 
graphics. If we change the c() element we can create any combination of rows and 
columns. 

Output 4-4: A plot point of a normal distributed variable 
will fall along the straight line. 

We have built an output sandwich with the par function. Note that the par function 
appears again at the end of the block of code. By coding c(1,1), any graphic after the line 
of code will present in a single frame. 

We can also see layered charting in action. Inspect the line of code beginning just 
after anx<-. In it is the code to generate the q-q graph for the Complex variable. 

The code line includes the qqnorm and qqline functions. Both are individual graphs 
of the subject variable to the line of code. 

If we highlighted and ran the qqnorm code, we would get the plotted of points. If we 
did the same with qqline code,  we would get a straight line. It represents how a plot of 
data with the mean and variance of the data should form as quantiles if it were a normal 
distribution. 

As a coded command, the qqline element overlays the straight line on the plotted 
points. In this case, we can readily conclude the data is not normally distributed. 
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There is another element to recognize in the code. It is one of the ways we can specify 
variables to functions. 

Notice the syntax TaskData$Complex in the code to the first graphic. Also notice the 
same pattern in the code in which the other two variables are engaged for evaluation. The 
code line tells the function that we are working with a variable (after the $) from a table 
(before the $). 

There are other ways to identify variables. Some will arise as the chapter progresses. 
However, the advantage of the table$variable syntax is that we leave a paper trail in the 
code. 
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The advance graphics created with the ggplot2 package of the R 
software depend heavily on color to communicate the insight they are 
coded to give us.  Some such graphics appear in the two excerpts.

Unfortunately, the cost to produce the book in color is prohibitive to 
pricing. To keep the price reasonable, the book is produced in 
grayscale. The readers, of course, can view each graphic in full color by 
running the provided R code. Alternatively, the reader can view any 
visualization in full color at webpage, https://analytics4strategy.com/
book-look-inside.

For convenience, the herein two excerpts will present the color 
version.
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5.2.2. Test for Normal Distribution 
We should test the numeric variables in our dataset for normal distribution. This 

is especially so if the variables are to be used in measures and models. Furthermore, a 
tested variable can lead us to recognize the levels to our categorical variables with respect 
to the numeric variable that are individually homogenous but heterogenous 
across the distribution. As said in measurement and analytics, “subset, subset and 
subset.” 

An example to a maintenance and reliability operation is a non-normal distribution 
of a numeric variable such as hours per order. Our inspection may find that we 
should search out the levels to our categorical variables that have disparate relationships to 
hours. Insights may be hidden in the variables such as maintenance type, priority and 
craft type. 

This section will demonstrate how to test a numeric variable for normal 
distribution. It will then demonstrate methods for inspecting the categorical levels as 
subsets to the numeric variables for normality. 

The R script to the section includes the visual and statistical test of 
normal distribution for the hwy, cty, displ and cyl variables. However, we will only 
follow the case for the hwy variable because the process is the same for all variables. 

The code below returns Output 5-9. The figure compares the variable, hwy, 
against a template of normal distribution. 

#Highway compared to normal distribution 

#Hwy variable 

qqhwy<- ggplot(data = mpgKtd,  

mapping = aes(sample = hwy)) + 

stat_qq_band() + 

stat_qq_line() + 

stat_qq_point(aes(color=class)) +  

labs(x = "Theoretical Quantiles",  

y = "Sample Quantiles") +  

ggtitle("Q-Q Test of the Hiqhway Variable") 

qqhwy 
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Let’s explore the code for the basics of ggplot2. The graphic is assigned to the 
ggplot2 object, qqhwy. We call the figure up with the final line to the code. 

As was introduced in Section 2.2.3, the code creates a layered chart. Notice the “+” 
code inserted between the base plot, qqplot, stat_qq_band and so on. At each occurrence 
a layer is stacked on the base plot or overrides its defaults. 

The first element, ggplot, creates the base plot. It established the data and axes of the 
graph. Within it are what are called the aesthetics. In this case a single variable, hwy. 
However, we will step past an esoteric explanation of “aesthetic.” 

The remaining elements place layers over the base plot. The first three stack 
individual graphs as layers upon the base plot. The fourth, labs, overrides the default axes 
titles—x and y. The fifth, qqtitle, stacks a plot title on the base plot. 

Let’s dig deeper into the ggplot element. We assign the data with the argument 
data =. We set the variables and aesthetics of the graph with the argument mapping =. 

However, the point to note is that we can code the data and aesthetic without 
explicitly identifying the arguments. Instead, our code could be ggplot(mpgKtd,

aes(sample = hwy)). That is the style we will take from here on. 
At this point the reader is advised to the read Chapter 2 of the Wickham text. What 

is explained and demonstrated in the sections to come do not require reading the Wickham 
chapter but will greatly enhance and enrich one’s appreciation of what is being explained 
in this chapter. 

Here is a tip for understanding the code in the pages to follow. Highlight and run each 
element of code from the left side of the + that follows it. Since ggplot2 is layered, you will 
see instantly what each element causes in the graph. If an argument is of interest, remove 
and repeat the layered run. 

If we did that with the code of Output 5-9, the first output would be a blank plot of 
the graph with its axes labels x and y. Adding the second would generate the gray standard 
error zone. The third would add the straight line. The fourth would add the plotted points 
of the variable and gives them color according to the class variable. The legend is also 
returned. The remaining two elements would have dealt with the axis and chart titles. 

The figure is a visual test if the hwy variable has a normal distribution.  If it did, all 
but a few of the points would reside within the zone of standard error. If we seek a 
95 percent confidence, only approximately 5 percent of the 234 points would be outside 
the zone. This is obviously not the reality. 

The principle of the test is that the line and error zone are representative of a variable 
with the mean and standard deviation of the hwy variable. If normal, at each point along 
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the straight line, a percentile of the data points would have previously occurred. If perfectly 
normal, the points of the subject variable would fall exactly on the theoretical line. 

Output 5-9: Q-Q plot of the highway mileage variable. 

However, we should confirm the visual test with a statistical test. We can do that with 
the function shapiro.test. Coded as follows, its output is shown in Output 5-10: 

#Test hwy variable for normal distribution 

##Small p-value indicates is not normal. 

shapiro.test(mpgKtd$hwy) 

The outcome of the test verifies the findings of the visualization. The test is based on 
a null hypotheses. It is that the tested data is not significantly different than the theoretical 
normal distribution of data with the same mean and standard deviation. The small p-value 
tells us that the data is significantly different. 
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Output 5-10: The findings of the Shapiro analytic 
disproves a normal distribution. 

Back to the code to the graph. Note the code expression 
stat_qq_point(aes(color = class)). More specifically, note the aes argument 
color = class. It causes the chart points to be colored according to the class of vehicle and 
generates the associate legend. 

The coloring of points reveals that there are subsets clustered on class. The clusters 
seem to have their own neighborhoods along the plot. Consequently, testing them in 
aggregate may be misleading. We should inspect them as subsets. 

In Output 5-9, we have subset based on class. We could have otherwise done so for 
cylinders, drive, transmission and fuel. 

We have other options for bringing out subsets. They are size and group. 
Furthermore, we can present more than one subset, in a single graph. For example, we 
could have assigned shape to a second variable with shape = and size to another yet with 
size =. 

However, it quickly becomes difficult to visually get our arms around the many 
possible subsets that are permutations of the dataset’s categorized variables. Meanwhile, 
some will be overlapped by others. At some point the chart becomes a dog’s breakfast. 

()To get over the obstacle, let’s look at the facet_wrap function as a means to subset 
the variable and visually test their individual distributions. The code to return Output 5-11 
is as follows:  

#Subset the test by facet 

qqhwyFac<- qqhwy +  

facet_wrap(~class) + 

theme(legend.position = "none") 

qqhwyFac 

Rather than build the entire chart from scratch, two additional functions are added to 
the earlier base graph; qqhwy. Notice the geom facet_wrap. In it, note the code ~class. The 
code specifies class as the variable to be faceted upon. The argument in the theme function 
removes the legend. 
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Output 5-11: Distribution of the hwy variable subset upon class. 

Upon inspection of Output 5-11, we can wonder if all but compact and suv vehicles 
would test as normal with the Shapiro test. We could extract each from the mpgKtd dataset 
and test them for normal distribution. The codes to test each variable for normal distribution 
are as follows: 

#Test subsets to hwy for normality on class 

shapiro.test(mpgKtd$hwy[mpgKtd$class=="2seater"]) 

shapiro.test(mpgKtd$hwy[mpgKtd$class=="compact"]) 

shapiro.test(mpgKtd$hwy[mpgKtd$class=="midsize"]) 

shapiro.test(mpgKtd$hwy[mpgKtd$class=="minivan"]) 

shapiro.test(mpgKtd$hwy[mpgKtd$class=="pickup"]) 

shapiro.test(mpgKtd$hwy[mpgKtd$class=="subcompact"]) 

shapiro.test(mpgKtd$hwy[mpgKtd$class=="suv"]) 

The code would return the same statistical analyis as shown in Output 5-10 for the 
hwy variable. The outputs will not be shown here and are left to the reader to execute. 
However, only the 2seater class shows a normal distribution (p-value = 0.42) and pickup 
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trucks are on the fence (p-value = 0.049). Typically, analysts require that a tested variable 
must return a p-value of 5 percent or greater to be accepted as normal. 

Let’s take the opportunitiy to review subsetting with R. We will subset on a single 
class. The first step is to subset the table on our chosen classs—midsize—with the 
following code: 

#Create a table of midsize records 

mpgKtdMid<- mpgKtd[mpgKtd$class=="midsize",] 

To review, the code to understand are the square-brackets.  Within the brackets we 
are subsetting the mpgKtd table. The expression mpgKtd$class identifies the source table 
and variable. From what is within the square brackets and to the left of the comma, a 
TRUE/FALSE vector occurs behind the curtains. The TRUEs in the vector will cause only 
the records in the mpgKtd table parallel to the TRUE cases to be returned to the mpgKtdMid 
object. 

The empty space within the brackets to the right of the comma causes all variables to 
the mpgKtd table to be included in the returned object. Thus, we have a table of only records 
to midsize cars. 

This is a simple subset. We can code any filter in the spaces to either side of the 
comma within the brackets 

Next, let’s look at the Q-Q chart for hwy with respect to the midsize car class. As we 
would expect, the code is as follows and returns the graph of Output 5-12. 

#Q-Q Test of midsize class 

qqhwyMid<- ggplot(data = mpgKtdMid, 

aes(sample = hwy)) + 

stat_qq_band() + 

stat_qq_line() + 

stat_qq_point() + 

labs(x = "Theoretical Quantiles", 

y = "Sample Quantiles") + 

ggtitle("Q-Q Test of the Hiqhway 

Variable - Midsize") + 

theme(legend.position = "none") 

qqhwyMid 

Once again, the visualization infers a non-normal distribution. Although not shown, 
we should confirm that with the Shapiro test. However, we obviously need to more fully 
introduce ourselves to the nuances of our data. 
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Output 5-12: The midsize class does not show normal 
distribution. 

We earlier saw, in Output 5-11, faceting in practice. The code below to facet on 
models introduces an additional twist. It is apparent in Output 5-13. 

#Wrap subset midsize on model and fl 

qqhwyMidFac<- qqhwyMid +  

facet_wrap(~model + fl) + 

theme(legend.position = "none") 

qqhwyMidFac 

Notice the geom, facet_wrap(~model + fl). It will create new subsets as can be seen 
in Output 5-13. Rather than only subset on model, the faceted subsets are permutations of 
model and fuel type. 

As they exclaim in late night low-budget commercials for gadgets, “But wait, there 
is more!” We are not limited to single a dimension. We can view the Q-Q plots at the 
intersection of categorical variables. 
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Output 5-13: Subsetted facets on model and fl to the 
Q-Q test of the highway variable.

To demonstrate, let’s contrast model and year. The following code will return 
Output 5-14.  

#Grid subset midsize on model and year 

qqhwyMidGrd<- qqhwyMid +  

facet_grid(model~year) +  

stat_qq_point() +  

theme(legend.position = "none") 

qqhwyMidGrd 

Notice that facet_wrap is replaced with facet_grid. Within facet_grid, the code 
model~year returns a grid with year as columns and model as rows with the expression. 

There are many rich possibilities for wrap and grid facets. Too many to attempt to 
explore here. Section 7.2 of Wickham introduces and demonstrates the many variations. 

Returning to Output 5-14, let’s make an important observation. Notice that the x and 
y scales are the same for all facets. This allows us to more easily inspect for differences in 
location and spread among subsets. Of course, ggplot2 offers options to allow one or both 
scales to float freely. 
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Output 5-14: Q-Q test by model and year. 

In the returned graph we are inspecting the Q-Q plot with respect to model and year. 
It is notable that there seems to be fit to the normal distribution lines when we introduce 
year as a facet. As always, we should test what we see with the Shapiro test. 

However, as we get to know our data what we have discovered in the facets may 
cause us to loop back to explore the hwy variable for normal distribution while 
distinguishing between year. The lack of normal distribution without the distinction may 
indicate eras of performance characteristics. 

The R script to the chapter contains the code for the Q-Q analysis of the city mileage, 
displacement and cylinder variables. The reader may want to explore the variables after 
subsetting on year. 

Let’s imagine what has been demonstrated with respect to the data of our CMMS and 
other source systems. Are our costs per order, hours per order, crafts hours per order, count 
of orders by lead craft normally distributed? What do the distributions look like if we subset 
them by craft, maintenance types, priority and cost center? How should we subset to get a 
true sense of what is hidden in our data? Are we embedding misinformation in our standard 
reports by not subsetting? 
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5.2.3. Inspect Correlation Between Variables 
We should also inspect the correlations between the variables in our datasets. We can 

do that between numeric variables and between categorical and numeric variables. The 
explanation of the code and interpretation of correlation was the topic of Section 4.3.4. 
Partial correlation was the topic of Section 4.3.5. 

Rather than recook the beans, the reader is referred to the sections for review. This 
section will largely demonstrate methods to visually inspect the correlation between the 
variables of a dataset. In addition to Section 4.3.4, this section will introduce the technique 
to measure correlation between categorical and numeric variables. 

The data of the chapter can be substituted into the code that was explained in 
Sections 4.3.4 and 4.3.5 The R script to this chapter utilizes the same code but with the 
substitution of the variables to the mpgKtd dataset. 

We can get a visual summary of correlation with the function pairs.panel of the 
psych package. The code below demonstrates the function with 7 of the 11 variables to the 
mpgKtd dataset. The output is shown in Output 5-15: 

#Visualize correlation 

pairs.panels(mpgKtd[c("hwy", "cty", "cyl", "displ", 

"drv", "model", "trans")]) 

We see in the code that we are subsetting the dataset upon the seven variables it 
identifies. The c function within the square brackets caused their return. If we had written 
the code as pairs.panels(mpgKtd), we would have returned an inclusive table. 

The figure provides a great deal of visual information. However, there is one caution. 
It is that only the correlation values between numeric variables—hwy, cty, displ and cyl—
have credence. Three categorical variables have been included—drv, model and trans—
but their correlation coefficients should be ignored. 

Other than to demonstrate how to be selective with respect to datasets of many 
variables, there is no technical reason for showing only seven variables. The reason here is 
that showing the full set would create a figure of proportions that are impractical to the 
pages of a book. 

Although the correlations for categorical data are not useful, it is still useful to include 
the variables in the pairs graphic. This is because so much information in the pairs panel is 
relevant to any type of variable. 

We can see the shape or distribution of each variable in the dataset. We can inspect 
the cross-plot relationship of each variable with all other variables. The oval shape is called 
the correlation ellipse, the more elongated the greater correlation. The fitted smooth line 
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gives a sense of pattern to the cross plots. The large dot indicates the mean value of plot 
points. 

 
Output 5-15: Grid of correlations and more to mpg variables. 

Although not legitimately presented by the pairs grid, we can calculate a correlation 
between categorical and numeric variables. However, it is done with respect to levels to 
the categorical variable. 

The code below shows how to obtain the correlation of front-wheel drive to highway 
mileage. The correlation sets rear drive as the base level—zero so to speak—and front-end 
and highway as the measured correlation. The returned output is presented in Output 5-16. 

 

#Correlation of front drv and hwy with rear as base 

mpgfr<- mpgKtd[(mpgKtd$drv=="f" | mpgKtd$drv=="r"),] 

mpgfr$numdr<- ifelse(mpgfr$drv=="r", 0, 1) 

cor.test(mpgfr$hwy, mpgfr$numdr) 

 

Let’s inspect the code. The code, mpgKtd[(mpgKtd$drv=="f" | mpgKtd$drv=="r"),], 
subsets the mpgKtd dataset to one with only two categories for drive; front and rear. The 
“|” syntax is an OR relationship.  
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The code, ifelse(mpgfr$drv=="r", 0, 1), creates a variable in which “0” is assigned 
to rear drive and “1” to front drive. This is a new numeric variable with which correlation 
with another numeric variable can be computed. 

The third line applies the cor.test function to compute the correlation, significance 
and confidence interval. Output 5-16 returns the analysis which is interpreted as explained 
in Section 4.3.4. The output shows that, compared to rear-wheel drive, there is a strong 
correlation of front-wheel drive to highway mileage. 

 
Output 5-16: Correlation to front drive to highway mileage. 

The visualization of correlation is the most common purpose of a scatter or cross plot 
chart. Such plots are provided for the pairs in Output 5-15. Of course, we can replicate 
them as individual charts. However, as shown they are traditional simplistic perspectives. 

We will use the capability of ggplot2 to reach much deeper perspectives. The 
difference is our heightened ability to understand our data when we can recognize subsets 
within the scatter plot. 

There are two ways to subset cross-plot visualizations with ggplot2. We can show 
discrete and categorical variables as subsets to the basic plot—e.g., scatter points. 
Alternatively, we can use facets. Better yet, we can simultaneously apply both methods. 

Output 5-17 shows the two possibilities in action. The left-most chart shows a scatter 
plot being subset upon its points. The right-most chart adds a facet perspective. 

The left-most chart begins with the scatter points. Thence, it subsets the points with 
respect to two categorical variables—class and drive. Additionally, a smooth line and its 
error zone have been layered over the points. 

When we inspect the smooth plot, we can see that the correlation between mileage 
and displacement changes direction. Here we are discovering something to be investigated 
because we suspect  that we should not see such a pattern. 

We should also note that, given the universal love of linear fit, had we chosen to place 
a linear plot over the points, we might have not noticed the strange pattern. Just as bad, the 
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linear plot would have been substantially influenced. Also note that we could have placed 
both line fits in the graph as a quick validation of a linear fit. 

Output 5-17: Scatter plots subset on points and facets. 

The right-most chart returns the left but is subset on the number of cylinders—a 
discrete variable. Now we can see the influences on the smooth fit of the first graph. Note 
the bottom right facet clearly reveals the source of the upward turn in the smoothed line. 

Also, note the appearance of a strange subset that we would not have easily spotted 
in a scatter plot of many points. Are there five-cylinder vehicles in the dataset? Or, are 
there records in the dataset that need to be cleansed? 

Let’s explore the three blocks of code behind Output 5-17 for new elements of code. 
They are as follows: 

#Left panel 

#Compare data as scatter and subsets 

#With subset on points 

scatSubPt<- ggplot(mpgKtd, aes(x = displ, y = hwy)) + 

geom_point(aes(color = drv, shape = class)) + 

geom_smooth() + 

scale_shape_manual(values=seq(0,6)) + 

labs(x = "Displacement", y = "Mileage") + 

ggtitle("Subset on points-class & drv") + 

theme(legend.position = c(.5, .8),  

legend.box = "horizontal") 
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scatSubPt 

 

#Right panel 

#With subset on points and facets 

scatSubPrFc<- ggplot(mpgKtd, aes(displ, hwy)) + 

 geom_point(aes(color = drv, shape = class)) + 

 geom_smooth(aes(displ, hwy)) + 

scale_shape_manual(values=seq(0,6)) + 

 facet_wrap(~cyl) + 

 labs(x = "Displacement", y = "Mileage") + 

 ggtitle("Wrap added to subset on points") + 

 theme(legend.position = "none") 

scatSubPrFc 

 

##Alernate code to the chart 

scatSubPrFcAlt<- scatSubPrFc +  

 facet_wrap(~cyl) 

scatSubPrFcAlt 

 

#Side-by-side 

#Plot scat and scatFac 

scat1x2<- ggarrange(scatSubPt, scatSubPrFc, ncol = 2, nrow = 1) 

scat1x2 

 

In the first block of code, we can see the base plot as the ggplot component. Notice 
how the x and y variables are coded in the aes expression as x = and y =. Because all other 
arguments are explicitly named, we can implicitly code the x and y variables. This more 
typical practice will be seen in the next block of code and for the remainder of the examples. 

The point geom causes the scatter plot. The mapping code, aes(color = drv, shape 
= class), subsets the points on color for drive and shape for class. The smooth geom places 
a statistically fit line over the scatter plot to visualize the pattern of the correlation. 

The default to the smooth geom is loess. For it we have options for the degree of 
smoothness. The argument span = allows a range of 0.0 to 1.0. 

There are alternatives to the loess fit. They are lm for a linear fit, gam for greater than 
1,000 observations and rlm for reducing the sensitivity of the fit to outliers. Enacting the 
choice is made with the method = argument. 

Let’s speak to the shape legend. We have based shape on class. If we ran the chart, 
we would get one for which only six of the seven classes have been given a shape. 

To get over that, we must call for shapes with the scale_shape_manual geom. The 
argument values=seq(0,6) assigns a shape to each category. If we wanted to select other 
than the 7 shapes from the 24 available choices, we would replace the seq() function with 
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a c function coded to list our choices. The readers are left to find the choices on the internet; 
an easy task and good experience. 

Next, notice the expression theme(legend.position = c(.5, .8), legend.box = 
"horizontal"). The legend.position = c(.5, .8) code sets the placement of the legend 
with respect to the x and y axes. For each axis there is a range of 0 to 1. For example, the 
combination of c(1,1) would position the legend at the upper right of the chart. Meanwhile, 
the argument legend.box = "horizontal" places the legends side-by-side in the figure 
rather than stacked by default. 

The second block of code returns the right-most chart to Output 5-17. Its primary 
distinction is to break the left-most chart into facets.  

However, there is one other difference in its code. The legend.position = “none” in 
the theme function. To create space, the legend has been removed. 

The third block  demonstrates an important trick for efficient coding and the lazy 
amongst of us. We could have created the same graphic that was returned by the second 
block of code. The style appends the facet_wrap function to the first graph and returns the 
second. 

We are seeing the fourth block of code for the first time. It causes the charts of the 
first and second blocks of code to be returned side-by-side as a single output. 

Notice that we have assigned the output to an object; scat1x2. We are using the 
ggarrange function of the ggpubr package. The charts are designated by their assigned 
name as objects. Thence, we have specified a single row and two columns. 

The ggarrange function allows any number of charts by virtue of specifying the charts 
and number of rows and columns. They will be returned in the order called for by the 
ggarrange function. 

We could easily create a dashboard with the function. In one sweep, we could run 
code to load the updated input tables to the graphs, the code to each graph and finally the 
ggarange function to generate the dashboard. 

 Better yet, we can create a function to include all code such that we only need to call 
the function and all else updates and appears on our monitors for inspection. Building such 
a function will not be demonstrated here. 

Another powerful way to subset is to place multiple base plots in a single graph. We 
can do this because they have axes in common. Output 5-18 shows two pairs of scatter 
plots and smooth charts as a seemingly single chart. 
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Output 5-18: Two scatter graphs presented as a single graph. 

Let’s look at the code to the returned the graph. Some important techniques are 
hidden below the surface. The code is as follows: 

#Multiple base plots 

scat2Chts<- ggplot(mpgKtd, aes(displ, hwy)) + 

geom_point(aes(color = "hwy")) +  

geom_smooth(aes(color = "hwy"), se=TRUE ) +  

geom_point(aes(displ, cty, color = "cty")) + 

geom_smooth(aes(displ, cty, color = "cty"),  

se=TRUE) + 

labs(x = "Displacement", y = "Mileage") + 

ggtitle("Mileage vs Displacement") + 

theme(legend.position = c(.95, .9),  

legend.title = element_blank()) 

scat2Chts 

The ggplot function sets up the base graph in association with the subsequent pair of 
point and smooth geoms. The second graph to display city mileage is returned by the 
second pair of geoms. 

Notice in the second pair that the x-y variables do not match the pair in the ggplot 
function. The x variable is the same, but the y variables has become cty. This is the same 
for the smooth geom. The x-y of the second chart overrides the x-y to the ggplot function 
that supports the first charted plot.  
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The code also allows the combined plots to return a legend. The argument, color = 
in each of the geoms makes the legend happen for the case of multiple base plots. 

Know that the two geoms for the displ-hwy visual are taking their specified variables 
from the ggplot function. Thus, they need not include x-y variables in their aes functions. 

However, the geoms for the displ-cty visual must include them. This causes the 
geoms to override the base plot variables and instead generate on the displ and cty 
variables. 

Also notice that we have coded to omit a title to the legend. It is left to the reader to 
search the internet for the code to name the legend other than the default title—color. 

There is a final point to make. The base graph supported two graphs. We mentioned 
different x-y variables to create them—displ-hwy and displ-cty. 

We should also note that a graph need not be limited to a single dataset. In this case, 
the highway and city mileage were recorded in the same dataset. But what if they were not. 

For the respective geoms, we would have simply identified the associated datasets. 
The only requirement is that the respective charts have the same axes scales. 

Finally let’s deal with a natural problem to point charts; over plotting. In the graphs 
to this point, the reality is that not all of the 234 observations of the full mpgKtd dataset 
will be visible to us. Some will overlap or hide others. 

One method to overcome the problem is the jitter geom. It will be presented in the 
next section. It works for continuous or discrete data grouped in a graph by categorical or 
discrete levels. However, a jittered perspective can be misinformation for continuous 
variables. This is because each point is moved slightly on the chart. 

There are other ways to deal with over plotting. Output 5-19 shows two. They use 
the geoms count and hex.  Others, not shown, are three-dimensional such as geom_contour 
and geom_raster.  

Output 5-19: Area count and hex methods to deal with over 
plotting points. 
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In both cases, the charts are expressing the number of points falling in a plotted area. 
The legends are given as a reference of comparative magnitude. The code to the respective 
charts are as follows: 

#Left panel 

#Methods for Over lapping and plotting 

##Count in area 

scatAreaCnt<- ggplot(mpgKtd, aes(displ, hwy, 

color = drv)) + 

geom_point() + 

geom_count() + 

theme(legend.position = c(.95, .8)) 

scatAreaCnt 

#Right panel 

#Hex chart 

scatHex<- ggplot(mpgKtd, aes(displ, hwy, 

color = drv)) + 

geom_hex() + 

theme(legend.position = c(.95, .8)) 

scatHex 

#Side-by-side 

#Plot count and hex charts 

overPlot1x2<- ggarrange(scatAreaCnt, scatHex, 

ncol = 2, nrow = 1) 

overPlot1x2 

The first block of code adds the count geom to the scatter plot. The second block 
replaces the point geom with the hex geom. The third block is the boiler plate code to 
return the graphics of both methods as a side-by-side chart. 
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Chapter 6 
Unearth and Rectify Bad Data 

From Chapter 3, we know how to build super tables. In turn, from Chapter 5 we know how 
to “know thy data” aided by layered charting. Now we are ready to cleanse our data. We 
are ready to unearth and rectify bad data. 

Cleansing our data entails a sequence of assessments. Does our data have integrity; 
can we hang our hats on it? If not, which variables of the super table do we not trust? And 
which of them do we need to rectify? Finally, for the data we need to rectify, what is to be 
our strategy? 

6.1. Bad Data and Rectification 
Let’s begin by distinguishing between the types of “bad” data. Some are spotted in the 
know-thy-data stage that was explained and demonstrated in Chapter 5. Some are obvious 
upon perusal. Others are obvious by common sense. Others must be teased out with 
statistical methods and machine learning, artificial intelligence (ML-AI) models. 

Of course, it is obvious that missing data is bad data. If the record containing one or 
more variables with empty cells is important to our planned insight deliverable, it contains 
actionable bad data. Section 5.1.2 explained and demonstrated how to generate a table of 
all records with missing data along with record- variable-specific counts for missing data. 

Other bad data is apparent by common sense.  For example, a large percentage of 
work orders have no recorded hours. Or close to 100 percent of the failures recorded to 
pump assemblies were attributed to pump rather than some reasonable number for other 
primary subassemblies. And of course, misformatted and misspelled classifications are bad 
data. 

Then there are bad data that we cannot spot through mere inspection.  We only know 
that they might be present. How do we know if the hours recorded to some work orders are 
bad data? How do we know if there are inappropriate classifications lurking amongst our 
records? Finding them is the biggest of all challenges and without an easy solution. 

Sometimes, we can sidestep the challenge. This is because rectification is not a 
preordained action in response to every incident of bad data. Instead, we must decide 
whether to pursue rectification. Is it worthwhile? 

For example, we may seek insight to the centrality and spread of a variable. 
Eliminating records with missing data may not significantly affect the insight as long as 
there is still statistical mass and representative spread. 
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Alternatively, we may seek insight with respect to observations. Without rectifica-
tion, our insight can be distorted with an incomplete picture. 

Rectification is to either eliminate bad data or impute estimates to numeric data and 
corrected classifications to categorical data. A deciding issue for eliminating records with 
bad data are the ramifications from working only with the number of remaining good 
records. 

Eliminating records for bad variables may remove so many records from the dataset 
that we no longer have statistical or observational mass for the insight we seek. The 
collective permutations across variables may constitute a large share of the total records. 
Section 5.1.7 presented the analytics with which to make the judgement to rectify or 
abandon. 

Even when elimination does not affect an insight deliverable, we should still leave 
all records with missing data in the super table. Instead, we cause the elimination to happen 
behind the curtains of the specific insight deliverable. 

If eliminate or ignore are not appropriate strategies, we must travel a more difficult 
road. We must use ML-AI models to impute the best prediction of what the bad data should 
be. 

Rectification strategies are subdivided with respect to two types of data; numeric and 
categorical. The types of bad are as shown in Figure 6-1. 

Figure 6-1: Types of bad data by type of 
variable. 

Other than missing as bad, numeric data has lurking within it “potentially” bad data 
until proven as bad. We are looking for data that does not seem right or somehow does not 
fit. 

However, there is a question to ask. Is each such observation erroneous or is it 
interesting? For example, the decimal was slipped or “7” was misread and entered as a “2.” 
Alternatively, we may find upon audit that there is not an error but there is an interesting 
discovery. 

If the data point is interesting, we should not delete it. Otherwise, we would make the 
same decisions as we made for rectifying missing data. Erroneous data is equivalent to 
missing data. 
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In the cases of missing and erroneous numeric data, we may choose to impute an 
analytically derived estimate. As will be explained in sections to come, we would use ML-
AI models to make the estimate. Chapter 7 will explain and demonstrate the most practical 
model for numeric data. 

Other than missing, categorical data entails a different kind of bad. There are three 
types in addition to missing: misformatted and misspelled, and misclassified. 

An example of the first type of bad data is a classification of all caps that may contain 
lower-case characters or be misspelled. It may present both flaws. 

Alternatively, and more insidious, the classification may be incorrect even though 
correctly formatted and spelled. Fortunately, modern operational software is increasingly 
configured to prevent omission, misformatting and misspelling. Unfortunately, it is not 
always possible to prevent incorrect choices at the time classifications are assigned to a 
record. 

The cleansing process is staged for categorical variables. First, we must rectify the 
misformatted and misspelled classifications. The method, done with translation tables, was 
presented in section 3.3.2 of the chapter to build super tables. 

However, there may still be misclassified records. Section 6.3 will introduce the two 
most practical ML-AI models to seek them out. The full explanations and demonstrations 
of the models will be the subject of Chapter 14 to explain how to recover classifications 
such as failure modes and codes. 

6.2. Strategies for Numeric Data 
The elephant in the room is that there may be bad data in our super tables. The only obvious 
bad data are the missing cases revealed when we inspect our super table. At the level of 
subtables and single variables, even missing data can drop from sight. The process to locate 
them in our super table was explained and demonstrated in Chapters 3 and 5. 

Spotting bad numeric data is difficult as compared to obviously misformatted and 
misspelled categorical data. Even then, incorrectly classified categorical data can easily 
slip past us; especially past a data scientist that is not a subject matter expert (SME) in the 
subject operations. In other words, part of the solution to bad data is that at least a critical 
mass of SMEs in our maintenance and reliability operations know their data science. 

We will approach the search and rectification along two dimensions; numeric and 
categorical variables. This section will speak to numeric; the next categorical.  

6.2.1. Spotting Outliers and Influencers 
For numeric data, we are essentially searching for outliers, and leveragers and 

influencers. When we spot them, our attention shifts to determining if they are bad data or 
interesting. Depending upon our conclusions we must decide what our rectification strategy 
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will be. ML-AE models as the strategy for rectification are the subject of the next section. 
The search is the subject of this section. 

Chapter 3 to build super tables provided one of a hierarchy of methods to unearth 
outliers. It was to compute Z-score (section 3.4.4) and student T-score (section 3.4.5) to 
numeric variables. The tests work best when we subset the numeric variable with respect 
to significantly related categorical variables and “binned” numeric variables. 

Along with the calculated Z-score and T-score, we can utilize graphic methods to 
identify outliers in the context of all data points. Section 5.2.4 and 5.2.6 demonstrated the 
graphic methods to inspect the centrality and spread of numeric variables. With the graphic 
methods, we can subset the numeric variable with respect to categorical variables. This 
increases our chance of spotting outliers and influencers. Otherwise, the outliers to a subset 
can hide in an aggregation. 

A third and more powerful method moves into the realm of machine learning but 
with a twist. The twist is that we use the learned fit of a linear regression model to unearth 
any outlier cases the model would not have accurately predicted and cases that would have 
changed the model through its parameters. 

Here we will introduce the method. Chapter 7 will explain and demonstrate the 
method in the context of explaining and demonstrating linear regression. 

We do not typically realize that the mean and variance to a numeric variable is a 
model. It is called the null model because it has no predicter variables. 

The objective of any model is to learn a fit of one or more predictor variables that 
maximally explain the variance to the null model. As we build a model by variously 
including predictors, we evaluate each variation with respect to its increased ability to 
explain the variance of the null model. 

Once the best explaining model is arrived at, we can measure all observations for 
whether they are incongruent to the learned outcome. We seek them out as the two 
situations shown in Figure 6-2. They are called leveraging and influencing cases. 

Figure 6-2: Leveraging and influencing cases change a models 
intercept and slope. 

We can see the principle in the depictions of a one-predictor linear regression model. 
As demonstrated in Chapter 6, we could use a layered graphic of a liner regression over a 
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cross plot to spot the cases. However, once we move to two or more predictor variables, 
we must utilize statistical analytics to reveal outliers and influencers. 

Let’s begin with the left-most graphic depiction of a leveraging case. The regression 
is the solid line of intercept and slope. An outlier is shown marked as a large circled point. 
There could be multiple outliers, but we will make the point with a single outlier. 

The point is that the model with the leveraging case would experience some degree 
of significant shift and rotation of model’s intercept and slope. Notice that the leveraged 
case is within the horizontal range of points. 

In contrast is the right-most graphic of influencing case. We see that one case is high 
jacking the model while the fit is largely reflective of ignoring the obvious pattern of most 
observations. In contrast to leveraging cases, notice that the case is well outside the 
horizontal range of points and well away from the linear fit. 

The procedure to build a linear regression model includes tests to evaluate if a 
model’s accuracy is affected by outliers and influencers. It follows that we can build a 
model with variables of our dataset as the dependent variable and test for the cases. The 
methods to test for them are explained by demonstration in Chapter 7. 

6.2.2. Models for Numeric Imputation 
It was previously mentioned that we do not automatically decide to rectify bad data. 

Not all bad data may have the same ramification to any one insight. If our decision is to 
rectify rather than eliminate or ignore, then our strategy is to impute our best estimate to 
be a corrected entry. 

This calls for machine learning and artificial intelligence (ML-AI) for which there 
are considerable models to choose from. They range from straight forward to esoteric, 
directed to undirected, and transparent to black box. 

Of the models, linear regression provides the most information generally as well as 
specifically for cleansing. Linear regression will be fully explained by demonstration in 
Chapter 7. 

Accordingly, the book will dedicate its attention to linear regression because of its 
deserved ubiquity. However, the reader is recommended to explore model trees and 
regression trees as a practical methodology. They are explained and demonstrated in the 
book, Machine Learning with R, by Brett Lantz. 

For imputation, the ML stage is the action of fitting a regression model to the data 
tables from which we have removed the records containing the previously identified bad 
data. In turn, the AI stage is the action of feeding the predictor variables of our bad records 
to the learned model. The returned estimates are imputed to replace the bad data. 

With linear regression we determine, by cycles, which predictor variables are best 
and statistically significant to estimating the bad numeric variable. It falls to us as subject 
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matter experts in maintenance and reliability to select the predictor variables that give us 
the best fit compared to the null model. 

Once we arrive at that best fit, we must go through vetting steps to evaluate the 
accuracy of the model. The build, fit and evaluation sequence is the subject of Chapter 7. 
Finally, the variables of the bad case are fed to the regression model to estimate a score to 
substitute in for the bad one. 
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The fourth step is to return to the first step. However, we append the newly validated 
or corrected data to the growing block of records with good data. We would repeat the loop 
until we have the block of history we need for the insight deliverable we are planning to 
build. 

Because our records must necessarily be practicably 100 percent correct rather than 
substantially correct, the method is potentially a substantial task albeit not nearly as 
prohibitive as the manual approach. For this reason, the action to recover the past should 
be parallel to actions to improve the process that would otherwise allow a future of 
continuing to collect bad classifications and having to labor through the rectifying process 
as a step to each reporting period. 
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Note:

The advance graphics created with the ggplot2 package of the R 
software depend heavily on color to communicate the insight they are 
coded to give us.  Some such graphics appear in the excerpts.

Unfortunately, the cost to produce the book in color is prohibitive to 
pricing. To keep the price reasonable, the book is produced in 
grayscale. The readers, of course, can view each graphic in full color by 
running the provided R code. Alternatively, the reader can view any 
visualization in full color at webpage, https://analytics4strategy.com/
book-look-inside.

For convenience, the herein excerpts will present the color version.



Chapter 7 
Relate Operational Variables to Outcomes 

At the mention of linear regression most of us think of predicting outcomes in engineering 
design and economics. In the previous chapter, we recognized linear regression as a means 
to estimate a replacement to bad data; assuming omission is not an acceptable strategy. 

However, the big point in enterprise operations is how to predict an outcome. Which 
variables from our management systems, and metrics upon variables, are meaningful 
predictors to an outcome? Do any of the variables and metrics need to be transformed in 
order to sharpen predictability? Are there subdivisions within the variables that must be 
recognized? Does the model tell the same story universally or only for our circumstances? 

In other words, if we can predict, it does not automatically follow that we will predict. 
More often than not, we instead use our ability to predict as a platform to discover how to 
plan, organize and control our operations for optimal performance. 

I remember the golf pro who tried to fix my vicious slice. Instead of correcting my 
slice, she tried to teach me how to intentionally make a hook. Her logic was that if I can 
learn to cause a hook, I would learn to avoid both slices and hooks. The variables in our 
regression are the element of being able to consciously slice, hook and everything in 
between. 

When we hear the term “regression,” we typically think of “linear” regression. 
However, there are three regressions within what is called the “general linear model” 
(GLM). They are distinctive by the type of outcome they predict upon a common structure 
of “linear coefficients.”  

Linear regression of the GLM relates variables to continuous numeric outcomes. 
Logistic regression relates variables to classifications through probability of occurrence in 
the classification. Poisson regression relates variables to counts and counts per unit. 

The body of predictor variables in the three regressions look the same. However, the 
linking functions between the body and the solution equations are different. In all three, we 
ultimately step through a trial-and-error process until we arrive at the ability to “predict.” 
And only then we will we see much more clearly what matters most to our operation and, 
in turn, our enterprise Furthermore, senior management wants us to know and act upon 
what matters most. 
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This chapter will begin by introducing the common and distinguishing characteristics 
of the three regressions. It will then explain and demonstrate the issues, procedures and 
interpretation of the linear regression. Finally, it will apply the model to predict outcomes. 

Most of the principles and methodology for linear regression apply in the other two 
with some nuances. Chapter 14 will extend upon this chapter to explain and demonstrate 
logistic regression. Poisson will not be addressed beyond this chapter. If interested, the 
reader can explore the regression type through the reference in the Bibliography to an 
example provided by the UCLA, Institute for Digital Research and Education. 
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7.2. Process of Machine Learning 
Textbooks typically follow a sequence to explain the procedure of linear regression as 
machine learning and artificial intelligence (AI). First, we explore our data as explained 
in Chapter 5 to know our data. As part of the step, we inspect the strength of 
correlation between numeric variables.  

Next, the objective is to select the variables from our dataset that best explain 
the total variances of the null model; mean of the outcome variable. The selection 
will be arrived at by trial and error and, thus, typically very insightful. 

However, we do not stop with selecting variables. Instead, we determine which 
of the selected variables must or can be transformed in some way to arrive at a model 
that explains an even greater part of the total variance. We will also likely create and 
add variables to the dataset. 

To this point our attention has been the predictor variables. The next stage is to seek 
the cases that are outliers to expectation or have an inappropriately large effect on 
expectation. 

It is unacceptable to improve the model by eliminating them out of hand. Instead, we 
investigate them as either interesting cases or bad data. If interesting, they remain in the 
dataset and we explore for subsets and seek new variables that cause them to make sense. 
We rarely remove cases for any reason but bad data. 

Finally, we check the model by charting and statistically testing the residuals to 
the prediction. Our interest is if they are normally distributed and if they disperse evenly 
along the fitted predictions. 

If the final test of residuals shows a normal distribution and consistent spread, we can 
generalize the model. That means that although we built the model upon one plant’s 
data, we can use the model to reasonably predict another plant’s performance with its 
data. This is the essential definition of AI. 
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However, generalization is often a secondary or minor goal when exploring 
relationships. We are typically building to discover how to better plan, organize and control 
our operation rather than predict outcomes to other operations. 

Furthermore, as will be apparent as the chapter unfolds, building models for 
individual operations and plants is not a prohibitive exercise necessitating that we 
generalize the evaluation of our own operation. We get our best insight from an operation-
specific model even if we could have instead made inferences about our operation with a 
generalized model. However, a model structured for a common operation may be the same 
we would find to be the case of our equivalent operation. 

To explain linear regression, for any operation, we will follow an alternative to the 
typical sequence. This is because it best suites the search for ways to advance operational 
performance. The chapter will unfold to select variables, seek necessary transformations, 
evaluate the residuals to predictions and finally seek the outliers and overly influencing 
cases. The last two stages are typically switched in order. 

The reason for the switched sequence is that in operations the money is often found 
in the unusual. In the outliers and overly influencing cases, we often newly discover or 
confirm what matters most. We may also discover functional subsets in our operations. 
And when we find bad data, we likely discover to search for the root weaknesses that 
systemically allow them. 

From there, the chapter will flow to techniques to cleansing data. For the sake of 
explanation by demonstration, we will pretend as if all outliers and influencers were found 
to be bad data. We will also pretend we would cleanse the cases rather than delete them. 
Generating imputes to the pretended bad cases will allow us to demonstrate the use of a 
machine learned model in its AI mode. We will subsequently introduce the method to 
estimate one or more new cases and their prediction interval, also AI. 

The chapter’s data is, of course, not data from a maintenance or reliability operation. 
It need not be because the teaching objective is to engage the types of variables of the 
dataset in a procedure, we would follow for asset management or any type of operation. 
The data is available from the worksheet, “insurance,” in the Excel file 
“SkillsForCareerSecurity_Datasets.xlsx that is available for download at the webpage 
provided in the preface. The R script to the chapter, RelateOperVariablesToOutcome.R, is 
also available at the same webpage with an .txt extension. 

The dataset, using demographic data from the US Census Bureau, is a simulated 
dataset of hypothetical medical expenses for patients in the United States. It was created 
for the book, “Machine Learning with R,” by Brett Lantz. 
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Along with expenses, all other variables are included in the dataset as potential 
predictors of medical expenses. Just as for any enterprise operation, they are both numeric 
and categorical data. The numeric variables are age, BMI and number of children. The 
categorical variables are sex, region and smoker. 

We can easily imagine expenses such as cost per work order and predictors as a host 
of numeric and categorical variables such as metrics, maintenance type, priority, etc. 
Alternatively, we can imagine a domain expert using the data to plan, organize and control 
some sub operation to an insurance enterprise. 

The sections to come only require that the readers have the knowledge and explained 
by demonstration in Chapters 3, 4 and 5. For those who wish to reach more deeply into the 
theory and mathematics, two texts are recommended in order of difficulty. 

First, Chapter 9 of the text, “Discovering Statistics with R,” by Field and Miles 
provides a non-advanced explanation of linear regression. Furthermore, the text explains 
and demonstrates linear regression with the R software. 

Second, are Chapters 11 through 13 of the book, “Introduction to Statistical Methods 
and Data Analysis,” by Ott and Longnecker. The chapters provide an advanced and 
graduate level explanation of linear regression. The chapters will reference commercial 
software rather than R. However, the reader will know the equivalents in R by virtue of 
this chapter and the Field and Miles text. 

The R functions to play will require that the reader pull the packages into the session 
per the code below with the library function. That assumes the packages have been 
installed with the install.packages function as demonstrated in Chapter 3. 

 

library(xlsx); library(psych); library(ggplot2) 

library(qqplotr); library(ggpubr); library(mice) 

library(MASS); library(QuantPsyc); library(nlme) 

library(car); library(dplyr) 

7.2.1. Load, Inspect and Prepare Data 
The first task is to download the dataset. From previous chapters, the code below is 

familiar to us. The data is assigned to the data frame object named insure.1. The reader 
will have to insert as <path> the location at which they have stored the dataset on their 
computer or server. 

 

insure.1<- read.xlsx( 

 "C:\\<path>\\SkillsForCareerSecurity_Datasets.xlsx", 

sheetName="insurance", header=TRUE) 
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Next, we should inspect our data with the functions below. The functions were 
explained and demonstrated in Chapter 5. Better yet, we should apply the chapter’s full 
suite of practices to know our data.  

 

#Inspect dataset 

head(insure.1) 

str(insure.1) 

summary(insure.1) 

describe(insure.1) 

#Check for missing data 

md.pattern(insure.1) 

 

We should also inspect the correlations between the numeric predictor variables of 
the dataset. We can do that with the code below. It will return the visuals of Output 7-1.  

 

pairs.panels(insure.1[c("expenses",  "bmi", "age", "children")]) 

 

The most important information in the returned panel is the correlation between 
predictor variables. Lower is better than higher. This is because high collinearity 
undermines the ability to determine which of two highly correlated variables are most 
strongly related to a model’s outcome. Such variables will split the effect. Correlation 
above 90 percent is a red flag. Output 7-1 shows that collinearity is not an issue to the 
model. This will be confirmed by statistical test in section 7.2.5. 

 
Output 7-1. Pairs grid to inspect correlations and 
histograms. 
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We can see the correlation between each predictor variable and the outcome variable, 
expenses. However, this does not accurately depict the true strength of relationship. As 
explained in section 4.3.5, paired variables share correlation with other variables. A paired 
correlation will be weaker when we consider their shared correlation with a third or more 
other variables to the dataset. 

It is also helpful that the output returns the histograms of each variable. The expenses 
variable is highly skewed to the right and is obviously not normally distributed. The BMI 
variable appears to be normally distributed. The age variable suggests multiple shapes 
combined as one. Finally, the children variable is a discrete variable with a non-normal 
distribution. 

Next, for our example, we want to add three variables to the dataset that will be 
created upon several of the original variables. However, we will cheat for the sake of 
explanation by adding variables for needs we would not yet know that we need. We would, 
instead, recognize them later in the progression to a final model. 

The variables age2, bmiCl and bmiObese are added by the code below. 
 

#Assign insure.1 to insure.2 

insure.2<- insure.1 

 

#Add an age quadratic variable 

insure.2$age2<- insure.2$age^2 

 

#Add BMI categories 

insure.2$bmiCl<- as.factor(ifelse(insure.2$bmi >= 30, "Obese",  

 ifelse(insure.2$bmi <= 24.9, "Healthy", "OverWt"))) 

 

#Add bmi greater or less than obese 

insure.2$bmiObese<- as.factor(ifelse(insure.2$bmi >= 30, "Over", "Under")) 

 

#Check insure.2 for desired outcomes 

str(insure.2) 

 

The first block of code assigns the assure.1 dataset to insure.2. This is not necessary 
but is my preference. This allows us to do things with the data while leaving insure.1 in 
tack. If I were to distort or damage the data, I only need to return to this point rather than 
download the source dataset and rerun everything between the initial download to my 
present location in the code. Furthermore, I can always be comfortable that at all things 
done before the assignment still run true. 
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The second block of code creates and places a variable that is age squared. The 
element insure.2$age identifies the variable to be squared and the “^2” element is the 
calculation. The code insure.2$Age2 receives the calculated variable in our dataset as Age2. 

The third block of code creates the variable with levels by which BMI scores are 
classified. A BMI greater than or equal to 30 is classified as “Obese.” Accordingly, 
“Obese” is assigned as true to the ifelse function and an ifelse function to not true. The 
second ifelse assigns 24.9 or less as true to be classified as healthy and all that remains as 
false is classified as overweight. 

The fourth block of code creates the two-level variable bmiObese. The true condition 
to the ifelse function is a BMI that is over or equal 30 and is named Over. The false 
condition is named Under. 

Notice the as.factor function in the third and fourth blocks. Without it, the variables 
may be recognized by R as character variables rather than a factor variables. As will be 
seen later, we will use the designation to set up what are called dummy variables. 

Finally, it is always a good idea to inspect the dataset rather than assume our code 
gave us what we want. That is the purpose of the final block of code. 

My preference for a quick check is the str function  because it confirms that the 
variables, their type and total count of cases are what I expected. Additionally, the head 
function allows a view of the dataset as a table. 

7.2.2. Dummy Variables 
The loaded dataset includes three categorical variables: sex, smoker and region. We 

created two additional categorical variables to the dataset; bmiCl and bmiObese. 
Although most are text-like, categorical variables are made to be numeric to modeling 

and analytics. The secret handshake is “dummy” variables. We will use the created 
variables. bmiCl and bmiObese, to explain and demonstrate them. 

In the code below, notice that we are looking at a single variable, bmiCl, rather than 
the entire dataset. 

 

str(insure.2$bmiCl) 

attributes(insure.2$bmiCl) 

contrasts(insure.2$bmiCl) 

 

In Output 7-2, the str function reveals that the variable has three levels but the 
function only enumerates two. The attributes function enumerates all levels. 

The contrasts function returns the dummy variables to the bmiCl variable. They are 
the columns. Notice that there are three levels but only two dummy variables; Obese and 
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OverWt. The important point is that they are treated as numeric in models and analytics by 
virtue of being either “0” or “1.” 

 
Output 7-2. Levels and dummy variables to the bmiCl variable. 

The reason for two dummies, one short of all levels to the variable, is that each level 
is in contrast to the third as a reference. The ramification will be explained later in the 
context of interpreting a returned regression model. 

Let’s look closer at the output of the contrast function in Output 7-2. As already 
noted, the dummy variables to the variable present as columns. For the dummy, Obese, the 
value of “1” is assigned for all Obese cases in the dataset and “0” for all others. Similarly, 
for the dummy overWt, the value “1” is assigned for all overWt cases and all else as “0.” 
Finally, notice across both dummies, the value of “0” is common to all Healthy cases. This 
creates the reference effect. 

Setting up the dummy variables is automatic in R. Shown in Output 7-2 is what 
happens automatically. The reference is set alphabetically in ascending order. In turn, each 
dummy will remain named according to its original classification in the dataset; Obese and 
Healthy. 

We can control which level is the reference variable and name the dummy variables. 
This is done with the code below for which the returned output is shown in Output 7-3. 

 

OverWt_v_Healthy<- c(0,0,1) 

Obese_v_Healthy<- c(0,1,0) 

contrasts(insure.2$bmiCl)<- cbind(OverWt_v_Healthy, Obese_v_Healthy) 

contrasts(insure.2$bmiCl) 

 

The first two lines of code creates individual vectors that define and name the two 
dummy variables from the three levels. By omission as a vector, the code concurrently 
causes Healthy to be the reference level. Notice, that for clarity, we have given the dummies 
a name that defines them relative to the reference level. We next bind them together as an 
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object with the cbind function. Finally, we assign them to the bmiCl variable with the 
contrasts function. 

 
Output 7-3: The dummy variables as named and 
setting the reference level. 

When we call the contrasts function, as shown in Output 7-3, we see that our named 
dummies are now attributes to the bmiCl variable. The two dummies have taken on the 
name we gave them. Our named columns, rather than dataset names for the levels, will 
appear in our model. 

If we do not choose to rename the dummy variables to our model, we can still control 
which level is to be the reference. The code below returns a before and after example. The 
consequences are shown in Output 7-4. The bmiObese variable will be the example.  

 

#Before 

contrasts(insure.2$bmiObese) 

insure.2$bmiObese<- relevel(insure.2$bmiObese,  

ref = "Under") 

#After 

contrasts(insure.2$bmiObese) 

 

Notice in the upper part of Output 7-4 that it is automatic for “Over” be the reference 
due to its alphabetic order. However, we want to relate our model to “Under” as the baseline 
against which to compare to “Over.” 

The relevel function allows us to make the change. The ref = argument makes the 
change and the relevel function assigns the choice to the bmiObese variable. 

 
Output 7-4: Before and after to resetting the reference level from automatic. 
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Actually, what is explained for the two variables as examples is the case for all 
categorical variables. Behind the curtains, all are a set of dummy variables. And for all, we 
have the choice to shape them or leave them as they are. It is left to the readers to inspect 
the various categorical variables with the contrasts function. 

7.2.3. Select the Variables 
The next step is to select variables to the model. We are unlimited in the variables we 

can include. Placed in a dataset, they can be extracted from management systems and be 
metrics computed upon operational performance. Variables can also be created along the 
way. 

For the demonstration we have the numeric variables of age, BMI and number of 
children. We have categorical data of smoker, sex and region. We have created two 
additional categorical variables of bmiCl and bmiObese. 

If we were to build models to explore what matters most to various outcomes to our 
maintenance operation, we would have the same types of variables. We would have pulled 
them together in a super table as demonstrated in Chapter 3. Most would come from our 
CMMS and others from the specializes systems that capture them such as payroll, human 
resources and scheduling. And from both we would tease others with the sought insight in 
mind. 

Our numeric variables may be dollars of labor and material, craft hours, productivity, 
etc. Our categorical variables may include cost center, maintenance type, priority, lead 
craft, etc. We may tease out numeric variables such as percent scheduled, percent schedule 
compliance day of order, percent proactive and reactive work, actual as percent of planned 
cost, etc. We may also tease out categorical variables such as if planned, if scheduled, if 
completed as scheduled, if carry over, etc. 

However, a regression built upon a data dump is not particularly meaningful. We 
would not model on every variable in our super table just because we can. Instead, we draw 
upon our domain expertise to select the best parsimonious set for the insight we seek. 
Furthermore, we would follow the procedure that will now be explained by demonstration. 

A first step for considering inclusion is to measure the standardized effect of each 
numeric variable to a numeric-only model. The measure is the change in standard deviation 
of the output variable caused by a standard deviation change of each predictor variable. 

The code below creates a liner regression with only our numeric variables. Then we 
use the lm.beta function to make the comparisons. 

 

#Model for effects 

model.stdEffect<- lm(expenses ~ age + bmi + children, data = insure.2) 
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summary(model.stdEffect) 

#View comparative effect of 1 std deviation 

lm.beta(model.stdEffect) 

 

In the code, expenses ~ age + bmi + children, we see the form that all models take. 
The variable expenses followed by “~” and then a body (systematic component) of 
predictor variables. Section 7.1.1 showed and explained permutations of bodies, but they 
all set up from the foundational pattern. 

Output 7-5 shows what is returned by the code. The summary function calls up the 
model. The lm.beta function returns the measure of standardized effect for each variable.  

We will look deeply at the interpretation of the regression in later sections. However, 
note the p-values in the coefficients table as the column Pr(>|t|). The very small values 
for age and bmi tell us that they are strongly related to the prediction of expenses. The 
variable, children, has effect but comparatively much less. 

However, we want to better understand the relative effect in a form we can make 
sense of in our minds. The lm.beta function gives us that sense. 

We can see in lower Output 7-5 that a standard deviation of change in age causes a 
27 percent of standard deviation change in expenses. In contrast, bmi and children have 
standardized effect of 16 and 5 percent respectively, Obviously, we want to begin our 
selection of variables with age. 

 
Output 7-5: Model for effects and analysis of standardized effects. 

Copyright 2021 Richard G. Lamb



Relate Operational Variables to Outcomes | 187 
 

 

The model’s low R-squared (0.12) suggests that one or more of the categorical 
variables should be evaluated for achieving a much greater effect. If they do not, we are 
not able to build a reasonable model with our given and created variables. This is because 
the numeric model explains only 12 percent of the variance to the null model; mean of 
expenses. 

Model.1: Age and categorical variables. We will start with a model that includes 
age and the four categorical variables: bmiCl, sex, smoker and region. The code to create 
the model and return its output and the confidence intervals to the coefficients is given 
below. The returned output is shown in Output 7-6. 

 

#Age with all categorical variables 

model.1<- lm(expenses ~ age + bmiCl + sex +  

 smoker + region, data = insure.2) 

summary(model.1) 

confint(model.1) 

 

Output 7-6 shows the model that is called up with the summary function and the 
confidence intervals, to the coefficients. Let’s interpret the model beginning with the line 
titled F-statistic.  The null hypothesis is that the model does no better than the mean of 
expenses. The F-statistic is the test of the hypothesis. 

The point of interest is the p-value of 2.2e-16. If equal or less than our acceptance 
criterion, say 5 percent, we reject the null hypothesis and accept that the model is better 
than the null model. 

That takes us to the next question. How much of the variance around the mean does 
the model explain? The R-squared statistic tells us that the model explains 75.25 percent 
of the variance. Not bad. 

Recall that the numeric-only model (Output 7-5) explained just 12 percent of the 
variance. Therefore, we have improved the model hugely by adding the categorical 
variables bmiCl, sex, smoker and region. 

The residual standard error to the predicted output is $6,043. It is the standard 
deviation of the residuals of each observations to its fitted prediction. Checking back to the 
numeric-only model, the residual standard error was $11,370. 

Even though model.1 is a much better model, we must seek to improve it. We begin 
by inspecting the p-values for the regression coefficient to each predictor variable. Once 
again, the smaller the p-value, the stronger a variables plays in the modeled outcome. 

It is typical to remove any variable with a p-value greater than 5 percent. However, 
we may want to set our own threshold for work such as six sigma. 
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Output 7-6: Model with age and categorical variables and 
confidence intervals. 

The age variable is important to our model. The p-value is very small; well less than 
0.001. With each 1-year increase in age, annual expenses increase by $260. 

Now we will see for the first time how to interpret categorical variables.  We see the 
two of three levels to the bmiCl variable. Let’s look at the Obese_vs_Healthy variable in the 
output. 

Recall that Healthy is our reference level. However, it will not be directly apparent 
amongst variables. In prediction, healthy is only in play for cases when both associated 
dummies are “0” because the case individual is healthy. In other words, we want to predict 
the expenses for a healthy case rather than an overweight or obese case. It is non-sensical 
that either dummy would be “1” because the three levels to the bmiCl variable are mutually 
exclusive within any case. 
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Therefore, as compared to a healthy person, one who is obese will experience a 
$4,920 greater medical expense each year. Once again, the p-value is much less than 0.05, 
thus, making the bmiCl variable a keeper. 

In contrast, the strength of relationship of overweight to healthy for effect on outcome 
is must less robust, but still significant. The p-value, 0.0354, is much larger than the value 
for obese, thus, less strongly related to expenses. 

Next, we have the sexmale line in the output. It is telling us that males spend $134 
dollars less than females on medical expenses. The p-value is greater than 5 percent. 
Therefore, its effect is insignificant. We will remove the variable from the model. 

The variable for smokers looms large in medical expenses. The p-value is also very 
small. Compared to nonsmokers, smokers incur $23,875 greater medical expenses.  

Finally, there are the three levels to the four-level region variable. By inspection of 
the p-values for its dummies, we can see that none of the regions incur a significant 
difference in expenses. We will remove the variable. Also notice that the reference region 
is northeast based on ascending alphabetical order. 

It is good to inspect the confidence interval to the regression coefficients. The 
confint function allows us to inspect the intervals for width. Narrower is better than wider. 

The intervals are presented in the lower portion of Output 7-6. For expediency we 
will only inspect them for the current model because other than width the p-values give us 
a sense of what we would find in an intervals table. 

The default confidence interval is 95 percent. Therefore, not shown is how to set our 
own interval with the confint function. We would insert the argument level = with 
confidence as a decimal. 

The table of confidence intervals show upper and lower as 5 percent divided by 2. 
However, notice what happens for any variable for which the p-value is greater than 0.05. 
Within its interval, we will observe a reversal of sign. In other words, zero effect is within 
the upper and lower limits. We would normally remove such a variable. 

Model.2: BMI added, and sex and region removed. Recall that the analysis of 
standardized effects found that one standard deviation increase of BMI begets a 0.16 
standard deviation increase of medical expenses. Therefore, the next model will add the 
variable to see if it matters in the overall operational context. Additionally, upon the insight 
of model.1, we will remove the sex and region variables. 

The code below will return model.2. The returned model is shown in Output 7-7. Also 
notice the AIC function; for the first time. 

 

#Add bmi and remove sex and region 

model.2<- lm(expenses ~ age + bmi + bmiCl + smoker, data = insure.2) 
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summary(model.2) 

AIC(model.1, model.2) 

 

The output shows only minor improvement over model.1. Model.2 explains a slightly 
greater amount of the overall variance to mean expenses. The residual standard error is 
only reduced by $10. The variable bmi adds $117 of expenses for an increase of one BMI. 
However, bmi is significant with a p-value of 0.025. We will leave it in the model. 

 
Output 7-7: Model.2 and the AIC score show small improvement over model.1. 

Notice that the variable OverWt_v_Healthy shows no significant cost increase over 
healthy. If we did a confidence interval with the confint function, we would find “0” 
between the upper and lower limits to a 95 percent confidence interval. Of course, we 
cannot surgically remove the dummy from the next model. Instead, we will try a different 
classification scheme; bmiObese. 

Now to the AIC function. The Akaike information criterion (AIC)  is an estimator of 
prediction error and, thereby, a relative comparison of statistical models from the same 
dataset. AIC estimates the relative amount of information lost by a given model. The less 
lost, the better the model. It follows that the lower the AIC, the comparatively better the 
model. 
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We can use the AIC to compare models. We can read the AIC score in the bottom 
section to the readout of Output 7-7. Model.2 is an improvement over model.1 as indicated 
by a reduction of AIC from 27106 to 27099. One reason is that the removed variables 
reduced the model’s degrees of freedom from 10 to 7 while concurrently explaining a bit 
more of the total variance. 

Model.3: Replace bmiCl with bmiObese. The three classification of the bmiCl 
variable do not seem to have much to contribute to Model.2. This suggests that the most 
indicative split is over and under a BMI of 30. For this reason, the bimObese variable was 
earlier created in the insure.2 dataset. In real life, we would have arrived at that recognition 
and created the variable at this stage of trial and error toward the best model. However, our 
timing served the purpose of explaining dummy variables. 

The code below is model.3 with the bmiObese as our alternative to bmiCl. The AIC 
function is also included so that we can compare the model to previous models. The 
returned output is shown in Output 7-8.  

 

#Replace bmiCl with bmiObese 

model.3<- lm(expenses ~ age + bmi + bmiObese + smoker, data = insure.2) 

summary(model.3) 

AIC(model.1, model.2, model.3) 

 

Model.3 offers no additional predictive ability as indicated by R-squared. The 
important point is that we have reduced the number of variables without a collateral loss 
of predictability. 
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Output 7-8: Model.3 with a two-level distinction for obesity versus 
overweight and healthy combined. 

Model.4: Add children. It was earlier found with the standardized effects test that 
the number of children is a potentially significant predictor of medical expenses. Not large 
but some. The code below includes the variable. The output is shown in Output 7-9.  

 

#Add children 

model.4<- lm(expenses ~ age + bmi + children + 

 bmiObese + smoker, data = insure.2) 

summary(model.4) 

AIC(model.1, model.2, model.3, model.4) 

 

The output shows that for each child, a family experiences $473 greater medical 
expense. The p-value of 0.0033 shows a strong relationship to expenses. 

To summarize, we have added a variable but still caused a decrease in AIC after being 
penalized for the addition. Notice that R-squared has increased and residual standard error 
has decreased; neither impressively. Thus, the model explains a bit more of the overall 
variance. We will stop with the model. 
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Output 7-9: Adding number of children improves the model with 
respect to R-squared and AIC. 

7.2.4. Transforming Variables for Linearity 
The assumption of linear regression is that the relationship between each numeric 

predictor and the model’s outcome is linear and that the variances of the residuals are 
evenly dispersed (homogenous) along the predictor variable. If not, we may be able to 
make them so with a transformation.  We can apply transformations to the predictors or the 
outcome variables. 

A transformation is found by trial and effects. We transform the variable in our 
dataset, run the model and form a scatter plot of the base transformed variable as the x axis 
versus the model’s residuals on the y axis. For a complete discussion of transformation see 
Ott and Longnecker [11.1 and 13.4]. 

This section will inspect the numeric variables for linearity and seek appropriate 
transformations if necessary. The mainstream possibilities are as follows with respect to 
patterns observed in a residuals-to-variable plots: 

• Plot is a pattern increasing at a decreasing rate with roughly constant variance. 
Try transforming x to a square root, logarithm or inverse. 
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• Plot is a pattern increasing at an increasing rate with roughly constant 
variance. Try x and x2 as predictors.  

• Plot is a pattern that increases to a maximum and then decreases with roughly 
constant variance. Try x and x2 as predictors. The transformation can be 
extended to higher orders for patterns with multiple changes of direction. 

• Plot is a pattern increasing at a decreasing rate and variance around the curve 
increases as y increases. Try y2 as the outcome variable. 

• Plot is a pattern increasing at an increasing rate and variance to the curve 
increases as y increases. Try ln(y) for the outcome variable or predictor 
variable. 

We will start our inspection for necessary transformations with the code below. The 
assignment of insure.2 to insure.3 is the analyst’s preference. The idea is to lock in the 
dataset such that if subsequent actions damage the feedstock dataset, we only need to return 
and rerun the line of code. 

 

#Assign insure.2 to insure.3 

insure.3<- insure.2 

 

The residuals are extracted from model.4 and standardized with the code below. The 
standardized residuals are the residuals to the fitted outcome divided by the residual 
standard error. The rstandard function does the calculation for us. 

 

#Extract standardized residuals from model.4 

#Residuals placed in insure.3 

insure.3$stdResid.1<- rstandard(model.4) 

 

We will first inspect the age variable for linearity and homogeneous variances. Recall 
that we need a scatter plot of standardized residuals as y and age as x. To visually test linear 
relationship, we want to fit a loess line to the plot. A straight-line linear fit can be 
misleading because it bridges rather than senses the effects of disturbing forces. The code 
below, using ggplot2, will return the plot of Output 7-10. 

 

residAge<- ggplot(insure.3, aes(x = age,  

y = stdResid.1)) + 

 geom_point() + geom_smooth() +  

 facet_grid(smoker~bmiObese) 

residAge 

 

Notice that the code calls for subsetting our perspective on smoker and bmiObese. It is 
done with facet_grid function. 
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The returned plot shows curvature to a valley and upward again. The pattern is most 
pronounced for nonsmokers. The overall variance appears somewhat homogeneous but 
with a considerable number of outliers. 

 
Output 7-10: Check for linearity of the age variable 
subset on smoker and bmiObese. 

The code below adds the variable age2 to model.4 and renames it model.5. Again, we 
extract the standardized residuals from the model and place them in our dataset as 
stdResid.2. The third block returns the age-to-residuals plot shown in Output 7-11. 

 

model.5<- lm(expenses ~ age + age2 + bmi + children + 

 bmiObese + smoker, data = insure.3) 

summary(model.5) 

 

insure.3$stdResid.2<- rstandard(model.5) 

 

residAgePol<- ggplot(insure.3, aes(x = age,  

y = stdResid.2)) + 

 geom_point() + geom_smooth() +  

 facet_grid(smoker~bmiObese) 

residAgePol 

 

Upon inspection we can see that our strategy for the age variable works well. The 
loess fits are now close to linear. 
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Output 7-11: Linearity is achieved by adding the age 
squared variable to the model. 

However, we should also test, with the code below, whether the addition of the 
variable returns a better model. We will not show the returns, but they indicate an 
improvement. It is left to the reader to inspect what the code returns and compare the 
elements within the linear models. 

 

#Compare models 

AIC(model.4, model.5) 

anova(model.4, model.5) 

 

However, there is something else to notice in the plots. Notice that they are not 
centered on zero as standardized residuals should be. This may suggest that the smoker and 
bmiObese variables are interacting with each other. Interaction is defined as the effect of a 
variable on an outcome depends on the state of a second variables. 

The code below creates a two-way interaction between bmiObese and smoker with the 
“*” in bmiObese*smoker. The new model is named model.6 and its results are shown in 
Output 7-12. 

 

#Insert bmiObese and smoker interaction 

model.6<- lm(expenses ~ age + age2 + bmi + children +  

 bmiObese*smoker, data = insure.3) 

summary(model.6) 
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This is the first time we have seen an interaction in play. If we wanted to start with 
an interaction between all variables, we would have written our model as expenses ~ 
age*age*bmi*children*bmiObese*smoker.  

That would have created a six-way interaction of all orders down to two-way and 
main effects. Thence our modeling process, would eliminate insignificant interactions to 
the model from the highest order down. Any lower order interaction or main effect variable 
to a significant higher order interaction must be retained. If the six-way interaction proved 
to be significant, we would leave all else in the model as it is. In this case, we would have 
arrived at a two-way interaction between the bmiObese and smoker variables. 

 
Output 7-12: Model.6 with an interaction between bmiObese and smoker. 

Output 7-12 reports that there is a tremendous improvement. The model now explains 
86 percent of variance to the null model; up from 75 percent. The residual standard error 
is now $4,469 down from $5,980. 

Let’s inspect the interaction in the model and how we interpret it in our evaluation. 
The interaction, bmiObeseOver:smokeryes, is strongly related to expenses. This is indicated 
by its p-value. 

However, let’s make another point. The main effect variables bmiObese and smoker 
cannot be given meaning for the strength of their relationship to outcome. The rule is that 
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the significance of any main effect variable should not be interpreted if included in an 
interaction. 

Also note that age is shown as insignificant. Why do we not remove it? We do not 
because its effects are shared with age2 as an element of the polynomial f(age) = age + 
age2. 

Now to review the effect of the interactions on the model. The code below extracts 
the standardized residuals to model.6 and places them as stdResid.3 in our dataset. In turn, 
the ggplot2 code will return the residuals-to-age plot shown in Output 7-13. 

 

insure.3$stdResid.3<- rstandard(model.6) 

 

residIntr<- ggplot(insure.3, aes(x = age,  

y = stdResid.3)) + 

 geom_point() + geom_smooth() +  

 facet_grid(smoker~bmiObese) 

residIntr 

 

The residuals to a model must center on zero because the mean of standardized 
residuals is zero. As we saw in Output 7-12, that was not the case without the interaction. 
As can be seen in Output 7-13, that has been remedied by including the interaction of 
variables. All is now pinned to zero. 

 
Output 7-13: Residual plot for age now centered on 
residuals with mean equal zero. 
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We can also see another issue that will be spoken to in a later section. There seems 
to be outlier and possibly influencing cases to the outcome. We will need to make 
distinctions in their nature. 

The code below will compare the three models from age to age2 to interaction of 
bmiObese and smoker. It is left to the reader to run the code. The reader should also run 
the models and inspect the improvement from model to model. 

 

AIC(model.4, model.5, model.6) 

anova(model.4, model.5, model.6) 

 

We will next evaluate the bmi variable for necessary transformation. The code below 
creates the visual. Because we are continuing with model.6, we do not need to call for a 
new standardized residuals variable. 

 

#Evaluate bmi 

residBmi<- ggplot(insure.3, aes(x = bmi,  

y = stdResid.3)) + 

 geom_point() + geom_smooth() +  

 facet_grid(smoker~bmiObese) 

residBmi 

 

Output 7-14 indicates linearity. Because bmi is colinear to bmiObese we can see the 
influence of the interaction. However, notice the loess fit seems to be pulled and curved a 
bit by the outlier points above the tightly linear group of cases. 

 
Output 7-14: Residuals to bmi show linearity, 
but outliers pull the plot northward. 
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Finally, we will inspect the children variable. The code below will generate the chart 
upon which to make the evaluation. The findings are that the variable can remain 
untransformed. It is left to the reader to run the code for their own confirmation. 

 

 

residChlInt<- ggplot(insure.3, aes(x = children,  

y = stdResid.3)) + 

 geom_point() + geom_smooth(method = loess) +  

 facet_grid(smoker~bmiObese) 

residChlInt 

 

Now we have explored our model from basic development through to whether we 
can improve it by making transformations. We made age to be a polynomial and added an 
interaction to the model. The polynomial was a significant improvement as compared by 
AIC and the anova test. The interaction was a huge improvement because the fit revealed 
that expenses change to different levels of the interacting variables. 

7.2.5. Test the Model for Generalization 
Next is to test the model for generalization with respect to assumptions of 

independence of errors, collinearity, linearity of predictions to residuals, constancy of 
variance and normal distribution of residuals. 

Upon the findings we will introduce the ramifications of pass-fail with respect to 
“generalization.” It is incorrectly assumed that a “passing” model is mandatory. The typical 
expression, “test for accuracy,” contributes to the misperception. 

Let’s begin with the assumption of independence of errors.  We are testing for what 
is called autocorrelation. It is defined as the outcome of the current period influenced by 
one or more previous periods. That would not be the case for the data to this chapter. If we 
were domain experts, we would know that our dataset does not hold chronological 
variables. 

Autocorrelation and testing for it will be a topic to Chapter 10. For a complete 
explanation of regression, we will still see how the test is conducted with the 
durbinWatsonTest function as coded below. The output is Output 7-15. 

 

#Test for independence of error 

durbinWatsonTest(model.6) 

 

The null hypothesis of the test is that there is no autocorrelation in the outcome 
variable. Notice in the Output that the p-value is greater than 0.05. Therefore, we accept 
the hypothesis. Our data are independent rather than autocorrelated. 
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Output 7-15: The data is independent as shown by 
a p-value greater than 0.05. 

At this stage, we also test the model with respect to variance inflation factor (VIF).  
It measures multicollinearity in regression analysis. Multicollinearity is when there is 
correlation between predictors in a model. The VIF estimates how much the variance of a 
regression coefficient is inflated due to multicollinearity in the model. 

Of course, multicollinearity is the expectation rather than the exception. However, 
the presence of extreme multicollinearity can adversely affect the model through the 
regression coefficients. When there is a presence, we rely upon our domain expertise to 
decide which variables to remove without undermining our quest for a particular insight. 

We measure VIF with the vif function. The code is below. Output 7-16 is the 
returned output. 

 

#Test model.6 for multicolinearity 

vif(model.6) 

 

Exactly how large a VIF must be before it causes a problem is a subject of debate. It 
seems to be accepted that a VIF above ten indicates high correlation and is cause for 
concern. The findings are that, except of age and age2, the choice of variables do not cause 
a factor beyond ten. 

 
Output 7-16: The VIF returned show no multicollinearity. 

Sometimes a high VIF is not a concern such as for age and age2. We can get a high 
VIF when including products or powers of variables. An example is x and x2, as we did for 
age. 

Another example is that high VIFs may occur for dummy variables representing 
categorical variables with three or more levels. They too are usually not a problem. 

Next, we will inspect the plot of residuals to predicted expenses. The objective is to 
assess the linearity of the outcome variable and the constancy (homoscedasticity) of 
residuals to the outcome variable. 
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To begin, we extract the fitted values from model.6 and place them in our dataset. 
The following code does that. The newly created variable is named fitted. 

 

#add the fitted points of model.6 to insure.3 

insure.3$fitted<- model.6$fitted.values 

 

Let’s give some attention to the fitted.values variable. If we run the code 
str(model.6) we would discover that everything to the model is actually a data object 
among many objects. As compared to a data frame or matrix it is called a list object. This 
is because any type of object can be included without regard to type. In other words, we 
are looking at every aspect of the model as data. One object is a vector of fitted values. 

The point is that we can reach into any object to the list, pull out specific content and 
place it in another object as we just did with the code. Another example would be to 
reference the element as an argument to another analytic. 

We will use the fitted variable to generate a scatter plot of standardized residuals to 
the fitted predictions. We are looking for linearity with respect to the model’s outcome just 
as we did for each variable in the previous stage to look for necessary transformations. 

The chart of Output 7-17 is the outcome of the code below. 
 

#Student stdResid.3 is from model.6 

residModel.6<- ggplot(insure.3,  

aes(fitted, stdResid.3, )) +  

 geom_point(aes(color = bmiObese, shape = smoker)) + 

 geom_smooth(method = "lm", color = "Blue") + 

 facet_grid(smoker~bmiObese) + 

 theme(legend.position = "none") 

residModel.6 

 

In the output, the loess plot confirms linearity between expenses and model residuals. 
We can also see that the residuals are roughly constant but skewed along the plot. We can 
also see that our non-smoker subsets are more likely to be found as not normally distributed 
due to substantial numbers of outliers. 

Next, we will test the model through the normal distribution of its residuals. Of 
course, we hope to find that they are but Output 7-17 suggests that they are not. We will 
use a statistical test and two visualizations to evaluate the distributions. 
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Output 7-17: Expenses, as fitted variable, against standard 
residuals to model.6. 

We will first statistically test for normality with the shapiro.test function as coded 
below. The returned output is shown in Output 7-18. 

 

#Test for normal distribution 

shapiro.test(insure.3$stdResid.3) 

 

The null hypothesis of the Shapiro test is that there is no difference between the 
variable, stdResid.3, and a normal distribution. The p-value that is much smaller than 0.05 
would cause us to reject the hypothesis. Our data is not normally distributed as will be 
dramatically confirmed by graphic tests to follow. 

 
Output 7-18: The test shows to reject the null 
hypothesis that the distribution is normal. 
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We will use two plots to further inspect the normality of residuals. They are the Q-Q 
and density plots. They were explained in section 5.2.2. The code below will present them 
side by side in Output 7-19. 

 

#Q-Q test 

qqModel.6<- ggplot(data = insure.3,  

  mapping = aes(sample = stdResid.3)) + 

     stat_qq_line(color = "Blue", size = 2) + 

     stat_qq_point() +   

     labs(x = "Theoretical Quantiles",  

  y = "Sample Quantiles") 

qqModel.6 

 

#Density plots.  

hstModel.6<- ggplot(insure.3, aes(stdResid.3)) +  

 geom_histogram(aes(y = ..density..), bins=10, alpha = .4) + 

 stat_function(fun = dnorm, args = list(mean = mean(insure.3$stdResid.3, 

na.rm = TRUE),  

 sd =sd(insure.3$stdResid.3, na.rm = TRUE)), size = 2) 

hstModel.6 

 

#Figure Q-Q plot and Histogram to model.6 

QqHstModel.6<- ggarrange(qqModel.6, hstModel.6,  

ncol = 2, nrow = 1) 

QqHstModel.6 

 

 
Output 7-19: Q-Q and density plots to inspect for normal 
distribution. 
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Recall from earlier chapters, a normal distribution of fitted predictions will track the 
straight line of the Q-Q plot. It does not. We can see why in the layered density plot. The 
normal distribution for data with the mean and variance of the expenses variable are layered 
on the density plot to expenses. 

We can see that the left tail is heavy and the data are strongly skewed to the right. 
The distribution is also highly peaked. This is the consequence of the many high-side 
outliers to the model and of the mass of points clustered tightly along the loess fit. 

Therefore, our model does not pass the full set of tests for generalization. However, 
we have gathered many insights as we built it. That does not mean the model is not 
valuable, or as some would say, “not accurate.” 

The conclusion is that, although the model fits our data very well, we cannot 
generalize the model. We cannot apply the model to make predictions regarding similar 
operations. The model is only applicable to the operation and the data to the model. 
Furthermore, the model will likely “remain good” to the operation by periodically updating 
its feed data. 

Nor is the inability for generalization problematic such that we pine for it. As is 
apparent in this chapter, once an SME builds one model the experience teaches them to 
build any model. Furthermore, the insight out of the design of one model will likely travel 
to equivalent operations. In other words, the issue is insight. It is not that machine learning 
is difficult and that generalized AI is our grail. 

We can guess that the model’s ability to generalize is undermined by the outliers. 
However, rather than “messing up our model” they will be either cases of interesting or 
bad data. Discovering which is worth the price of admission. 

If we investigate each outlier, we may find the record is legitimate. Therefore, our 
question is why and how we should act on with what is found. Or we may realize, as domain 
experts, that there are variables we should seek out or create to include in the model to 
better fit the cases as part of our operation’s reality. If we find the case data is bad, we can 
eliminate the record or impute an estimate. 

We may also want to break the model into sub-models to get to normal distribution. 
Let’s subset and explore the density plots for smoker and bmiObese. Recall from Chapter 5 
that density plots allow us to compare the shape of the data, unaffected by the centering 
and spread characteristics of the compared variables. 

The code below will return visuals to both variables side by side in Output 7-20. 
 

#Density model to compare smoker distributions 

polyDen.Smoke<- ggplot(insure.3, aes(stdResid.3, fill=smoker),  

bins = 10) +  
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 geom_density( alpha = 0.2) + 

 theme(legend.position = c(.9, .9)) 

polyDen.Smoke 

 

#Density model to compare bmiObese distributions 

polyDen.Obese<- ggplot(insure.3, aes(stdResid.3, fill=bmiObese),  

bins = 10) +  

 geom_density( alpha = 0.2) + 

 theme(legend.position = c(.85, .9)) 

polyDen.Obese 

 

#Figure histograms to model.6 on smoker bmiObese 

DenModelInter<- ggarrange(polyDen.Smoke, polyDen.Obese,  

 ncol = 2, nrow = 1) 

DenModelInter 

 

The dual figures suggest that we may find the biggest concentration, skew and heavy 
tail in the non-smoker subset. Output 7-17 showed many more outliers for nonsmokers 
than for smokers. Note that the bmiObese levels have a stronger match. Accordingly, we 
may want to deepen our exploration by building models subdivided by the levels of the 
smoker variable. That is left to the reader. 

 

 
Output 7-20: The distributions are distinctive for smokers but not for 
bmiObese. 

By now, we can see that we will likely not follow a direct path from load, build and 
evaluate a regression. Instead, we will take cycles of investigation and discovery. It is very 
likely that our whole purpose is to see and learn from what emerges as a model is built 
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rather than using the final model to predict; engage it for AI. In other words, what we 
discover will likely lead to improving the asset management processes and roles in ways 
that matter most for advancing enterprise effectiveness and efficiency. 

7.3. Extreme Cases Cleansed by AI 
We know from the many previous graphics there are cases in our data that the model does 
not well fit. Their residuals to predictions are too large to accept without questioning. 

Our first action would have been to seek additional variables to our dataset during 
the previous two stages. For example, we may have suspected that we need variables with 
respect to chronic diseases. 

Now we turn our attention from gathering and evaluating variables to the model to 
evaluate the cases that reside outside of the mainstream. Accordingly, we will inspect the 
cases from two perspectives. First, which cases overly decide the model’s learned 
parameters, intercept and regression coefficients. Second, which cases are outliers to the 
mainstream but do not significantly change the parameters. 

The contrast is that the model’s overall ability to predict is undermined by the first 
type of cases. The model poorly predicts the second type of cases but without significantly 
effecting the model. 

The contrast suggests that we should begin by inspections for the first type. We will 
decide to eliminate or impute estimates to them. Then we will search out the cases of the 
second type. This order prevents the first type from causing or hiding the second. 

Upon the two-staged scheme, Figure 7-4 charts the procedure we will follow through 
this section. 

In the process, the Type I cases are removed from the dataset. To find the Type II 
cases, we run the model with the Type I cases removed and use it to identify the Type II 
cases. Both types are combined in a single  table of dirty cases. A final clean dataset is 
created when the located Type II cases are removed from the dataset.  

  
Figure 7-4: Procedure to find the cases that are out of the mainstream and 
cleanse bad cases. 
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To conduct AI for the purpose of imputing estimated good data, the model is run with 
the clean dataset. The dirty set is presented to the model to return an estimate for each dirty 
case. Finally, the clean and imputed data are combined as the working dataset to the model 
or for whatever purpose we have in mind for the cleansed dataset. 
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Chapter 8 
Achieve Entirety of Data 

Operating systems and spreadsheet software emerged in the 1990s along with the 
reengineering craze around what the systems made possible. Reengineering has passed on 
but most operations, including maintenance and reliability, are now almost completely 
supported by systems. Where there are not systems for tasks along an operation, they are 
frequently supported with homegrown Excel spreadsheets. 

Think about the ramifications. Between them, the technologies capture every type 
and piece of data that is natural to an operation. Consequently, every act of planning, 
organizing, execution and control leaves a data trail. In turn, for every aspect of achievable 
data-driven asset management, what is captured along the trail is the feedstock data. 

To this place in the explanation of data-driven asset management, all has been on the 
presumption of entirety of data. Entirety is defined as all naturally generated data are 
layered, current to capture and accessible on demand. The fact is that few operations have 
fully achieved the standard of entirety. 

Data in a layered structure, as the first defining characteristic of entirety, recognizes 
that some data follows trails that are outside any operating system. The cases are visible as 
Excel spreadsheets. This is compared to system standard reports. 

Spreadsheets are frequently engaged by role holders in the conduct of the processes 
they are responsible for. It follows that a data-driven enterprise would want to capitalize 
on the data trail within them. Unfortunately, the data in the background of the information 
is often lost to us because it is not captured within the discipline of a system. Instead, data 
and report are fused into a single object. 

Current to capture operational data, the second defining characteristic of entirety, 
recognizes that the data along the trail must be available timely to all data-driven activities. 
Otherwise, our activities will be limited to those still allowed by the time the system’s data 
are made available through the system. 

An example is craft hours distributed to work orders. Ideally, hours would be 
recorded directly into a CMMS or hours tracking system and accessible close to real time. 
Otherwise, it may be days before the hours become available data accessible to us as a 
system standard report. Our data is continually short of entirety. 
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The third defining characteristic of entirety is that operational data must be accessible 
upon demand.  The data in the system may be timely. However, the system may have not 
been configured to allow us to extract some operational data as system standard reports. 

An example is work status history from a CMMS. For some inexplicable reason many 
maintenance systems still do not allow the history of a group of orders to be extracted as a 
system standard report. For these plants, their data is not entire to its role holders, although 
entire to its systems. Consequently, the plants do not have the functional entirety to be fully 
data driven. 

The bottom line is that any plant will have data following trails through the discipline 
of operating systems. The problem is that this describes only a part of the total data flowing 
through the operation. Accordingly, a plant cannot rest upon a satisfaction of what it has 
but must, instead, achieve entirety. This chapter will fully explain the introduced three 
characteristics of entirety and demonstrate each, in the context of practices for maintenance 
excellence, how full entirety is achieved. 

The data to the chapter are available for download from the webpage provided by the 
preface. In the Excel file, SkillsForCareerSecurity_Datasets.xlsx, the datasets are as the 
sheets tblTimeSheet and tblStatusHistory. 

8.1. Layered Structure 
All system standard reports, dashboards and analytics sit on top of one thing. Data 
formatted as tables. The tasks along an operation’s processes both contribute and extract 
the data captured and stored as tables in a relational database. 

What about the tasks along the operation that are not subjected to the relational-
database discipline of an operating system and are, instead, conducted with software such 
as Excel? Are they being conducted while observing the two-layered structure that is 
inherent to the principle of a system and its relational database? We need them to be. 

Let’s establish what is meant by a layered structure in contrast to a spreadsheet 
structure. Layered is the correct practice but spreadsheet is the most frequently observed. 
The important point is that layered structure is mandatory to having available to us the 
entirety of the data thrown off by an operation. 

To begin the explanation, we must establish precisely what is a table in contrast to 
what is a spreadsheet. This has become clear from the previous chapters, but the contrast 
tells the story.  

A table is defined by its format because the following rules hold: 
• Each column is a variable of numeric, categorical or free-text information.
• Column headers are single level, no header spans multiple variables.
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• A table is tabular in its variables. For example, rather than a column for each shift,
the day and night shifts are categories to single variable, e.g., Shift.

• Along the left side there are no titles for row, sections and subsections, and subtotals
and totals.

• There are no separation (empty) rows.
• Only horizontal calculations are allowed and the results are a variable to the table.
• A table is continuous.

Let’s expand on the criterion of “continuous.” Imagine an Excel file with individual
sheets for a group such as periods, cost centers, etc. Instead, the group of the sheets are 
made a variable, thus, making the table continuous. Many sheets become a single sheet. 

Chapter 3 not only showed this format but demonstrated why it matters. Figures 8-3 
and 8-4 are examples of data formatted as tables. 

In contrast, Figure 8-1 is a spreadsheet to an operational task conducted with Excel. 
We can see in it that there are no rules to a spreadsheet format other than the integrity of 
its information. 

The following rules of a table format are broken in the shown spreadsheet: 
• There are multiple levels to the column headers.
• Each location and order type are a variable, rather than two tabular variables.
• Along the left side, titles are given to every row.
• There are separation rows.
• There are vertical calculations to variables: totals and subtotals.
• The spreadsheet is not one in a continuous spreadsheet but a single day to a daily

report.
What we see in the spreadsheet is also defining. Data, calculation, filtering and 

presentation are fused into a single static object. If we want to utilize the data embedded in 
the spreadsheet, we must extract it manually. At the least, extraction is a substantial task. 
At the most, as it often is, it is a prohibitively laborious task. 

To apply some nontechnical terminology, the report is a hot mess. It was the bane of 
daily existence to dozens of role holders in its daily data gathering and preparation. 

Now to define what is a layered structure and why we care so much. As mentioned 
all operating systems work on the principle of layers, no exceptions. 

The principle of layers is simple. Data and report are separate objects. The report is 
a layer on top of a data table as a separate layer. In contrast, and as already mentioned, data 
and report are “fused” in a spreadsheet as single static object. 
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How we move from a spreadsheet to a layered structure is easy to see. As the insert 
demonstrates, we would find that the fused spreadsheet of Figure 8-1 entails six variables: 
Date, Unit, MaintType, LaborGrp and Contractor. All fused spreadsheets are constructed 
upon data that are, in fact, an identifiable set of variables. 

Figure 8-1: Spreadsheets violate every rule of a data table. 

Therefore, the “first layer” is a table designed to capture and store the six variables 
for each record (row) upon which the spreadsheet is constructed. Of the six, the date 
variable makes the table continuous.  

For each record, those who submit information to the process merely fill in a row to 
the table with the data. Done and done! 

In contrast, entering data in a fused spreadsheet is akin to completing a form by 
tediously inserting each item of the data in the appropriate cell. Furthermore, any task that 
requires thought and concentration invites errors in both the data and report. 

In the “second layer” of a layered structure are the task standard reports and data 
analytics. They reach into the table layer and return their deliverables. As time passes, 
records are added to the table. Rather than a significant task, the reports and analytics are 
instantaneously updated on command. 
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Under a two-layer regime, the spreadsheet of Figure 8-1 is never built. Instead, the 
spreadsheet is generated with Excel Pivot or an equivalent software. As a working second 
layer, Excel Pivot is the most ubiquitous of all offerings. 

A layered structure is a gift that keeps giving. First, multiple perspectives to the same 
operational issue, can be readily created in a pivot at the speed of click and drag. Second, 
rather than the static spreadsheet of Figure 8-1, we can interactively slice-dice, drill down 
and roll up in search of insight. Third, any table can as an independent object can be reached 
into from whatever operational task and for whatever super table to which its data are 
contributory. 

How do we get past the fused spreadsheets that prevent entirety of data? First is to 
locate them and identify the variables to them. Second, and we have an option, we can 
work a two layered structure from this day on. Alternatively, we can extract the variables 
some distance back in the past and begin a two-layered structure from the earliest extracted 
history to the present. The choice is decided by whether we can accept the accumulation of 
data without recovering it from the fused past. 
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Chapter 9 
Workload-Based Budget and Variance 

 
 
 

Recall from Chapter 1 the definition of availability. It is the probability a plant, subsystem 
or item will be in a state to perform a required function at specified standards of 
performance under given conditions when called for; assuming cost-effective support with 
respect to working conditions, processes and resources. 

The proposition is simple in principle and action. Plant or system availability is 
sustained by recognizing and cost effectively delivering the maintenance workload to 
sustain plant performance and condition. 

The problem is that the most observed practices for maintenance budget and variance 
are inconsistent with the proposition. Plants budget and control dollars for labor, materials, 
etc., This contrasts with budget and control workload and the labor, materials, etc. to 
execute it. 

To succeed at sustained availably and condition, and optimal maintenance capacity, 
all roads must pass through dual-dimensional budget and variance. There are three 
objectives. First is to confirm that the determined sustaining workload is being 
accomplished on monthly pace. Second is to confirm that execution is consistent with 
budgeted productivity. Third is to use the plant as a model to progressively align the craft 
force, as maintenance capacity, to workload. 

This chapter will explain, by demonstration, dual dimensional budget and variance. 
It will begin with explaining the principles and calculations to build the budget and to 
measure the actuals against it. What is explained and demonstrated only requires skills with 
MS Access and Excel Pivot. In other words, budget and variance requires the skills of 
working with data as taught in Chapter 3 rather than skills of a data scientist. 

The methods to forecasting workload and resources can range from basic to 
sophisticated. The former, is largely averages combined with expertise in the plant. The 
latter also draw upon familiarity but engage time series analytics, the subject of Chapter 10. 
Because basic approaches can usually get us where we need to be, the chapter will stick to 
the averaging rather than step into advanced analytics. 

Three demonstration cases will be presented. They are to report month and year to 
date variance from budget, evaluate for systemic variance while seeking outlier orders, and 
align craft force capacity. The data to the demonstrations are available for download from 
the webpage provided by the preface. It is contained in the Excel File, 
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DataBookAsssetMgtXlsx.xlsx, as the sheets tblHistory2019, tblActual2020, 
tblCraftBaseline and tblCraftSample. 

All queries to budget and variance are built in MS Access and then reported out in 
Excel pivots. The code to forming the Access objects are provided throughout the chapter. 

9.1. Framework for Budget and Variance 
To prove and assure business-optimal maintenance spending, plants need to break away 
from the typical and largely ineffective approach that is essentially a spending allowance. 
This section will describe two-dimensional budget and variance control as the break away. 
In contrast, spending allowance is one-dimensional. 

9.1.1. Mission, Structure and Derivation 
To begin with, we need to define the mission, structure and derivation of the budget and 
variance system. 

Mission:  Just as maintenance is a sub-budget in the plant’s grand budget, there is a 
sub-budget for plant aggregate production. Consequently, the mission of the maintenance 
budget and variance system is to allow the plant to connect maintenance work to the 
readiness of production assets that deliver the aggregate plan. It will concurrently allow the 
plant to connect work to staying abreast of plant deterioration, thus, protecting against 
being overridden by work to sustain readiness. Along with doing the work to assure 
sustained readiness and counter deterioration, the third aspect of the mission is to cost 
effectively do the work. 

Structure:  There are two levels to any budget and variance system: structure and 
derivation. The system must have a structure to which the details of budgeted and actual 
spending are attached and from which variance can be clearly seen. Figure 9-1 depicts the 
choices for structure. 

The left-most structure shows only one dimension of information: total cost or cost 
with respect to expended and engaged resources. The right-most structure shows the two 
dimensions of information: activity and cost per activity. 

With one dimension, there can only be a single net variance. With two dimensions, 
there is variance for each of the dimensions: variance due to activity and variance due to 
cost per activity. 

It is apparent that the contrast in insight is akin to navigating to a destination with 
latitude and longitude or tracking the number of miles allowed to get there. With miles as 
control, if we arrive at all, we will almost surely travel excess miles. 
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Figure 9-1: The contrast between one- and two-dimensional 
structures is insight. 

Derivation: The second level of a budget and variance system is how we formulate 
the details of the budget. The question is asked and answered at each intersection of cost 
center, work type, cost type, craft type, asset type and components, etc. The intersections 
are the “groups” on which the system will budget and monitor variances. 

The choices for derivation range from zero-based budgeting to predictive-based 
budgeting. The term “range” is appropriate because every budget group will be at the 
extreme of the range or somewhere in between. Invariably along the range, we build up 
from activities to the direct and indirect resources to conduct them. It is important to note 
that one-dimensional budgeting depicted in Figure 9-1 does not exist on the continuum 
because workload is not its basis. 

At one extreme, zero-based budgeting establishes named tasks for named equipment 
and their components. To budget we must identify every failure mode, every maintenance 
strategy to each mode, every task to each strategy and every resource to every task. We 
would also establish when the tasks will be called for. Obviously, this is perfection, 
prescient and impossible except for very limited special cases. 

At the other extreme, predictive-based budgeting uses statistics-based methods and 
models to establish the expected number of tasks, and the resources and cost to do them. 
In contrast to zero-based, it does not attempt to name in advance the failure modes and the 
tasks for each item of equipment and its components. 

The choice is not chiseled in stone. The approach taken will reflect the best strategy 
for each of the many budget groups across the plant. 

An example is any type of maintenance driven by timing. In a perfectly developed 
situation, we can query the appropriate system to form a budget for these work categories. 
If not so perfect, we can query status history to quantify the incurrence of work. 

Copyright 2021 Richard G. Lamb



240 | Chapter 9 
 

 

Partial or fully predictive-based derivation will be the most common case. This is 
because plants rarely have the perfection of computer systems, roles and data to make full 
zero-based derivation remotely feasible. Furthermore, systems for scheduled maintenance 
lack perfection and, thus, make a predictive derivation the best choice. 

Predictive-based derivation also allows the plant to get around limitations and 
weaknesses in its historical data. Consequently, the plant can begin immediately to tap the 
benefits of two-dimensional budgeting and variance. The operation will not need to first 
improve or enforce operational rules-of-conduct as needed to eliminate the limitations and 
weaknesses, and then wait for good data to amass. Time waiting is big money, forever lost. 

As already said, the approach to derivation falls outside the range between zero- and 
predictive-based derivation. The budget is essentially a “spending allowance” rather than 
spending derived up from activity. The budget for each of the many budget groups is the 
sum of its spending allowances for labor, parts and materials, services, etc. 

So where do the one-dimensional spending allowances come from? Most 
importantly, the answer disqualifies the approach as meaningful. 

The allowances for the categories of resource are typically the past year projected 
into the budget year after adjustments such as inflation. Too often they are the outcome of 
negotiations or some challenge to spend less while doing more but without the budget 
analysis to know what is feasible as “less and more.” Sometimes they are based on industry 
indexes such as percent of plant replacement cost. Most cases are the interplay of adjusted 
history, replacement value, negotiation and challenge. 

The Chapter will keep derivation basic in order to demonstrate dual-dimension 
budget and variance. Workload will be based on requested and approved work divided by 
12 months. Hours, materials, etc., will be averages to each budget group. The chapter will 
also speak to cases in which the averages to some resources are not trustworthy data. 

Otherwise, there are very slick ways to look at history and build forecasts with time 
series analytics. Time series for forecasting budgets, among many purposes, is the subject 
Chapter 10. 

9.1.2. The Two Dimensions 
In contrast to a one-dimensional structure, a two-dimensional structure complies with 

the core-most rule-of-gravity in cost accounting. All costs have two dimensions. Figure 9-2 
shows the dimensions to be activity (job count) and factors of cost. Let’s look closer at 
each. 

Activity Dimension: The anchor dimension is activity (AKA, workload) because 
everything including indirect work, starts at the direct work that needs to be done. For a 
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maintenance operation, activity is the number of jobs for each budget group. As mentioned 
previously, all budget groups are bounded with respect to categories such as cost center 
and accountability, work type, order craft type, craft types to the order, asset type, etc. 

For a host of profound reasons, it is not practical to attempt zero-based budgeting to 
set the activity budget. We would, instead, reach back into the historical data for incurred 
and occurred work orders. Time series analytics could also be used to arrive at the activity 
dimension of the budget, but statistical averaging is usually practical. From whatever 
method taken, we will most likely set the budget on smoothed levels of activity. 

 
Figure 9-2: To be meaningful, budgets must 
be the intersection of two dimensions. 

Factors-of-Cost Dimension: The other shoe to the activity dimension is to quantify 
the resources that will be engaged and consumed to execute the budgeted activity, and then 
the direct and possibly indirect costs of the resources. As shown in Figure 9-2, the 
dimension can be called “factors of cost.” The factors or units of cost, as an extension of 
activity, are derived according to the nature of each budget group. 

Whereas, the activity dimension ties back to the plant’s aggregate production plan 
and staying abreast of its deterioration, the factors-of-cost dimension has its own 
connections to profit and enterprise ROI. First is the indirect connection to revenue through 
the adequacy of resources available to deliver the budgeted activity. Second is the 
connection between enterprise expense and the direct and indirect resources that are pulled 
in by the activity budget. 
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9.1.3. Budget 
Let’s step from the concept of dual-dimensional budget to an actual working Excel 

spreadsheet. Figure 9-3 compares two- and one-dimensional budgets.  The comparison 
dramatically highlights the distinction. 

Both structures have two characteristics in common. Both are the same three budget 
groups. Both present a total spending budget for three costs: hours and payroll, materials 
and services. 

However, the difference in transparency looms large for insight and decision-making. 
First, the activity dimension is added for each budget group. Second, average labor hours 
per job and total hours are added. Finally, the averages per job for payroll, materials and 
services per job and their totals are added. 

 
Figure 9-3: The comparative guiding value of the budget structures is immediately 
apparent. 

In contrast to one-dimensional budgets, we are presented with every natural detail of 
planned activity and spending. But wait, there is more! Behind the curtain of the shown 
detail are the body of records, datasets and models by which the terms were developed. It 
follows that the budget team and management can drill down to them as needed for insight 
along the way to arriving at consensus. 

The difference in insight will no doubt change immensely the discussion of the 
budget. For activity, the discussion may be why the expectations are what they are. It may 
be whether select budget groups can be reduced and earmarked for catchup when current 
business conditions improve. For the factors of cost, the discussion may be if the resources 
and associated costs are reasonable and where and how is it possible to better align and 
reduce them. 
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9.1.4. Variance 
With a one-dimensional structure, the plant has very little power to steer and control 

its monthly activity and cost. And, of course, the whole purpose of budgeting and variance. 
The immensity of what is lost is best demonstrated by what is gained when we operate with 
two-dimensional budgets and variance. 

Figure 9-4 is a conceptual depiction of what cost accounting calls “flexible” 
budgeting as compared to “static” budgeting. 

 
Figure 9-4: The true story of the month can only be known through 
dimensional subvariances. 

Conceptually, flexible budgeting is the overlay of two rectangles: budget and actual. 
In a world of certainty, they would match each month throughout the budget period. Of 
course, they never do which is why there is variance reporting. 

The cross-hatched areas are the variances to each dimension of the subject budget 
group. The calculations of the variances are straightforward and, as shown Figure 9-4, are 
as follows: 

 
Variance due to count = (AJC – BJC)*BHJ     (9-1) 
Variance due to hours = (AHJ – BHJ)*AJC     (9-2) 
Where: 
BJC = Budget job count. 
AJC = Actual job count. 
BHJ = Budget hours per job. 
AHJ = Actual hours per job. 
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It is also important to note that the calculation of the “due to” variances cannot be 
made on the back of a one-dimensional budget. There is no baseline upon which to do so. 

The figure’s table of calculated variances dramatically demonstrates what is forfeited 
with a one-dimensional structure. The capability to make decisions and take actions in 
response to the true story is lost. Instead, plants are making decisions and taking actions on 
the misinformation that one-dimensional variances almost always are. 

The table of payroll variances for the budget group tells the true story. In this case, 
actual payroll overran budget by $7,246. Note that this is the totality of all that can be 
known out of a one-dimensional structure. 

The total net overrun is not huge. It is approximately 4.7 percent of the month’s 
budget. However, when we pull back the two-dimensional curtain, the revealed true bad is 
17.5 percent of the month’s spending. The variance of both, in a bad direction, is 
significantly greater than the net variance. 

The revealed true bad shows that total overrun is misinformation. Instead, we would 
find that the subvariance for activity bodes poorly for the plant’s ability to deliver its 
planned aggregate production and stay abreast of deterioration. Less work was done then 
is known by budget to be necessary during the period. We would also find that the cost to 
do the work that was completed is much greater than it should have been. This would 
suggest our activity did not fall short for lack of craft force capacity. 

Now let’s step from the concept of dimensions to an actual working report. Figure 9-5 
shows, as contrasts, the two- and one-dimensional monthly variance report for a single 
budget group. 

As seen in Figure 9-5, the one-dimensional variance report only reports the 
differences between the month’s total budgeted and actual spending. However, the true, 
actionable story can only be known if the variances are reported as their dimensional sub-
variances: variance due to work done and variance due to factors of cost. 

In the figure, the subvariances are reported in the two-dimensional variance report. 
In contrast, they are conspicuously absent from the one-dimensional variance report. 

It is easy to see what is gained when all variances are presented in the two-
dimensional variance report. We can see in the report, the scenario of insight instead of 
misinformation that was described and shown in its Figure 9-4. Without a two-dimensional 
variance report, maintenance professionals can remember times that their plants’ 
management inappropriately responded to one-dimensional totals. They zigged when they 
should have zagged. Later, the innocent were punished and the guilty were rewarded. 

Two-dimensional variance reporting is doubly exciting. It allows so much more than 
just to report subvariances. Because each variance is tied to an analytical workup, it follows 
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that we can trace from the trailhead of each subvariance in the variance report to the outlier 
orders and systemic forces that caused the variances. 

 
Figure 9-5: The comparative ability of the variance structures to tell the 
true story. 

The ability to trace to the roots of variations gives us the deep insight on which to 
decide upon appropriate adjustments to planned spending as the year unfolds. It also 
sharpens the plant’s ability to plan and control the next budget year. Just as exciting, 
reliability and maintenance professionals can find in the answers exactly where business 
profits and returns can most be advanced through surgically redesigned maintenance and 
reliability practices and procedures. 

Finally, we can summarize the contrast between two- and one-dimensional structures 
as it was well verbalized by a senior executive. She admitted, “Each month we have big 
questions about maintenance, but know we can’t have an answer. And if we do get an 
answer, we know it is not a good one. Now we can get good answers.” 

9.2. From History to Budget to Variance 
The previous section explained the principles and calculations of duel dimensional budget 
and variance. Figure 9-3 presented a detailed budget and Figure 9-5 a detailed variance 
report. 

The Excel-based reports allowed us to see the principles in full form. However, we 
can show the details in interactive pivot charts and tables rather than the somewhat 
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impractical presented form of a spreadsheet. This section will demonstrate how to build 
the elements of the figures in MS Access and present them in Excel pivot charts. 

The Figures 9-3 and 9-5 were also full scope. They included all factors of cost to the 
plant the example was taken from. However, the demonstration will focus on hours per 
job. Because it is operationally pragmatic to narrow budget and variance to hours, a plant 
may decide to operate as demonstrated in this section rather than extend to a full-scope 
system. 

This is pragmatic because hours are both the greatest and most controllable of all cost 
factors. They also most directly decide sustained readiness, condition and maintenance 
expense. As a variable in maintenance, craft hours are the knob to most adjust maintenance 
capacity, budget and variance to the workload. In other words, a plant may decide to budget 
and variance on what matters most. 

Repair parts are a good counter example. Although a significant proportion of the 
maintenance expense, they follow work rather than are directly controlled. This is equally 
so for most cost groups in maintenance expense. 

Having said that, the value of a full-scope budget is that we can present to 
management a full budget built up from the workload to cost effectively sustain plant 
performance and stay abreast of deterioration. Stated differently, we can present to 
management the defendable detail of having put pencil to paper. 

Another perspective is that the enterprise will need a bottom line for the maintenance 
operation within its overall total. Although not described in the chapter, all indirect and 
overhead costs would be layered on the full scope of direct maintenance expenses. 

It is always possible that what is found as required in the proposed budget cannot be 
funded due to circumstances such as business cycle. When so, the maintenance operation 
has a factual basis upon which to collaborate with plant management to revise the workload 
by design: putting pencil to paper. Along the way management can know and stay on top 
of the ramifications. Furthermore, the revisions can be reflected in the next budget cycle. 

The methods to be demonstrated in the chapter for direct hours would be emulated 
for all cost groups in the maintenance expense. As the chapter unfolds, focused on direct 
hours, it will still describe how to build a full scope system. The readers will be able to 
work the described alternative with the degree of instruction provided. 

9.2.1. The Case 
The case is simulated data of the typical variables to a maintenance operation. They 

recognize budget groups as permutation of the plant’s variables which will at the least be 
cost center, maintenance type and order craft type. Further granularity could include the 
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categories of crafts as disciplines engaged in each order, crew and asset type. The big point 
is that all groups are pinned to workload.  

The demonstration will present as two cost centers although a plant may be tens of 
centers. It will also include only two of the five maintenance types defined in RCM: 
condition based and corrective. Finally, the case will group orders by two lead craft types: 
mechanical and electrical. We could, but will not, include craft disciplines such a mechanic 
and electrician. The extension will be demonstrated in Section 9.4. 

Craft hours can be direct employees and contractors. The case assumes both sources 
are engaged in the same workload and, because we report on hours rather than dollars, we 
have no need to distinguish them as budget groups. Alternatively, a plant may choose to 
add the distinction of direct employees and contractors to the budget grouping scheme. 

The number of variables in the budget groups are limited in the case because of the 
work to simulate a typical dataset of all real-world budget and variance groups is 
prohibitive. However, the effort to build budgets and report variance for the many groups 
we would expect in real life is no different or greater than what is demonstrated. 

The case simulates work history for 12 months and actuals for the first three months 
of the variance year. In real life we may, and easily can, reach back farther than 12 months. 
We may do so if we suspect there are longer-term changing patterns in the workload we 
should consider in our budget. 

The case will follow the progression of input tables, queries and report out pivots as 
shown in Figure 9-6. Note that once the system of input tables, queries and pivots are built, 
updating tblActual2020 for the latest month is the only action needed to update the set of 
Excel pivot reports. The sausage is automatic once the meat is dropped into the grinder. 

Because of this automation, the monthly variance report is available almost as soon 
as the data are complete for the month. Furthermore, because of being scoped on hours, 
our data in the CMMS and by entirety (Chapter 8) is complete after the last timesheet is 
completed at the front line (Section 8.2). Thence, we can have our report for the month 
within an hour with respect to this most actionable dimension of plant performance, state 
and operating expense.  

The history of activity, 960 orders, is what would be queried from the CMMS. We 
have titled it as tblHistory2019. To form the data into a budget, the history will be grouped 
by the budget grouping. That happens in qryBudget2020. 

Beginning with the first month of the variance year, we bring a table of extracted 
data, tblActual2020, of orders completed in the variance year. Within the 
qryActualGrp2020, the actuals data are grouped to match line by line the groups of 
qryBudget2020. 
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Figure 9-6: Schematic of the budget and variance 
process. 

Because the budget and variance queries consist of mirror rows for budget groups 
and variables, we can join them to form the query on which variance reporting is done. In 
qryActualVsBudget we set up the variance equations 9-1 and 9-2, and total variance. The 
result of the calculations is reported visually as an interactive Excel pivot chart. 

Of the almost infinite possible charts and tables possible by pivot on top of 
qryActualVsBudget, four will be presented to generally demonstrate just a few of the many 
thought processes that dual-dimension budget and variance make possible. As charted in 
Figure 9-6, they are as follows:  

• Variance of all groups in the current month: March. 
• Variance in job counts in the current month. 
• Variance for each month to date: January, February and March. 
• Total variance for year to date: aggregation of the months to date. 

Of course, a maintenance analyst will search through the returned variances from 
many directions, limited only by their forensic senses. The forensics will reflect the 
circumstances and nuances of each plant and variables to their budget groups. The query 
qryActualVsBudget allows tremendous flexibility. Pivots allow us to interact with the 
flexibility with no more effort than click and drag. 

It was previously promised that, along the way, the full-scope case would be 
described to the degree the reader will need to be able to build it. At this stage, the only 
difference is that we would have included labor cost, parts and materials, and other costs 
as variables in tblHistory2019 and tblActual2020. In real life, we would typically do that 
on general principle, regardless of our chosen focus. 
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9.3. Variance as Systemic or by Outliers 
Is the variance systemic, due to outliers or both? We essentially back into the assessment. 
Of course, we always want to know of our outliers, but are there outliers with too much 
influence on the group average? After accounting for outliers, are we still systemically 
off target? 

This section will demonstrate the method to locate outliers. The section will then 
describe approaches to evaluate for systemic variance once the outliers are accounted for. 

Chapter 3 introduced Student T and Z-score as boundary measures with which to flag 
outliers. We will use the Student T approach rather than the Z-Score. The reason is to 
adjust the confidence limits by which an order is considered as an outlier. The Student T 
adjusts the measure to reflect the count of jobs in each budget group. The Z-score does 
not. 

When the count is infinity, Student T and Z-scores are equal. Recall that to a normal 
distribution, 68 percent of all observations will fall within one standard deviation. 
The statistical reality is that, short of infinity, less than 68 percent of the observations 
will fall within one standard deviation. 

This can be seen by contrasting the measures at 95 percent confidence. The Z-score 
is +/- 1.96. In contrast, the Student T for 20 observations is +/- 2.08. 

Let’s make a final note of the importance of being able to seek true outliers. Without 
a method to seek true outliers, some plants investigate the top ten most costly orders. 
The problem is that, more times than not, they are legitimately the costliest orders 
rather than outliers. However, the purpose of budget and variance is to find the orders 
that are. The human difference is that we waste our time investigating what does 
not call for investigation.  
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9.3.1. The Case 
To create statistical mass, we will choose to conduct the analytic cumulatively. At 

each month, all orders up to the month will be included. This sharpens the search as the 
year unfolds. It also causes past orders to be retested as there are more observations. 

The schematic for the search is shown in Figure 9-8. 

Figure 9-8: Schematic to return table of 
outlier orders for year to date. 

We start with the actuals for the months to date. In qryOutlierAggregate, the count, 
mean and standard deviation to each budget group are created with aggregation variables. 
In qryOutlierAggWithTest, qryOutlierAggregate is extended to include the Student T for 
each group by joining with tblStudTest. In qryOutlierOrders, the group statistics are joined 
with the table of actuals and each order is tested as an outlier. Finally, the findings are 
interactively inspected in pvtOutlierOrders. 
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9.4. Maintenance Craft Capacity 
It is easy to fall into thinking that planning and scheduling, and executing work decide 
craft force productivity. The reality is that, if we cannot align our craft force as 
maintenance capacity to the capacity required to fulfill workload, we will be either 
unable to maximize productivity or to deliver sustaining workload. 

Over capacity is the greatest cause of maintenance expense overrun. Alternatively, 
under-capacity may present as high craft force productivity, but the plant will eventually 
fail to meet its production plans and its value as an asset will decline. 

We saw in the variance analysis of Section 9.2 the possible red flags of potential 
mismatches of craft force capacity and workload. In the case of variance, we seek cause 
and find that some are driven by capacity. We would also want to determine if we were 
head faked while seeking appropriate capacity because job planning has 
systemically prepared job plans that are too loose or too tight. 

Therefore, an organizational goal is to arrive at a work force that is a reasonable 
optimal match to workload with respect to effective person years. Because we have 
budgeted workload, we have the primary elements at hand with which to tease the optimal 
craft force from our data. 
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However, we cannot simply add up the total hours expected for each craft category 
to execute the year’s workload and then divide by hours per craft per year. This is because 
maintenance is a “job shop” operation of varying arrival counts, varying jobs, varying 
resources to each and varying time to complete. 

One trail for seeking the optimal is to marry the process and methods of budget and 
variance and the processes of planning, organizing and scheduling each day’s and week’s 
work execution. We can join, in super tables, the variables of the schedule, basic job plan 
details for craft category and headcount, and timesheets. With the super tables we can work 
with analytical approaches to seek out an optimal craft force. 

Another commonsense method is to simulate the number and mixture of crafts to 
execute a collection of generalized single-day workloads. They would be templated on the 
budgeted smoothed workload. 

Simulation can be done with the functionality of scheduling software such as MS 
Project. The software will assign craft disciplines and grades from a pool of crafts to the 
day’s tasks until the proper compliment of resources are not available to do the next task. 
By trial and error, the mixture and count of the craft pool will converge on the optimal craft 
force. 

The strategies for designing a craft force by analytics are the subject of Chapter 11. 
However, the budget and variance process also has a role in finding the optimal capacity. 

The budget quantifies the annual workload. When execution is by smoothed 
workload or other patterns, we can spot indicators of misaligned capacity. As we saw in 
Section 9.2.5, an indicator of over capacity is finding that we exceeded smoothed 
workload. Another indicator of misaligned capacity is when our reports show over and 
underrun for hours. 

Ultimately, we create a loop of budget and variance to scheduled and unscheduled 
work, job plans and timesheets to gravitate to craft force. As just mentioned, the interplay 
of methods will be a subject of Chapter 11. This section will explain the methods of budget 
and variance with respect to seeking indicators of poor capacity match. 

9.4.1. The Case 
The differences in the case and earlier sections are the aggregation of craft 

disciplines. The previous sections aggregated  work by lead craft without regard for 
disciplines. In this case, we will set up the dual-dimensional structure for the craft 
disciplines to the work order. 

For example, we have electrical and mechanical orders. For each there can be 
electricians, mechanics and more.  We want our dual-dimensional structure upon them 
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rather than the aggregation on lead craft as we have demonstrated throughout the previous 
two sections. 

There is another distinction. In the previous section we created a budget from the last 
12 months and then compared the data to its subsequent variance year. In this case, we take 
one or more years back from now to set the baseline. In turn, we contrast the actuals of the 
last 12 months. Recall that the baseline is work requested and approved rather than work 
completed as it is for actuals. 

For the case, a new set of tables has been created The only reason is to dodge the 
drudge of extending the 960 simulated orders to include multiple craft disciplines. The 
tables to the case are of an adequate number of records to demonstrate the processes that 
would be scaled up for a full set of real-life records. It is left to readers with their own data 
to work the full analysis as it will be demonstrated. 

The tables are available as sheets tblCraftBaseline and tblCraftSample in the 
previously mentioned Excel file, SkillsForCareerSecurity_Datasets.xlsx. 

Figure 9-11 shows the scheme from data tables to queries to Excel pivot chart. Once 
constructed, the process through the queries is automatic. Whenever the input tables are 
updated, the data will flow through to qrySampleVsBaseline and to Excel 
pvtCraftCapacity. 

Figure 9-11: Tables, queries and pivot to 
analyze craft force maintenance capacity. 

The explanation will begin at the end. It will present representative pivot charts and 
describe some of the thought processes they suggest possible. After that we will see how 
we got there with the queries in Access. 
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Chapter 10 
Through the Lens of Time Series 

At the mention of time series, we think of a line chart of some variable as its vertical axis 
and unit of time as its horizontal axis. It is a form of insight that may be one of the most 
pervasive of all insight deliverables. It is hard to imagine managing without our many 
routinely disseminated line charts. 

However, what is customary, since invented by William Playfair in 1786, is marginal 
insight vis-à-vis modern possibility in which analytics are so accessible. This is because 
what is typically presented with line charts has buried within it a trove of essential insights. 
At most, with the customary, we can see movement and spot outliers and bad data. 

In contrast, we use time series to understand the past and forecast the future upon the 
understanding. The big idea is to quantify the main features and randomness of the series. 

The main features are trend and seasonal or cyclical variation that can be modeled 
deterministically. A third feature of time series is the degree that observations close 
together in time are correlated or serially dependent. 

A systemic change in the time series that does not appear as periodic is usually called 
trend although naming, as we shall see, is not fixed. A repeating pattern within the fixed 
period such as year is a seasonal or cyclic feature. There can be cycles that do not match 
the fixed period. We would recognize them in the trend feature. 

The methodology of time series analytics is to distinguish and explain the main 
features and correlation using dissection and statistical models. Once a good model is fitted 
to the features and correlation, we have the means to better understand what happened and 
if desired, forecast the future on what happened. 

The variables of interest to time series are likely to be the predictor variables to a 
dependent outcome variable. We may start with the time series to an outcome variable to 
look for undesirable patterns and then investigate the time series to the predictor variables. 
We may have determined the predictors of greatest interest by other types of analytics such 
as regression and ANOVA. 

As we ponder a time series, we must also be aware that the series may be random, 
thus, unpredictable. It makes no sense to forecast on randomness. We should also be aware 
that there is a possibility that a series can appear deterministic when it is actually random. 
These are called random walks and can fake us into misguided actions. 
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And then there are forecasts. Upon a deterministic series, a forecast relies on the 
assumption that the present circumstances will continue. If we are forecasting beyond a 
year, it would be better to regard the insight as a scenario. 

The introduction of a time series points to a body of questions to ask of a series. As 
expressed by the opening paragraphs, a traditional line chart does not allow questioning 
beyond shallow. 

This chapter will explain by demonstration how to answer the deeper questions. Are 
there seasons or cycles across the fixed periods? After removing the cycles, what does the 
adjusted series (trend) look like? Are there cycles in the trend spanning multiple fixed 
periods? Is a current period influenced by one or more previous periods? Can the series, 
adjusted for cycle, be modeled or is it a random walk? Is there drift in the random walk? 
Are there lead-lag patterns between variables? Can we comfortably form a forecast upon 
the series? How far out can we safely forecast? 

Inspecting the predictor variable to an outcome was mentioned. The previous chapter 
calculated averages upon workload history for the budget period and groups. We could 
have used the practices of this chapter to arrive at workload upon deeper understanding of 
the history and nuances of the workload. We could have also explored for trends in hours 
per types of orders and other influencing circumstances.  

Maintenance practitioners wax poetic about key performance indicators (KPI). It is 
hugely insightful to explore patterns in the KPIs with time series analytics. Furthermore, 
we can seek and validate the strength of lead-lag patterns. This takes us to an additional 
question. Are our intuitive assumptions for lead-lag true and, if true, significant? 

The sections to follow will introduce what is called a time series object and the 
R functions to work with series and to answer the many enumerated questions. All will 
be shown as R in action. 
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10.2. Analytics with Time Series 
The previous section described times series as an R object just as are data frames, matrices, 
vectors and many others. The section described how to work with them. Now to shift gears 
to the analytic possibilities. 
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10.2.1. Notation, Models and Smoothing 
We have defined a time series object and how to plot, slice-dice and combine it with 

others. However, that is the tip of the iceberg and we now need to move to fitting models 
to time series. 

Accordingly, we need to set some notation. A time series is a series of length n. It is 
depicted as {xt: t = 1...n} = x1…xn. The notation is abbreviated as {xt} when it is not 
necessary to specify n. The time series model is regarded as a sequence of random variables 
of xi. 

The mean of the series, xbar, is the summation of the series divided by the number 
of observations, n. The “hat” in the notation represents prediction. It also represents a 
forecast for some time t + k where k is a number of periods from t. 

There are two fundamental models to reflect whether or not the cycle is increasing. 
Additive and multiplicative, they are depicted respectively with the following equations. 

Additive: 
xt = mt + st + zt  (10-1) 
Multiplicative: 
xt = mt*st + zt  (10-2) 
Where: 
xt = Observation at time t. 
mt = Trend at xt. 
st = Cycle or seasonal pattern at xt. 
zt = Error at xt. 

There are ways to calculate mt at time t. A simple method is with a moving average. 
The idea is to average the cycle effect centered on xt. 

There is a matter to be aware of for month and quarter as even numbered cycles in a 
fixed period. This is because an average speaks to time t with even number cycle periods 
to each side of t. For the year of months, we need six periods to both sides. For the quarters 
we need two. However, the problem is that we end up with one period entering the average 
twice and, for a year, xt would be month 6.5. 

The solution is equation 10-3. Notice that to create 12 periods in the cycle the end-
most observations are given a weight of ½ (0.5). 

mhatt = (0.5xt-6 + xt-5 … xt-1 + xt=1 … xt=5 + 0.5xt+6)/12 (10-3) 
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If we were working with a time series of quarters the same form would apply. The 
extreme terms would reflect as two rather than six. 

We can extract the cycle effects for months or quarters with the following equations 
for the additive and multiplicative cases: 

Additive: 
shatt = xt – mhatt (10-4)
Multiplicative: 
shatt = xt/mhatt  (10-5) 

Thence, we compute the predicted or forecasted xt as xhatt. How is shown in the 
following equations for the additive and multiplicative cases: 

Additive: 
xhatt = mhatt + shatt (10-6) 
Multiplicative: 
xhatt = mhatt*shatt (10-7) 

In turn, the series error or random component of the series is the difference between 
xhatt and xt; equation 10-8: 

zt = xt - xhatt (10-8) 

The term zt is an estimate of the residuals to the series. This is because it is 
downstream from estimated trend and cycle. 

10.2.2. Decomposition of the Series 
We can use the decompose function to estimate the trend and cyclic effects in a time 

series. Its internals are built upon the moving average of Equation 10-3. 
Our fundamental question of the observed series is what part is cycle and what part 

is trend.  But first let’s recall the definition of “trend” because the first thought to mind is 
a straight line through a series of points. Instead, it is the core underlying pattern to the 
overall series. As such, it is what remains after removing any cyclical patterns from the 
time series. 

We now know there are two options with respect to the form by which cycle is related 
to the trend. Additive adds cycle to the trend. Multiplicative multiplies the trend by a factor. 
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Both were presented as notation and calculation in the previous section and are now 
demonstrated in the code below. 

#For additive case 

Elec.decom.add<- decompose(Elec.ts, type="add") 

plot(Elec.decom.add)  

#For multiplicative case 

Elec.decom.mult<- decompose(Elec.ts, type="mult") 

plot(Elec.decom.mult) 

str(Elec.decom.add) 

str(Elec.decom.mult) 

In the first two blocks, we see the decompose function for each type. The function is 
fed the time series object to be dissected. The second argument selects additive or 
multiplicative, however, additive is the default that need not be coded. 

Notice that what is returned by the function is assigned to a decomposed.ts object 
named Elec.decom.add and Elect.decom.mult. The next line of code returns the graphic of 
the decompose function, Output 10-7, for the additive case. 

Output 10-7. Chart of decomposed electrical 
consumption. 
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The top panel charts the series (xt...n) before decomposition. The next panel down is 
the trend to the series after removing cycles. Notice in the panel that the cycle is additive, 
swinging upon zero as its centering point. 

However, also notice the bottom panel. If the estimate of cycle were a good fit to the 
series, the plot would show the characteristics of randomness. But it does not because fixed 
adjustments for each period are being added to the trend even though the cycle is swinging 
wider with time. 

The solution lies in the type= argument. We change it to “multi” for multiplicative. 
Now in Output 10-8 we can see the result in the random panel of the decomposition plot. 
Notice the residuals to the decomposition are generally random. Also, the seasonal panel 
will show decimal factors for cyclical adjustment rather than gravitation around zero. 

Output 10-8. The residuals approach randomness with the 
multiplicative is the argument.  

Notice the third block of code: str(Elec.decom.mult). “Str” is reference to the 
structure of the object. When run, we get the output of Output 10-9. It allows us to 
determine what data is available to us by virtue of the decomposition. Each item preceded 
by “$” can be extracted and worked as a variable. This will be seen in action as the chapter 
unfolds. 

Output 10-9. Returned by the str function, we can see the factors generated 
by the decomposition function. 
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Plots typified in Output 10-7 show the components of the time series. What if we 
want to see the overall plot but with the trend distinguished from cycle in a layered chart? 
The following code will return such a perspective and is shown in Output 10-10. 

#Trend distinguished from cycle 

layout(1:1) 

Trend<- Elec.decom.mult$trend 

Seasonal<- Elec.decom.mult$seasonal 

ts.plot(cbind(Trend, Trend*Seasonal), lty=1:2, lwd=2) 

In the code, we see being put into play what is extracted from the str function. We 
are assigning the variables for trend and season from the object to be the variables Trend 
and Seasonal. 

The final line of the block returns the layered chart shown in Output 10-10. The 
objects are combined as one with the cbind function. The ts.plot function returns the 
graphic with Seasonal overlaying Trend. 

Output 10-10. The trend to electrical with trend and cycle 
as layers. 

Notice the expression Trend, Trend*Seasonal. The first variable to the graph is the 
component trend. The second is the multiplicative cyclical variable times the trend. If our 
decompose.ts object were additive, the second variable would have been Trend+Seasonal. 
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10.2.3. Autocorrelation and Correlograms 
An important question of a time series is if a period is influenced by one or more 

previous periods and by how much. That is an issue because we need to know if, for 
example, a KPI, is somewhat reflective of previous periods rather than purely reflective of 
the reported period. This is called autocorrelation. 

Chapter 4 explained correlation. Correlation is a measure of how similarly two 
variables move from their mean. The same general formula applies for autocorrelation. 
However, for time series, the variables are taken from the single series. Each set of 
variables is representative of a lag between observations. Accordingly, the respective two 
variables to the computation are: 

Variable1 = xi … xn and, 
Variable2 = xi-1 … xn-1 

For this case, the pair are subjected to the modified correlation calculation. Variable1 
and Variable2 are the pair evaluated for correlation. If the correlation is high, we have 
autocorrelation. 

Whereas the above set of pairs depicted a lag of one, pairs of variables are formed 
for progressively more distant lag periods. For the two-period lag case, the previous 
notation becomes: 

Variable1 = xi … xn and 
Variable2 = xi-2 … xn-2 

The correlation calculation is made for sets of two lag periods and then for all possible 
sets of lag. 

The graphic to inspect for autocorrelation is called a correlogram. The code to follow 
returns the graphic to assess for autocorrelation. It begins with loading the R dataset, 
AirPassengers. 

#Load dataset AirPassengers 

data(AirPassengers) 

AP<- AirPassengers 

#Correlogram of observations 

acf(AP, lwd=2) 
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The second block of code subjects the observations of passengers to the 
autocorrelation function, acf. It presents as the correlogram in Output 10-11. 

Output 10-11. Correlogram of the air passengers. 

The x-axis gives the lag (k); each a month. The y-axis is the autocorrelation at each 
lag. 

For the lag period, k = 0, autocorrelation is always 1. Its presence allows us to visually 
compare all other periods against a theoretical maximum. 

The dotted lines at –1/n ± 1.96/sqrt(n) represent the boundaries for a 95 percent 
confidence that there is or is not autocorrelation. Stated statistically, they are the boundary 
at which the null hypotheses is that there is no autocorrelation. If the vertical line extends 
beyond, there is autocorrelation. 

However, we must be cautious in our interpretation. We are interpreting multiple 
hypothesis tests. If correlation is zero at all lags, we can still expect 5 percent of the tests 
along the chart to fall outside the boundaries. 

Furthermore, we must remain cognizant that correlations at the lags are 
autocorrelated. If one test shows significant, the adjacent tests are also likely to be 
statistically significant. 

We should also be cautious of what constitutes a practicable autocorrelation. 
Squaring the autocorrelation at a lag gives guidance. It indicates the linear dependency of 
xt and xt-1. If, for example, the test shows 0.2, then it explains only 0.2^2 = 0.04 of the 
variability in xt; not much. 

Rather than test the time series as observations, we typically test the random 
component of its dissection. However, this case of the time series is illustrative. We can 
see the depiction of an increasing series and seasonal cycle. The increase is reflected in the 
slow overall decline. The cycle is reflected by the wave shape for which valley to valley is 
12 months. 

The code below will evaluate the random component. The first block creates the 
decompose.ts object. The length function informs us that there are 144 periods to the series 
object, a necessary piece of information as we set up the subsequent block of code. 
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#Decompose AP and get count of periods 

AP.decom<- decompose(AP, "multiplicative") 

length(AP.decom$trend) 

#Plot the random component and correlogram 

layout(1:2) 

plot(ts(AP.decom$random[7:138]), lwd=2) 

acf(AP.decom$random[7:138], lwd=2) 

The second block of code creates two plots. One is the random component of the 
series. The other is the correlogram. The returned graphics are shown in Output 10-12. 

Notice in square brackets the code 7:138. Recall that the decompose function uses a 
moving average centered on xt. Consequently, for this case of 12 months, the first and last 
six months cannot be calculated. By calling the length function, we remind ourselves that 
there are 144 periods and, thus, the range of usable data points starts with the 7th month 
and ends with the 138th month. 

Output 10-12. Random component of the passenger 
series and its correlogram. 

The output shows that there is autocorrelation at the first lag period. We could subject 
the acf line of the code to the str function if we want the finding as a number. Readers 
would find the first period to be 0.403. 

We can also see in the correlogram that the fit of the decompose function does not 
completely deal with the seasonal component. However, if we applied the standard 
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deviation function, sd, to the series of observations and to the trend component of 
decomposition we would find a considerable reduction in variance. 

Let’s step in here to demonstrate the ARIMA model for dealing with the seasonal 
component of air passenger data. As a point of reference, it is one of the most complex of 
models. The acronym stands for autoregressive interactive moving average. Because of its 
complex theory and mathematics, here and later in the chapter, the ARIMA model will 
only be shown and explained in action rather than to full technical depth. 

The code below will call up the correlogram shown in Output 10-13. 

#Correlogram with ARIMA 

d.arima <- auto.arima(AirPassengers)

acf(d.arima$residuals, lwd=2)

The first line of the code calls up the ARIMA model which requires that the forecast 
package has been loaded into the R session. Fitting the model to the data is done by trial 
and error for seven parameters. Rather than involve ourselves in a manual process, the 
auto.arima function optimize the integrated fit of the seven parameters. Output 10-13 
shows the acf function applied to the residuals of the returned model. 

Output 10-13. Correlogram of residuals to air passengers 
using the ARIMA model. 

Let’s mention why we care. Two fundamental characteristics of a variable is its location 
(mean) and its spread (variance). If there is positive autocorrelation our dataset, spread will 
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be reported back as a tighter variation than true and the opposite for negative 
autocorrelation. At times, spread looms large in conclusions and decisions, thus, the 
unrecognized autocorrelation can be harmful. 

10.2.4. Lead-Lag Variables 
With times series objects we can search for lead and lag relationships between 

variables. An example may be the lead and lag relationships between the many KPIs to a 
maintenance operation. 

Of course, we must create a table of the KPI as periodically calculated to be a series. 
With the methods of Chapter 3, we can build an appropriate super table and then convert 
them to time series objects in R. As we saw in Section 10.1, the KPIs can be aligned even 
if the datasets are of periods that do not match end-to-end. 

Output 10-14 depicts a quarterly series for which the solid line is construction 
approvals and the broken line is construction activity. The chart spans 11 years. As we 
would think, it appears by inspection that approvals are the lead indicator to activity. They 
have similar patterns, just not at the same time. We can use the insight to be suitably 
positioned for changing outlooks. 

Output 10-14. Time series for approvals and activity 
by quarters. 

We will now go through the code to create the figure and then on to the analytics for 
lead-lag. We begin by pulling in the tblApprvBuild dataset with the read.xlsx function, 
assign it as object Build and inspect the first some rows of the object with the head function. 

#Load data 

Build<- read.xlsx( 

”C:\\<path>\\SkillsForCareerSecurity_Datasets.xlsx”, 

sheetName="tblApprvBuild", header=TRUE) 

head(Build) 

The code below shows a useful technique. It is to place the two series in the same 
chart. In the code, we first convert the variables, Approvals and Activity, in the dataset to 
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be time series objects. The data is in quarters, therefore, freq=4. The abline function places 
the vertical comparison line in the chart. 

#Plot ts objects in same chart 

layout(1:1) 

App.ts<- ts(Build$Approvals, start=c(1996,1), freq=4) 

Act.ts<- ts(Build$Activity, start=c(1996,1), freq=4) 

ts.plot(App.ts, Act.ts, lty=c(1,3), lwd=2) 

abline(v=2000.5, lwd=3) 

The ts.plot function combines them in a single chart as shown in Output 10-14. 
Although there are only two series in the example, we could have included additional ones 
and set up our code to seek lead-lag combinations among them. 

The example is conveniently of two series with the same axis units and practicably 
close in range. What if we had series such that the KPIs entail different measures such as 
hours per job and count? That would be weird. It is also a problem if one variable is vastly 
different in magnitude than the other. 

The solution is to convert the multiple series to an index such that all measure against 
an axis from 0 to 1. The index can be created in Access and included in the imported 
datasets. In Access, we develop a calculated variable with equation 10-9. 

Index = (Min + Observation)/(Max – Min) (10-9) 

It is left to the reader to use the skills presented in Chapters 3 and 9 to create the 
variable. Hint: recall that Max and Min are options to aggregation. 

Another conceivable possibility is that the variables have different frequency such as 
year, month and quarter. Once again, we can prepare the dataset in Access before pulling 
it into the R session. We need to aggregate the involved time series on a unit of time. 

We would use the aggregation functionality of Access to make all time series match 
with respect to units of period. That too is left to the skills of the readers by virtue of what 
was demonstrated in Chapters 3 and 9. 

The above paragraphs suggest the use of Access. Of course, the tasks can be done in 
R. Using Access, rather than R, is only suggested as the option most of us will be most
comfortable and fluent with.

We seek lead-lag on the random component of the series rather than the series. This 
is because trend and cycle could dominate the perspective and distort the truth of 
relationship. The code below returns the random series for approvals and activities. 

Copyright 2021 Richard G. Lamb



Through the Lens of Time Series | 301 

##Extract random components for approve and activity 

#Approvals 

app.ran<- decompose(App.ts)$random 

app.ran.ts<- window(app.ran, start=c(1996,3), end=c(2006,1)) 

#Activity 

act.ran<- decompose(Act.ts)$random 

act.ran.ts<- window(act.ran, start=c(1996,3), end=c(2006,1)) 

In the code we do a decomposition of App.ts and Act.ts and then extract the random 
component for each. Notice that we start at month 3 and end 2 months short of the last 
period of each series. Recall that the moving average is upon quarters, thus, we must 
remove the first and final two observations. 

Let’s explain what we are about to look at. Autocorrelation was explained in the 
previous section. Now we shift to cross correlation. The concept is the same except that for 
one series we are computing correlation to the second series by number of lags. 

The code below will conduct the analysis at two levels. The first will demonstrate 
application upon the observations and why we should not be quick to hang our hats on the 
apparent conclusion. The second applies the analysis to the random component of the series 
for a more truthful expectation.  

#Plot cross correlograms for observations and random 

#Cross correlation of observations 

layout(1:2) 

ccf(App.ts, Act.ts, main="Observation Activity Lag Approvals") 

#Cross correlogram of random component 

ccf(app.ran.ts, act.ran.ts, main="Random Activity Lag Approvals") 

The insight and contrast are shown in Output 10-15. The inspection of negative lag 
in the upper panel indicates that we can foresee activity as far in advance as years. We can 
expect the strongest indicator to be two quarters in advance. 

In the lower panel of Output 10-15 we see a tighter story based on the random 
component. The negative as lag shows the strongest relationship is at the first quarter. The 
tell is fading by the second quarter. We can see that cycles after the first quarter quickly 
lose their indicative power. 
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Output 10-15. Cross correlation between approvals and 
applications. 

10.2.5. Seven-Day Cycles 
The inventors of the annual calendar did so without much thought for our needs. The 

months are not exactly four weeks and the days of a month and year are not divisible by 
seven. Therefore, working with time series is problematic when we wish to show patterns 
on weeks within months and days within weeks. At least all weeks start on the same day. 

We can work around the issue of irregularity for weeks. We may want to get a 
quantified sense of a seven-day pattern for some operational variable. The code shows how, 
beginning with downloading a dataset to the variable of interest to us. The representative 
dataset is for only three weeks, but the method can apply to any number of weeks. 

#Import dataset 

SevenDay<- read.xlsx( 

"C:\\<path>\\SkillsForCareerSecurity_Datasets.xlsx”, 

sheetName="tblWkCycle", header=TRUE) 

head(SevenDay) 

The next block of data transforms the dataset to a time series. Notice the differences 
from what has been presented in previous sections. Rather than start with a date year, we 
start with “1” as the first week. Then we specify frequency as the days in a week. 
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#Transform series variable to ts object 

WeekTs<- ts(SevenDay$Series, start=c(1,1), freq=7) 

Now to see what the weeks look like. The code below allows the three insights shown 
in Output 10-16. 

#Pattern for week 

layout(1:3) 

plot(WeekTs, lwd=2) 

plot(aggregate(WeekTs), lwd=2) 

boxplot(test.ts~cycle(WeekTs)) 

In the top panel of the figure are the daily observations for the three weeks. If for 
example, the variable was number of requests for new work, there is a pattern. The middle 
panel shows the total (aggregate) new requests for each week.  

The third panel shows a weekly pattern. The peak day, Tuesday, is day two. As we 
may expect, new requests drop sharply in the final two days which are Saturday and 
Sunday. Of course, we can set up for any day to be the first day. If data were for less than 
seven days, we can also set up accordingly. 

Output 10-16. Observation, week aggregation and seven-
day cycle. 
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More specifically we may want a table in Excel so that other analysts can use the 
findings in their pondering and scheduling. Output 10-17 is an example of what we may 
seek. 

Output 10-17. Weekly pattern for additive and 
multiplicative cases. 

The table as a data frame object can be exported to be an Excel file with the 
write.xlsx function. The code below will develop the data frame shown in the output. 

#Decompose weeks as trend: Additive 

DecomPredAdd<- decompose(WeekTs, type="add") 

plot(DecomPredAdd, lwd=2) 

#Decompose weeks as trend: Multiplicative 

DecomPredMult<- decompose(WeekTs, type="mult") 

plot(DecomPredMult, lwd=2) 

#Extract seasonal component from respective decompositions 

WkCycleAdd<- as.numeric(window(DecomPredAdd$seasonal, start=1, 

end=(1+6/7))) 

WkCycleMult<- as.numeric(window(DecomPredMult$seasonal, start=1, 

end=(1+6/7))) 

#Form data frame of additive and multiplicative 

WeekDf<- data.frame(WkCycleAdd, WkCycleMult, DayNum = c(1:7), 

DayTitle = c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")) 

WeekDf 

The first two blocks of code decompose the week for the additive and multiplicative 
cases. Both return the perspectives that are normal to decomposition. They will not be 
shown here because they are typical to earlier sections and the reader can generate them if 
desired. 

The third block of code extracts the seven-day pattern. Notice the window function in 
action to slice out a precise segment of the overall series. It commands that we want the 
first seven days; day six over seven days defines the seven data points in decimal format. 
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If we did not do that, we would get an output with the same seven factors repeated for each 
week. The code also converts the data as a time series to a numeric variable with the 
as.numeric function. 

The final block of code creates the data frame we want and was previewed in 
Output 10-17. It combines the factorial patterns of both decompositions and gives a day 
number and name to each factor. 

10.3. Forecasting into the Future 
So far, we have talked about what is happening within the range of our data. However, we 
may want to forecast into the future upon the assumption that current conditions will 
continue. An example is to assume an economy that will place the same level of productive 
stress on the plant. 

We will demonstrate two methods. Holt Winters and ARIMA. Until now we have 
worked with the decompose function. However, it does not allow us to forecast. This is 
because the function works upon the computation of the earlier explained moving average. 
It is not a fitting function. Consequently, it does not return parameters and smoothers on 
which the past can be projected into the future. 

Finally, the section will explain the need and means to confirm that what we want 
to project can be projected. We cannot if a data series is random or random walk. 
Furthermore, a random walk can look like a series that can be forecasted. Therefore, 
the section will demonstrate the test for assuring the time series is deterministic 
as it must be for 
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Chapter 11 
Budget-Based Schedule and Craft Capacity 

Of all maintenance operation procedures, planning and scheduling get the most attention 
and are the most widely adopted of all “best practices.” The rationale for planning and 
scheduling is indisputable. They are additionally enticing as practices to adopt because the 
methods are explicit, and they look good and feel good. 

However, the procedures have historically been flawed by disregarding a 
fundamental principle of industrial engineering. They have not been practiced as top down 
from a workload-based budget that quantified how much work must be done each month 
to sustain the plant’s productive capacity and asset value. Consequently, the weekly 
schedule is not consciously loaded with a sustaining workload. It can only follow that craft 
capacity has not been fitted to deliver a sustaining workload. 

Chapter 9 explained and demonstrated how to build  workload-based budgets and 
conduct dual dimensional variance analysis upon them. For reasons explained, workload-
based budgeting is a new development to the landscape of asset management. 

We should now map onto the landscape the planning and scheduling procedures as 
they should be downstream from a workload-based budget. That is the purpose of this 
chapter. 

11.1. Scheduling Framed Top-Down 
In a production enterprise, here is what happens upstream to maintenance planning and 
scheduling. The firm determines the market in the coming year and their share of it. They 
convert the forecast to an aggregate production plan for the year and each month. Upon the 
aggregate and monthly production plans, the organization determines and prepares every 
direct and indirect enterprise activity and associated resources that must be in place to 
profitably win and defend their market share. 

This is where the maintenance operation enters the picture. It must determine and 
prepare its activities, processes and resources to deliver the maintenance workload 
necessary to sustain the plant’s ability to meet the production plans and to sustain the 
plant’s value as a production asset. Furthermore, rather than victory at any cost, the 
maintenance operation carries the burden of delivering the workload with optimally sized 
craft capacity. 
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With respect to the goals, the parallel to the aggregate production plan is the 
workload-based maintenance budget. The budget process was explained and demonstrated 
in Chapter 9. From the workload-based budget, the plant will quantify a baseline for a 
weekly mixture and count of jobs. Throughout the year, each weekly schedule is molded 
in accordance with the baseline. 

Each week, planned ready work is assigned to the schedule. For each mixture group, 
jobs are assigned according to sustaining count and in accordance with plant-specific 
policies for priority and in-out (e.g. first in, first out), etc. 

There has been a standing philosophical debate for loading the week’s schedule. 
Some advocate that greater or less than true expected workload be loaded. Others advocate 
loading upon 100 percent of the expected achievable workload. 

Just as the budget quantifies annual and monthly sustaining workload, so must 
scheduling quantify the weekly sustaining workload. The purpose settles the argument. 
Schedule is loaded at 100 percent because it is the baseline of how much work must be 
done each week as the cost of winning and defending market share and protecting asset 
value. 

When there are day breakers, each takes a slot on the week’s schedule, bumping out 
a scheduled job. Whether the jobs were scheduled or breakers is secondary to management. 
They are not purist. 

To them, the true overarching measure of a successful week is to accomplish a 
baseline mixture and count of work. That would be senior management’s definition of 
success and, thus, the ultimate value to them of the maintenance operation. 

The baseline weekly workload, as smoothed mixture and count, are the flywheel with 
backlog as the wildcard, growing and shrinking on any given day. Furthermore, scheduling 
in response to backlog makes operations reactive. The issues, analytics and design of 
backlog are the subject of Chapters 12. 

Now let’s contrast scheduling pulled along by the sustaining workload to the 
currently predominate practices in maintenance operations. Rather than loaded on 
smoothed sustaining workload, the week’s schedule is largely loaded according to craft 
hours available to do work. The loading is also influenced by the number of jobs ready in 
the backlog. Which jobs are scheduled from the backlog reflect policy upon priority 
without regard for each mixture group in the schedule. In total, whether scheduling from 
week to week is on beam of sustaining workload will be largely left to happenstance rather 
than intention. 

However, the consequential contrasts to senior management are the outcomes they 
do not want the maintenance operation to leave to happenstance. There is the link from 
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market conditions and share to the workload to assure share is not lost. There is the link 
from asset value to workload to assure asset value does not become overvalued in the 
balance sheet. And there is the link from cost leadership that wins market share in many 
industries to craft capacity fitted to the plant’s sustaining workload. 

11.2. Budget-Based Schedule Cycle 
To repeat, the goals for budget-based scheduling and craft capacity are twofold. First, 
execute daily a workload to sustain productive capacity to obtainable market share and 
asset value. Second, execute the workload with a craft capacity fitted to the workload. 

The budget process will have established with senior management the sustaining 
workload. The budget has shown them proof of the cost of maintenance for market share. 
They have accepted it as a true cost of doing business and have agreed to pay it. Inherent 
to the cost is the promise to execute the work with a craft force fitted to the workload 
management has agreed to “purchase.” 

Consequently, to senior management, scheduling procedures are the current-time 
proof that the agreement and promises will be realized. They must see in action the three 
stages below and the subject of this section.  

• Establish baseline schedule and craft capacity.
• Conduct the weekly scheduling and execution.
• Measure and confirm the proficiency of the weekly cycle.

11.2.1. Establish Baseline Schedule and Craft Capacity 
Rather than begin here, the weekly scheduling process actually began with the annual 

budget. What must happen next is flowcharted in Figure 11-1. Each step will be expanded 
upon. 

Figure 11-1: The activities to set weekly budget for sustaining 
workload and craft capacity to do the work. 
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Map budget groups to the craft organization. The annual budget has likely not 
been formed with regard to craft organization. It is structured by budget groups. In some 
plants they coincide. However, they are typically not an exact match. 

Accordingly, the first step is to map the budget groups to schedule groups. We are 
grouping the workload with respect to the craft groups that are being scheduled to do the 
work. The craft groups upon which the weekly schedule should be organized are often 
already in practice and we continue with them. 

Translate the annual workload-based budget to a baseline weekly budget. The 
weekly schedule is a budget as much as it is an action plan. Now to reduce the annual 
budget to the weekly workload to each schedule group. It is the baseline or starting point 
for every week’s initially proposed schedule. Rather than load ready jobs into the schedule 
in accordance with available craft hours, the weekly schedule is loaded in accordance with 
the baseline. 

We have presumed that the monthly budget is the annual workload smoothed for each 
budget group. However, for some plants, average may vary by season to reflect industry, 
market, weather, etc. For them, the baseline may be set on seasonal cycles. 

Simulate craft capacity to fit the baseline workload. The next challenge is to size 
craft capacity as headcount to deliver the baseline workload. Unfortunately, it is not as easy 
as dividing total craft-type hours to the baseline weekly workload by standard working 
hours per week. 

We need to simulate the craft body for each self-contained craft schedule group in 
the maintenance organization. With applied statistics it can be done in sophisticated ways. 
Fortunately, it can also be done with a more straightforward approach. 

The practical method is to build a collection of representative weekly schedules. The 
scheduler can reach back and select representative weekly schedules. Thence, the scheduler 
can expand or trim the schedules to match the baseline schedule.  

The next step is to slice the weekly schedule into day schedules of generally 
smoothed workload. To the collective days, the scheduler will fit, by trial and error, a craft 
force of types and headcounts. 

Most scheduling software such as MS Project and Primavera make excellent 
simulators. For the jobs to a representative series of weekly schedules and standard 
workdays, schedule software can draw and assign from craft pools the individual crafts that 
are called for by job plan. If the next job requires already engaged crafts, the task is not 
started until crafts become available. 
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What we seek is to arrive at the craft pools that allow all work to happen no later than 
the end of the schedule week. The scheduler will adjust the pools by trial and error to find 
the craft counts that work. 

It is best that the scheduler size the force on a collection of representative schedules. 
An alternative is to schedule for multiple weeks in series to a month or longer. In both 
methods, this will test the pools against varying circumstances. The more representative 
schedules, the tighter the fit in the face of uncertainty. 

The scheduler will also want to in some way adjust for noise. This is because job 
plans should not be written to include the random unplannable. Accordingly, the 
supervisory role holders in the work execution stage should collaborate with the scheduler 
to devise an adjustment for noise in the craft pool. 

Reconcile craft capacity to the annual budget. The sizing of craft capacity arrives 
at the hours to the sustaining workload from two directions. The annual budget is formed 
on the history of occurring work and average actual or estimated hours per order. The 
weekly schedule ties hours to orders according to job plan as the best estimate of hours. To 
that is made an allowance for noise. 

At this step we should reconcile the craft capacity hours to budget hours. If there is 
significant imbalance we should learn where and why. 

Collaborate with plant management in decision-making. The level in an 
organization at which decisions are made reflects how widely the organization is affected. 
The decision-making for maintenance budget and craft body have far ranging implications 
for the enterprise and are, thus, senior management’s decisions to make. The activities to 
build the budget and size craft headcount is decision-analysis upon which senior 
management makes its final call. 

Their decisions may seem to be decision-making for maintenance. The reality is that 
the decisions being made are directly relevant to the firm’s market share and net margin. 
That is why it is not the maintenance operation’s place to make budget and capacity 
decisions. However, it is maintenance management’s place to not allow senior management 
to make their decision without the preceding workload-based analyses to guide them. 

Therefore, the decision-analysis and decision-making process should be 
collaborative. Upon the collaboration, senior management will ultimately make decisions 
for the enterprise as a whole. If they do not adopt the full-scale version of decision-
analyses, they will want to explore the alternative backward from ramifications to the 
enterprise. 

Because it is a substantial business expense, management may decline to retain the 
fully sustaining craft body, thus, elect to not fulfill the sustaining workload. Rather than 
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being hardheaded or ignorant, they are reacting to some strategic condition such as business 
cycle. In this case, the collaborative decision-making flows from the dollar-limited craft 
capacity down to achievable workload as a strategic variable in enterprise success. 

Just as importantly, management’s departure from the proven necessary sustaining 
workload can be known and recorded in detail. Future budget cycles can know to pick up 
the deferred workload in the process of the next round of collaborative decision-analysis 
and decision-making. 

Implement craft capacity strategy. It is entirely possible that the budget will vary 
from full scale in some years. This means that there may be adjustments to craft types and 
headcounts. The current body may be under or oversized to the final budget. 

How the adjustments are made is also a senior management decision. It is a decision 
that must be made with an eye to many issues such as longer-term availability of crafts, 
flexibility of crafts, when crafts will be reengaged, etc. There is also the psychological to 
consider and image as a corporate neighbor. 

Regardless of final strategy, it must be implemented. The final step is to form strategy 
with senior management and implement it. 

11.2.2. Conduct Weekly Scheduling and Execution 
The previous stage set the baseline to the weekly schedule and craft capacity to 

execute daily a sustaining workload. The two baselines are pre-measures. The weekly 
baseline is the pre-measure to the week’s schedule. The baseline for crafts is the pre-
measure for hours to be made available to the week’s schedule. 

The important thing to note is that the weekly process is different than traditionally 
taken. This is because all is based on sustaining plant market share and value with a craft 
force necessarily fitted to do so. This departs from the process where current available craft 
hours are the independent variable rather than sustaining workload. 

The process is flowcharted in Figure 11-2. At the top of the figure are the three inputs 
to the process. Two were set in the previous stage. They are baseline sustaining weekly 
schedule and craft capacity fitted to it. The third is an appropriate backlog of ready jobs to 
allow the week’s schedule to be loaded 100 percent with scheduled and planned work. 

The inventory of ready jobs is a discussion and process in its own right. The inventory 
must hold the mixture and counts for sustaining workload such that the backlog for each is 
adequate to enable smooth operations but not retained overlong in the stages from initial 
work request to becoming ready jobs. The flow of job plans through the stages will be the 
subject of Chapter 12. 
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Decision for cumulative over and under run of executed jobs. The goal of the step 
is to bring each new week back on beam to sustaining market share and asset value. As 
there is slippage from sustaining workload, we need to be aware so that the plant can tweak 
the current or subsequent weeks to get back on beam.  

Figure 11-2: Process for week and day scheduling upon the principle of 
smoothed sustaining workload and fitted craft capacity. 

As shown in the figure, the measurement and report stage will track the slippage 
balance as of the end of the previous schedule week. The measurement is an input to the 
current week. 

The cumulative over-under to sustaining workload is reported by mixture groups with 
respect to the budget as of year to date. Do not confuse it with the total backlog balance 
which moves independently of the week’s schedule. 

Load week’s schedule with sustaining workload. The next step in the cycle is to 
load the schedule. In the flowchart, this is the junction at which the baseline pre-measures 
for workload and capacity enter the process. At this step, the schedule is 100 percent loaded 
with jobs that are planned. If any loaded jobs are not planned, there is a failure in the stages 
that stock the inventory of jobs ready to go. 

Historically, the loading practice has been to place orders on the schedule by a 
scheme of priorities. Only one rule of the scheme holds for loading with respect to groups 
of mixture and count. 

It is the rule for work that must be selected first to load. These include carried over 
work and work for which there is a justifiable reason to break the rule of first in, first out 
to the inventory of ready jobs. 
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Adjust Craft fit for the short-term. The baseline workloads and craft capacities can 
never be prescient. We hope that more then 90 percent of the time the craft body covers 
the workload with a spread in variance that is normally reasonable. 

Accordingly, an auxiliary task of the scheduling process is short-term craft 
resourcing. There is a host of strategies and tactics to flexibly stay on beam. The point is 
that the craft capacity may be a bit dynamic but must ultimately keep the plant on beam. 

Generate day’s initial schedule. The next step is repetitive throughout the week. An 
initial schedule is set for the day, usually as a standard activity of the previous day. The 
mixture and counts to schedule groups are observed, but the overarching goal is to achieve 
the match on a weekly basis with some over and under from day to day. 

The day’s schedule can have breakers in progress from the previous day or breakers 
recognized in a previous day but delayed to the current day. Otherwise, the remainder of 
the day’s 100 percent loading will be taken from the remaining balance of the week’s 
scheduled work. 

Execute day’s scheduled and breaker jobs. Want to hear a belly laugh, tell God 
our plan for the day. At this step, we set out to execute the day’s “list” of work to be done. 
We can expect that some of the initially scheduled work on list of work may be displaced 
by breakers. 

At this step, the objective is to execute a fixed sustaining mixture and count of jobs. 
Therefore, we do not fanatically resist unforeseen breakers. Of course, if frequently 
excessive we would want to know why. 

Update the day’s initial schedule for breakers and statuses. It is realistic to expect 
that occasionally, or more frequently, the day’s scheduled jobs will be displaced by 
breakers. Accordingly, at the end of the day we will want to record the breakers to the day’s 
actual outcome. The jobs that were scheduled but not started, will remain on the updated 
schedule because the update also serves as the record of the day. 

Also updated are the status variables to all jobs. Breakers to the day’s schedule should 
be classified as something other than scheduled. The same for planned and unplanned jobs. 
Finally, the jobs to the day are classified as not started, started and completed.  

Final day of the week? At the end of the day there will be a fork in the road 
depending upon whether the day is the last of the week. If not, the next day’s schedule will 
reflect all that has happened as the week has unfolded. If the final day, the next steps reside 
in the measurement and report stage of the overall cycle. 
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11.2.3. Datasets, Measures and Reports Stage 
Throughout the week there is a process of updating and maintaining data as 

subordinate and super tables, and the measures and reports upon the data. All are 
disseminated through the accessibility of all role holders to the scheduling and overall 
maintenance operation. 

Figure 11-3 is a flowchart of the stage. It begins with designing and building the 
tables and insight deliverables for the first time. Once built, tables and deliverables are a 
daily task. It is conceivable that our experience with the daily will send us back to the 
development tasks of the stage to upgrade standing insight deliverables and create new 
ones. 

In the flowchart, we can see that the outcomes of the week’s schedule process flow 
to the task to maintain the tables to the schedule and execution stage. In turn, we can see 
that the task to generate the insight may send us back to the baseline stage of the scheduling 
function. 

Formulate subordinate and super tables. When an operation is data-driven, there 
will be subordinate and super tables inserted into its processes. They are essential but do 
not exist in our operational systems and never will.  

 
Figure 11-3: Steps to the stage to measure and report to 
workload scheduling and craft capacity. 

The task is to design the tables and make them operational. Section 11.3 defines and 
scopes the collection of tables to be built and explains how to build them.  

The task may be revisited. When a plant begins to schedule upon sustaining 
workload, for a few weeks or months the builder may be called upon to pop the hood and 
soup up the engine. At some time, the operation will settle in and upgrade much less 
frequently. 
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The philosophy is to build subordinate and super tables without concern for “cost” of 
data. This is because, for a maintenance operation, there is no incremental cost for more 
data unless manually collected. Another reason is that we do not want to limit the operation 
to the insight it has thought to create. Another reason is that operational data has a universal 
entirety to it. Rather than think in terms of envisioned insight deliverables, we think in 
terms of how to place our data in tables of every imaginable variable to the operation. 

Build insight deliverables. The developer knowledgeable in maintenance planning 
and scheduling will build the insight deliverables. Section 11.4 defines and scopes the 
insight deliverables that will emerge from this step. 

Collaborate with the organization to expand, refine and finalize insight 
deliverables. Some tasks require that an individual engage herself in quiet, thoughtful 
problem-solving. That was the case for the step to build the insight deliverables. 

In contrast, this step will take the creations of the previous two tasks to the 
organization of role holders and decision-makers. There will be a creative collaboration 
between the parties. 

As such we can expect that the insight deliverables will be expanded, enhanced and 
refined. We can also expect that the organization will send the developer back to flesh out 
and build new ideas. 

The collaboration has another effect. As the collaborators converge upon common 
thinking and perception of possibilities, they will tend to broadcast the possibilities outward 
across the organization. For example, role holders in other processes may be made aware 
of super tables that they have always wished for but long ago given up on. 

Agree upon role holders to the tables and insight deliverables. It can be expected 
that the tables and insight deliverables, once built and made operational, can be 
administered by clerical and analyst roles. This step is to establish who will take on the 
tasks to routinely administer the tables and insight deliverables. 

In some cases, a role holder to a normal operational task should administer the tables 
and insights as part of their task. In parallel, their administrative task is on behalf of all role 
holders across the organization that engage the tables and insights in their own work. 

Maintain tables and make them accessible. The task is a routine one and can be 
assigned to anyone for administration. At daily and weekly milestones, the collection of 
designed tables is updated and returned to accessibility. As seen in Figure 11-3, the input 
to the administrative tasks are the outcomes of the day’s preparation and execution. 

Generate and disseminate insight deliverables. Finally, the insight deliverables are 
updated and disseminated. Dissemination may be no more than updating the deliverables 
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where located. Role holders across the operation that draw upon the insight do so by call-
up. To them are returned the latest editions of the insight deliverables. 

The tasks in the stage are a running verification of the baseline workload and craft 
capacity that were established by analysis in the first stage of the short-, middle-, and long-
term planning and scheduling cycles. Accordingly, the depiction of return to the baseline 
setting stage is shown as ongoing. 
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12.1. The Insight We Need 
Chapter 9 explained by demonstration how to build a budget as a smoothed mixture of 
maintenance type and counts to sustain market share and asset value. Chapter 11 explained 
by demonstration the scheduling and measurement to assure the conduct of the sustaining 
workload. 

There is a third and much more subtle aspect. It is the retention time of orders through 
the stages in the pipeline from requested work until placed on a week’s schedule. 
Furthermore, retention in most of the stages should be largely decided by the rule of first 
in, first out (FIFO). Of course, there will always be some small number of orders that must 
jump the line for good reason. 

If retention is unnecessarily overlong, the plant will likely lose its FIFO flow. The 
timing of orders in the process will be gamed. Alternatively, if retention is too short, the 
plant will lose the buffer in the system that assures there is enough work ready to schedule 
each week as a smoothed sustaining workload. 

As some orders are undeservedly privileged, gaming the retention rules generates 
other problems. As the under-privileged orders experience unhealthy overlong retention, 
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the likelihood of losing the current level of plant performance is building. Furthermore, 
gaming will create a culture of distortion throughout the CMMS as the result of hiding the 
gamed orders. 

The loss of buffer in the inventory to each stage in the pipeline, has its own 
implications. The ability to operate a smoothed weekly schedule will be lost. As the buffer 
moves toward zero, the weekly schedule would become increasingly reactive in mixture 
and counts of orders. The schedule would increasingly track the arrival of new work into 
the pipeline rather than work withdrawn smoothly from the pipeline. 

One reason reactiveness is to be avoided is its effect on the payroll cost of workload. 
As the schedule is more reactive, the plant it will require a larger craft force to cover each 
week’s workload. Not only can this noticeably bite into net margin, but it may also bite 
into market share if the firm competes in cost leadership industries. 

There is an analytic to measure the work pipeline. This chapter will call it retention-
event analysis. However, it is normally called by names such as survival-hazard and event 
history. The remainder of this section will explain retention-event as a concept. The next 
will explain the mechanics and mathematics to the analytic. The final section will 
demonstrate the analytic as computer-based methods to design the patterns of retention and 
events for the plant. 

12.1.2. Retention in the Pipeline 
“Retention” is the synonym to “survival” in survival-hazard analytics. In plain 

English, it is the percent, portion or probability of orders remaining in the pipeline beyond 
some duration. Figure 12-1 depicts the general pattern for the stages in a maintenance 
process as the pipeline. It is depicted that only 5 percent of the work orders remain in the 
pipeline beyond duration t. We can also see that some much smaller portion of orders have 
an event after a very short duration. 

Figure 12-1: General pattern of retention 
as in a pipeline of work. 

With the insight that is inherent to the figure, we have questions to which we can now 
know to seek answers. Is the shape as we would expect or wish for? Is the duration 
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excessive? Is the duration such that there is no buffer in the pipeline as we would want 
there to be? 

In real life, we would want to segment the pipeline as stages from requested work 
through to work ready to schedule for execution. The final event, at duration t, is to be 
placed on a week’s schedule. Any sequence of activities in the flowchart of the 
maintenance operation can be subjected to retention-event analysis. 

Figure 12-2 shows the idea as a pipeline with three stages. We would want to explore 
some or all stages in the pipeline. This is because we would expect to find different patterns 
in the stages; some good, some bad. 

Figure 12-2: Stages to a pipeline of operational activities. 

Now our questions are directed at the stages. They are also directed at patterns to 
confirm that there is compliance with the rules by which work is to flow through each stage 
of the pipeline. We are also looking for the stages that, if redesigned for planning, 
organizing and control, would most influence availability performance and the risk of 
holding a current level of performance. 

For some stages we would expect a sharp drop off after an expected duration. Why 
is that not so? For others, is the drop off gradual rather than precipitous as we would expect? 
Are there indications that orders are allowed to stagnate in the pipeline? For the stages over 
which we have full control, why is the duration much longer than the activity of the stage? 
For those over which we have limited control, such as waiting for parts, should we institute 
practices to expedite flow through the stage? 

Upon the findings of our questions, we may want to redesign the planning, organizing 
and control of at least some of the stages. For example, as the point of Chapter 9, corrective 
maintenance as smoothed mixture and count occur for a range of assets and failure modes. 
However, we may want to establish retention for the assets in the pipeline that represent 
the greatest risk of losing a current level of performance. If not possible, asset-specific rules 
to the pipeline can be promulgated for selectively jumping the standard FIFO rule. 

We have presented the idea of sectoring the pipeline. The discussion of the idea so 
far has been one of the many. 
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It is likely we would want to subset a particular pipeline. The sections depend on 
what we are looking for. We may subset or group on cost center, maintenance type, asset 
type, craft team, etc. 

Section 12.3.3 will demonstrate how to test for effects of predictor variables on the 
retention and event patterns. If there are effects, we may want to generate the retention 
analytics and plots upon them. 

12.1.2. Exit Event from the Pipeline 
The probability of an exit event is the other shoe to retention. It is the instantaneous 

chance of exiting the pipeline stage. As a point of reference, in the parlance of survival-
hazard, it is called “hazard.”  

The definition of hazard is that, on the condition of having lasted up to “just” before 
now in a stage, there is a probability of an exactly specified exit event from the stage. Some 
gallows humor will make the point. 

When I woke up on the morning of my 73rd birthday, I was available to die. According 
to actuarial tables, my probability of dying during the year was 2.96 percent. Connected to 
that, the retention function predicts that I might last another 12 years. Should I make it to 
my 86th birthday, there is a 10.87 percent chance of not living out the year. The good news 
is that the retention function would expect that I might last until my 92nd birthday. 

The same description applies to the previously defined work pipeline. Figure 12-3 
depicts the exit function to the retention function of Figure 12-1. It follows that there is a 
similar function to each of the three stages in Figure 12-2. The reader will also recognize 
the formulation of the hazard plots will return one of the six life patterns (see Chapter 1) 
as input to formulating maintenance strategy with the methods of reliability centered 
maintenance. 

Figure 12-3: Instantaneous probability of the 
specified exit event. 

Also notice that there is a chance of an early exit event as allowed by policies for the 
flow of orders through the maintenance process. Then, the chance of an exit event is 
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generally constant. As orders reach the point in retention at which between 10 and 5 percent 
are still in retention, the chance of exit increases rapidly. 

Cumulative probability of an event is exactly that. At duration t, the probability of an 
event is the sum of probability of an exit up to duration t. 

More typically, we are interested in the cumulative probability or hazard between 
two points in duration. Let’s return to my age. As my aunt said at 93 about her chances of 
an event, “It’s not going to get better.” My chance of exiting life before my 75th birthday 
increases each year. The cumulative probability is 6.18 percent. 

The probability of event is not as much of interest as is cumulative probability. This 
is so if we want to measure the probability of an event in some sector of duration after 
having a reached a time in retention. 

The probability of an event has its meaning in understanding how it plays in the 
calculation of the retentions as shown in Figure 12-1 and 12-2. Section 12.2.2 will explain 
the construction. 

12.2. How it Works 
This section will introduce and explain the mechanics and mathematics of retention-event 
(survival-hazard) analytics. We now need to understand life data and events as a variable, 
study window, and construction and calculations.  

12.2.1. Life Data, Event and Window 
The life variable to each case in retention-event analysis is a composite rather than a 

numeric or a character variable. It is the composite of elapsed time and event. 
We can define the life variable in two ways. One as the start and end dates for entering 

and exiting a stage to the pipeline or the pipeline. The other would be the calculated 
difference between the dates. 

Just as retention has a start and end date, an event is defined very specifically.  An 
example is the stage to prepare job plans. The specified exit event can be when the status 
is changed to “waiting for parts.” If a case is changed to a status other than waiting for 
parts, it is not a specified exit event to the retention-event study. 

This brings to surface the next issue. It is how orders that depart from retention to 
some other status than specified are treated in the analysis. They are identified as censored 
events.  Weibull literature often calls them “suspended.” Also designated as censored 
events, are the cases of which we have lost track. 

Figure 12-4 depicts that we work with cases during a window of study based on the 
calendar. Notice that most cases, denoted by the symbol “+,” exited as a specified event.” 
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Among them, some cases depart the stage as something other than the specified event. As 
censored events, they are denoted by “c.” 

Figure 12-4: Cases as a specified or censored 
event during the window of the study. 

There are several other points to note in the figure. The study is “left truncated.”  The 
analysis only includes cases that still have not resolved before the left boundary of the 
study window. 

Cases that did not resolve within the window of the study are also classified as 
censored. They are called right censored. The classification holds regardless of the 
ultimately occurring type of event. The principle is that the study has no way of knowing 
the ultimate resolution of the cases. 

As mentioned, Figure 12-4 depicts having set the window with respect to only 
calendar boundaries. However, age is the second dimension to a study window. In the 
figure we have accepted cases of all ages if they met the criterion for date. 

Figure 12-5 depicts having additionally set a criterion for age rather than include all 
ages. In contrast to Figure 12-4, we have defined upper and lower limits to age. As a result, 
we can see that two cases are no longer included in the study window. Also notice that a 
case entering the window, but with an age above the window frame, is treated as censored. 

With respect to Figures 12-1 and 12-3, we may have set the age boundaries in order 
to analyze the period in retention after early exits and before rapidly increasing exits. If we 
had wanted to segregate the study upon early exists, we would have lowered the upper age 
and allowed all orders at or below the age to enter the study. 
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Figure 12-5: Window of a study with age as a 
dimension. 

12.2.2. Construct of Retention and Event 
Behind the curtains of the retention-event analytic there is an empirical construction. 

It is necessary to understand them as a construct. We will demonstrate the basic concept 
with what is known as the Nelson-Aelen estimator of probability of a specified exit event 
(hazard) and the Kaplan-Meir estimator of retention (survival). 

Figure 12-6 is a plot of life data: duration and event. It demonstrates how the cases 
in a study window are transformed to the probability of a specified exit event after days in 
retention. As before, the symbols distinguish between specified and censored events.  

Figure 12-6: Probabilities computed upon 
specified exit events. 

In the figure, we see that at each point in duration at which there is a specified exit 
event, the probability of exit is computed on the event. The demonstration of the 
computation includes every case still in the stage “just” before the time of the event. 
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Figure 12-7 depicts the transformation of Figure 12-6 to a plot of probability of a 
specified exit event after days in retention. In the parlance of survival-hazard analysis, it is 
known as the hazard function. 

The probability at each exit event increases with duration of retention. The 
probability of a specified event on day three would be greater than 0.2 and less than 0.5. 

Figure 12-7: Plot of probability for 
specified exit events. 

Cumulative probability of a specified event is a simple step from the plot of 
probability after days in retention. As can be seen in Figure 12-8, cumulative probability 
is just that. In the parlance of survival-hazard analysis, it is called the cumulative hazard 
function. 

Figure 12-8: Cumulative hazard with time 
for an exit event. 

The function tells us the cumulative chance of an exit the greater the number of days 
retention continues. Notice in the figure that, at some time in duration, an event is 
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essentially “statistically certain.” In the previous example of the actuarial tables, to live 
longer than expected (86th birthday) is to beat the odds and a new bet is placed (92nd 
birthday). 

The probability of retention or portion of cases still in retention beyond a day in 
duration is also formulated upon the calculated probability of a specified exit event. This 
can be seen in Figure 12-9. Once again, in the parlance of survival-hazard analysis it is 
known as the survival function. 

At duration zero, 100 percent of all cases will remain in retention. At day one, the 
portion of cases expected to remain will be reduced by the probability of exit. With each 
exit event, the portion remaining to exit is reduced as the product of the probabilities of 
exit to that time. 

Figure 12-9: Computation of the portion of cases 
remaining in the stage at day in duration. 

The explanation does not involve right-censored events that extend past the last 
specified event. The example of Section 12.3 shows a study in which some cases do. For 
it, the terminal point of the retention plot would be short of 100 percent of all cases. How 
far short of 100 percent would reflect the window of the study and the characteristics of 
the right-censored events. 
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12.3.3. Parametric Modeling 
We can fit parameters to the data such that the equations of Section 12.2.3 can be 

applied in the exploration of retention and events. The block of code below serves the 
purpose. 

#PARAMETRIC FIT FOR BETA AND ETA 

fit.w<- phreg(Surv(Age, Event)~ 1, data=dur) 

summary(fit.w) 

(beta<- exp(fit.w$coefficients[2])) 

(eta<- exp(fit.w$coefficients[1])) 

#PLOT UPON PARAMETERS 

plot(fit.w, lwd=2) 

Whereas, before we used the coxph function, we will use the proportional of hazard 
regression function, phreg. It fits the Weibull distribution to the data and returns the beta 
and eta parameters. Called up by the summary function, the fit is shown in Output 12-4. 

The report returned by summary(fit.w) returns the beta (shape) and eta(scale) as logs. 
The very small p-values reports that the parameters fit the data. 

Before we can apply the parameters to the retention-events equations, we need to 
subject them to the exponential function. In the figure we see what is returned by subjecting 
the coefficients from the model to the exp function. 

We need some of the code to arrive at the exponentiated beta and eta. If we subject 
fit.w to the str function, we would discover that one variable to the model is 
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“coefficients.” There are two classifications to the variable. The first is eta and the second 
is beta. 

Output 12-4: Model fitted to Weibull and the parameters extracted from it. 

Recall that square brackets are used to filter vectors and table by row and column. 
Within the brackets of the code, we specify “2” as the second item in the two item vector 
for beta and likewise “1” for eta. 

The final line of the block of code will return a chart view for the survival-hazard 
(retention-event) functions: hazard (exit), cumulative hazard, survival (retention) and 
Weibull density. Shown in Output 12-5, they present a picture as if the data were 
continuous rather than the previous discrete plot. 

There is a drawback of relying solely on empirical or parametric fits. Notice that the 
expectation for several early existing cases is not visible in the continuous fit of 
Output 12-5. They were in the empirical plot of Output 12-3. For this reason, we should 
run both if we chose to run the fitted model. 

The payback of the parametric model, of course, is the returned parameters. With 
them, our analysis of the retention and exit behavior can be ascertained by the equations of 
Section 12.2.3. 

Suppose we do need to get a stronger sense of eras along the overall retention plot. 
Maybe there are considerable early exit events. Maybe there is a noticeable decline rather 
than plateau but much less than before the point in retention at which there is accelerating 
exit. 

In the scenario, there are three eras to the Weibull distribution. Unfortunately, the 
Weibull can only fit one at a time from the family of curves. The solution is to subset the 
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data by age and study each as an era. We would use the empirical plots to delineate the 
eras. 

Output 12-5: The four functions of survival hazard 
(retention-event) shown as continuous plots. 

Section 12.2.1 explained the two dimensions to a study window. The principle would 
now come into play for partitions upon age that are the three eras of retention. 
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Chapter 13 
Prove There is a Difference 

 
 
 

Any operation within an enterprise entails countless practices, processes and tasks. In 
operations, the holy grail is to “do the right things right.” It follows that the holy grail of 
insight is to prove that we are. 

When new operational strategies are being proposed, we must be able to answer the 
CEO who was known to ask of every proposition, “Why bother?” Of course, she would 
later want to know if to bother had proven to be worthwhile. 

Figure 13-1 demonstrates the problem we face. The vertical axis is the mean of some 
measure of performance. Confidence limits overlay the columns. The charts present a 
question. Are the means between alternative strategies, practice, design, etc., significantly 
different? 

The left half of the figure depicts a comparison of operational designs. It shows the 
comparison of designs for superiority based on the mean of an outcome. Most performance 
indicators are a mean of performance or indicators of performance. The right half depicts 
a before and after comparison of consequences. 

 
Figure 13-1: We must determine if the mean 
to each differ from others. 

In the two graphs we see that the columns, with respect to mean, are different. 
However, the difference between columns may be only noise rather than “worth the 
bother.” 

If we want management to fund our propositions for asset management skills, 
practices and processes, we may need proof that there will be or has been effects. The 
expression, “may need proof,” is because some of us may have management that takes our 
word for it. We heard it in a love song, can’t be wrong. This chapter and book is written 
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on the presumption that we, as asset management practitioners and leaders, and the 
management to which we report, always want proof over faith. 

The chapter will first introduce the body of models we would engage to confirm 
performance. Rather than a single model, what it is we are trying to prove to ourselves and 
management decides which of seven types of models we would adopt. Following that, the 
remainder of the chapter will demonstrate each type of model and how to interpret them. 

13.1. Effects Distinguished as Models 
It is a simple question. Is there difference in performance between operational alternatives 
or operational performance over time? In statistical speak, we are asking if the comparative 
means in outcomes are significantly different between one or more alternatives or over 
time. 

The question is simple. However, answering it depends upon the number of factors 
and conditions to each. It also depends upon how the tested participants as individuals, 
entities, assets, etc., are subjected to the alternative conditions as independent or dependent. 
Therefore, our first task is to establish which one of a body of models will give us the 
insight we seek. 

This section will introduce the models in the context of possibility of insight. 
However, let us first set some terminology upon which distinctions will be made. 

The behavior and performance of any operation, including asset management, is a 
system of dynamic operational factors. For almost every imaginable factor of operation, 
there are factors of two or more mutually exclusive conditions. 

Tiny or immense, there will be a consequence to the choices made between 
conditions. The consequence will present as an effect, measured as a mean, to a scoring 
outcome variable. Our mission is to determine if the effect is significant or merely 
happenstance. 

Analysis of effects is a huge subject. In any serious text on statistics, the subject is 
typically a third. Because the focus is asset management rather than statistics, this book has 
reduced the explanation to a workable chapter. 

The strategy is to explain the critical mass of what a reader needs to know to 
competently work with the analytics of difference. In other words, what does the reader 
need to know rather than everything there is to know. 

However, it is always good to have a full background knowledge of the methods. 
Should a reader be so motivated, Chapters 9 through 14 of the Field text, Discovering 
Statistics Using R, is a recommended read. 
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13.1.1. Single Factor, Two Conditions 
The first distinction for modeling is the number of means being compared by virtue 

of the number of conditions to a single operational factor. If there are only two conditions, 
the method to apply is called the two-mean t-test. 

As a calculation, it combines the variances to the respective means of the two 
conditions. Figure 13-2 shows the concept. Notice that we are testing the gap between the 
means of the conditions against the confidence limits of our conditions, e.g., 95 percent 
confidence. The standard deviation is calculated as the joint variance to the respective 
distributions. For an in-depth explanation of the calculation, see Section 9.5.1 of Fields. 

 
Figure 13-2: T-test for two means. 

We are testing whether the gap between the means of the two conditions is larger 
than the confidence interval? If so, there is a significant difference in means between 
conditions. 

There is another distinction to recognize. It is the difference between an independent 
and dependent test. 

If each factorial condition is applied to a single participant, we have what is called an 
independent t-test. If each participant is subjected to both conditions, we have a dependent 
t-test. The dependent case is often called the paired two-mean t-test. Both cases are 
demonstrated in Section 13.3.1. 

13.1.2. Single Factor, Three or More Conditions 
Now to step up from comparing only two conditions. We still have a single factorial 

variable but with three or more conditions. 
Our first instinct is to apply the two-mean t-test to each of the possible three pairs. 

The problem is what is called familywise error. For the two means shown in Figure 13-2, 
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we are 95 percent confident we would not make a Type I error. A Type I error is akin to a 
doctor diagnosing a male patient to be pregnant. 

If our assumed confidence is 95 percent of not making such an error for each set of 
means, then the joint confidence is a power of 95 percent. For three conditions, the true 
joint confidence for each paired t-test is 0.95 to the power of three: 86 percent. This is not 
an acceptable confidence. Moreover, it declines as the number of conditions are increased. 

Figure 13-3 shows the problem. By inspection of confidence limits to each, we may 
surmise that there are significant differences between A1-A3 and A2-A3. However, the 
concern for true confidence should cause us to doubt. 

  
Figure 13-3: Means and confidence intervals to 
three conditions. 

To get past the familywise error, Figure 13-4 shows the concept of ANOVA for three 
or more conditions. It is called the one-way ANOVA. 

In the figure we see the idea of a factorial variable with three conditions. We also see 
the base model which is defined as a model without a factorial variable as the predictor 
variable. 

 
Figure 13-4: The concept of ANOVA as conditions. 
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In other words, the base model is the mean score to all observations. We can think in 
terms of it as having a grand variance. Respectively, each of the conditions has a mean, 
variance and residuals of its own. 

The idea of ANOVA is to measure the extent that variance to the three conditions 
explain the grand variance. The extent is tested as ratio of the explained to the unexplained 
variances. If the ratio is high, there is one or more significant effects. In other words, one 
or more of the pairs of conditions in Figure 13-4 are significantly different. 

However, ANOVA does not tell us which pairs are significantly different. For that 
we revert to the linear model. With the model we can use one or both of two methods to 
find the truly different pairs. They are called post hoc and contrasts.  Both will be explained 
in Section 13.2. 

Just as for the two means t-test, there is the matter of conducting the one-way 
ANOVA for independent and dependent models. In the parlance of statistics, dependent 
models are called repeated. For them, we will engage a different type of model called the 
multilevel general linear model. 

The independent model will be demonstrated in Section 13.3.2. The repeated model 
is the subject of Section 13.3.5. 

13.1.3. Covariant Variable in ANOVA 
So far, we have spoken only of variables with categories or levels as conditions. In 

statistic-speak, they are experiments. For example, if we measure performance with respect 
to a process design, the design is the experiment. 

A continuous variable, as a covariant, is neither an experiment nor part of the 
experiment. However, if placed in the ANOVA, it may explain some of the total 
unexplained variance. In turn, this allows the comparison of means to be made with sharper 
confidence limits.  

However, as shown in Figure 13-5, there is a requirement. The covariate must not 
share explained variance with the factorial variable. The is also the rule if there are more 
than one factorial variables. 

The left side of the figure shows a model without a covariate. The right side depicts 
the covariate as two possibilities. The upper right is what we want. The covariate explains 
part of the unexplained variance. Contrast that with the lower right. The covariate explains 
a part of the explained variance it shares with the factorial variable. 

We need to test that the covariate variable is independent of the factorial variable, the 
upper right scenario. We test by building a linear regression with the covariate as the 
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dependent variable and the factorial variable as predictor. If the model reports no 
relationship, high p-value, we can use the covariate. 

The ANCOVA model is demonstrated in Section 13.3.3. 

 
Figure 13-5: The requirement for independence of the 
covariant variable in the model. 

13.1.4. Two or More Factorial Variables 
So far, the explanation of ANOVA has been what is called one-way. There is only 

one factorial variable with three or more conditions. We added one or more covariates to 
the idea. Now we step up to two or more factorial variables. It is called factorial ANOVA. 

The immediate consequence is that we have a longer list of combinations to inspect 
for significant differences. They are the permutations of the conditions of the factorial 
variables. Figure 13-6 depicts the situation for two variables. 

 
Figure 13-6: Two factorial variables with three 
conditions to each. 
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We can see in the figure there are now nine pairs to evaluate. Because of familywise 
error, judgements made with the two-mean t-test would have a confidence of only 
63 percent. 

The figure demonstrates a new issue. Is there interaction between the conditions of 
the factorial variables? There is in the depiction. They are evidenced by non-parallelism 
between line segments. In some cases, the extreme is such that lines cross. 

However, the somewhat non-parallel lines are conceivably not significant 
interactions. It is possible that the appearance is not actually significant. It is a matter of 
degree. For this reason, we turn to statistical methods to make the determination. 

Next imagine three or more factorial variables, each with two or more conditions. 
The visualization of the type of Figure 13-6 cannot easily deal with the evaluation. We 
must visualize two variables, while the others are only in our mind’s eye. In other words, 
we can only effectively explore two dimensionally. 

Factorial ANOVA enables us to explore the factorials as a system. In addition to 
determining which pairs are different, we can identify which are the true interactions across 
factorial variables. The factorial ANOVA is demonstrated in Section 13.3.4. 

13.1.5. Measures are Repeated 
Recall that we earlier distinguished between independent and dependent measures. 

The latter is also called repeated measures. To this point all has been explained in the 
context of independent ANOVA. Now to switch to repeated measures. 

Recall that, for independent models, each condition of the factorial variables is 
measured of a single participant. In contrast, all conditions of the factorials are measured 
of each participant. 

Figure 13-7 shows the contrast. Notice the location of the unexplained variance. 

 
Figure 13-7: Comparison between independent and repeated 
measures models. 

The left side of the figure is the independent model as was seen earlier in Figure 13-5. 
Unexplained variance was associated with the factorial conditions. Therefore, the variance 
was “between” participants. 
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The right side of the figure depicts the repeated measures model. The unexplained 
variance is associated with each participant. It reflects that each participant will vary in 
their response to each condition. In statistics speak, the unexplained variance is “within” 
the participants rather than “between” the participants. 

Repeated measures ANOVA requires a different model. We can use variations of 
ANOVA such as the ezANOVA package. However, we will draw upon what is called a 
multilevel model. 

One reason is that repeated ANOVA models are restrictive and sensitive to certain 
easily violated arcane assumptions. Furthermore, it is good to introduce the multilevel 
model because, with it, we can model possibilities beyond ANOVA. In this case, we are 
using it to work with the repeated measures in the comparison of effects. 

Repeated measures for one-way and factorial analyses will be further explained by 
demonstration in Sections 13.3.5 and 13.3.6. The demonstration will be with the multilevel 
model. If the readers wish to explore the ANOVA approach as an extension of the previous 
sections, the method is Section 13.7.4 of Field. 

13.1.6. Mixed Models 
Now enter mixed models. As the name suggests, a mixed-design model will treat the 

relationship of some factorials to participants as independent and others as repeated. 
Imagine a case where a cost center is being evaluated with respect to all conditions 

of one or more factorials. At the same time, we wish to evaluate the differences within cost 
centers reflective of equivalent plants. The differences in effects may be influenced by 
leadership and other local characteristics to the cost centers. 

However, we may expect that there is an independent relationship between craft types 
or grades. In other words, there are variances “between” participants with respect to craft 
categories. 

The multilevel model allows us to concurrently explore between and within 
relationships. Building a mixed model is a matter of where factorial variables are placed in 
the models. Section 13.3.7 will explain the how mixed models are configured. 

13.1.7. Robust Models 
For all parametric models, there are assumptions. If not met, the accuracy is 

undermined. When a model fails tests to validate the assumptions, there is a body of robust 
models to turn to. 
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The purpose of the chapter is to introduce and explain by demonstration the range of 
analyses around the nature of effects being evaluated. It will concentrate on the parametric 
methods. It will not expand the explanation to the robust models to each. 

There are robust methods to all introduced analyses except for the repeated measures 
and mixed model. It is left to the readers to put them in play if an assessment of the 
parameterized model reveals the necessity. They can be found in the referenced chapters 
of Field for each parameterized method. 
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13.3.4. Factorial ANOVA 
We are not limited to evaluating conditions to a single factorial variable. We can 

model two or more factorial variables. This section will demonstrate how with 
two variables. From what was earlier called one-way ANOVA, we are now stepping out to 
what is called factorial ANOVA. We could, but do not, include one or more covariates. 

This section will demonstrate the method of independent designs. Section 13.3.6 
will demonstrate the method for repeated measures. 
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The code to follow demonstrates the method while extending the explanation of 
Section 13.1.4. As before, this section will explain the process but not always demonstrate 
what is repetitious to previous cases. 

Just as before, the case will imagine that we are comparing two new schemes to the 
standing operational procedure and to each other. The conditions, as schemes, to the 
variable, Strat, are NoChng, DesignA and DesignB. This time we are adding a second 
factorial variable, Grade, with conditions of Junior and Senior. We seek to understand the 
degree that they effect the variable, Score, which is some index of plant performance. 

The dataset is in the previously identified Excel file as the worksheet, 
tblBestFactorial. The loaded packages are ggplot2, pastecs, car, multicomp, and xlsx. 

Beginning with the first block of code, we read the dataset into the session. The 
second block of code is necessary because the alphabetical order of the conditions to the 
Strat variable do not make NoChng the base condition. We do not need to take the same 
ordering action for the grade variable because the order of conditions we want are 
alphabetical.  

 

#DOWNLOAD DATA 

OrigAsToFactorial<- 

read.xlsx("C:\\<PATH>\\SkillsForCareerSecurity_Datasets.xlsx", 

sheetName="tblBestFactorial", header=TRUE) 

AsToFactorial<- OrigAsToFactorial 

head(AsToFactorial; str(AsToFactorial) 

 

#SET LEVELS TO STRAT VARIABLE 

AsToFactorial$Strat<- factor(AsToFactorial$Strat, 

levels=c("NoChng","DesignA","DesignB")) 

str(AsToFactorial$Strat) 

 

With the head and str functions, we can inspect the dataset as shown in Output 13-26. 
Notice the predictor variables, Grade and Strat, are factor variables with two and three 
conditions, respectively. The output variable, Score, is numeric. There are 48 observations 
in the dataset. 

As before, we explore the dataset and, as before, we presume the analyst has already 
explored the dataset to the standard demonstrated in Chapter 5. 
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Output 13-26: Head and str view of the dataset. 

We should begin with a sense of relationship of the two factorial variables to score 
and each other. The code below will produce the boxplot insight shown in Output 13-27. 

 

#EXPLORE DATA 

#GRAPHIC 

FactBox<- ggplot(AsToFactorial, aes(Strat, Score)) 

FactBox + geom_boxplot() + facet_wrap(~Grade) +  geom_point(size = 2) + 

 labs(x = "Design Category", y = "Mean Score") + 

 theme(plot.title=element_text(size=14,face="bold"), 

  axis.text=element_text(size=14,face="bold"), 

  axis.title=element_text(size=14,face="bold"), 

  strip.text = element_text(size=14)) 

 

Output 13-27 shows that a pattern seems to persist across the design variables. For 
both grades, the median score for DesignA is close or above NoChng and DesignB below. 
The scores for NoChng and DesignA are greater for Senior over Junior. Interestingly, the 
median scores for DesignB flip the pattern. The relative gaps between DesignA and 
DesignB with respect to grade is also noteworthy. 
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Output 13-27: Boxplot of Design to Score, subset 
by Grade. 

With the following code we also inspect the data with descriptive statistics. The three 
uses of the by function present the descriptive insight to the two variables and their 
permutations. The first two command lines of the code are as we have done in the previous 
models. The third is new to us. 

 

#DISCRIPTIVE 

#TABLE INDIVIDUAL FACTORIALS 

by(AsToFactorial$Score, AsToFactorial$Strat, stat.desc, basic=FALSE, 

norm=TRUE) 

by(AsToFactorial$Score, AsToFactorial$Grade, stat.desc, basic=FALSE, 

norm=TRUE) 

#TABLE OF FACTORIALS AS INTERACTIVE 

by(AsToFactorial$Score, list(AsToFactorial$Strat, AsToFactorial$Grade),  

 stat.desc, basic=FALSE, norm=TRUE) 

 

If run, the first by command would reveal that scores to the conditions of the Strat 
variable have normal distributions. However, the variance for DesignB is far different than 
the other two conditions. 

If run, the second by command would find that the distribution of score for craft is 
not normal for the Junior craft. We would also notice a large difference in variance between 
Junior and Senior conditions. 

We will run the third by command because it is new to the chapter. It shows the 
factorial variables as permutations of the Strat and Craft variables. An excerpt of two of 
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the six possible interactions is shown in Output 13-28. The reader should pull up and 
inspect the entire table. 

An inspection of the excerpt finds the same statistics as before. The difference is that 
each is one of the six possible combinations. As we inspect the entire table, we would be 
especially interested in variance and normal distribution. 

 
Output 13-28: Example of two of six combinations to interactive descriptive statistics. 

With the block of code, we were able to inspect for normal distribution to each 
condition as standalone and as an interaction. However, we must also test for homogeneity 
of variance. The next block of code does that for the Strat and Grade variables and their 
interactions. 

 

#LEVENE TEST OF HOMOGENIOUS VARIANCE 

#TEST IF VARIANCE BETWEEN SCORE AND EACH FACTORICAL VARIABLE 

leveneTest(AsToFactorial$Score, AsToFactorial$Strat, center=median) 

leveneTest(AsToFactorial$Score, AsToFactorial$Grade, center=median) 

#TEST OF VARIANCE ACROSS ALL SIX GROUPS 

leveneTest(AsToFactorial$Score,  

 interaction(AsToFactorial$Strat, AsToFactorial$Grade), center=median) 

 

The reader would find that the code reports that the Strat variable passes the test of 
homogeneity with a p-value of 0.1095. The Craft variable fails the test with a p-value of 
5.08e-05. For the interaction of variables, the p-value of 0.2351, reports there is 
homogeneity among permutations. 

Just as for one-way ANOVA, we build contrasts of our choosing. The only difference 
is that we have more than one variable for which we must build sets of contrasts. The code 
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is shown below. It is left to the reader to inspect them with AsToFactorial$Strat and 
AsToFactorial$Grade commands.. 

 

#CHOOSING CONTRASTS 

#CONSTRASTS FOR DESIGN 

contrasts(AsToFactorial$Strat)<- cbind(c(-2,1,1),  

c(0,-1,1)) 

AsToFactorial$Strat 

#CONTRASTS FOR GRADE 

contrasts(AsToFactorial$Grade)<- c(-1,1) 

AsToFactorial$Grade 

 

The contrasts for Strat are the same as before. By the assignment of negative weights 
in the respective contrasts, NoChng and DesignA are the base conditions. 

The contrast for Grade, as two conditions, simply compares the two. By virtue of 
assigning a negative weight, Junior is the base condition to Craft.  

Now to fit an ANOVA model to the factorial variables. The following code does that. 
The meat of its output is shown in Output 13-29. 

 

#FITTING THE FACTORIAL ANOVA MODEL 

FactorialModel<- aov(Score~Grade+Strat+Grade:Strat, data=AsToFactorial) 

#Alternative code 

#FactorialModel.Alt<- aov(Score~Grade*Strat, data=AsToFactorial) 

#Run the model omnibus ANOVA 

Anova(FactorialModel, type="III") 

 

Notice that the model equation, Score ~ Grade + Strat + Grade:Strat, is coded full 
out for the model, FactorialModel. The alternative is to write the model as the shorthand 
variable1*variable2 and so on, depending upon the number of variables to be inspected for 
interaction. 

In Output 13-29, we see the output of the factorial ANOVA. We see the same 
structure as for one-way ANOVA but regarding more than a single term. The p-value is 
determined by the ratio of explained to unexplained variance for each variable and the 
interaction of the variables. More specifically, the F ratio and p-value are built on the ratio 
of Residuals each of the three. 

The interpretation of the model lies in the interaction of variable, Grade:Strat. The 
p-value less than or equal 0.05 reveals that there is interaction. As explained in Chapter 7, 
the rule is that when this is the case, the p-value to the “main” effects, Design and Grade, 
should not be interpreted. 
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Output 13-29: The ANOVA model shows there are 
significant differences in effects. 

We can plot the means and confidence limits of the factorials such that the 
interactions are visible. Such a plot is constructed with the following code and shown in 
Output 13-30. 

 

#GRAPHIC OF FINDINGS BY MODEL 

InterLine<- ggplot(AsToFactorial, aes(Strat, Score, color = Grade)) 

InterLine + stat_summary(fun = mean, geom = "point") +  

    stat_summary(fun = mean, geom = "line",  

aes(group= Grade), lwd=1) + 

    stat_summary(fun.Grade = mean_cl_boot,  

geom = "errorbar", width = 0.2, lwd=1) +  

    labs(x = "Strategy", y= "Score", colour= "Grade") + 

    theme(plot.title=element_text(size=14,face="bold"), 

  axis.text=element_text(size=14,face="bold"), 

  axis.title=element_text(size=14,face="bold"), 

legend.title = element_text(size = 12), 

legend.text = element_text(size = 12)) 

 

 
Output 13-30: Plot showing interactions in the 
ANOVA. 
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In the returned chart, we can clearly see an interaction when the conditions of the 
factorial variables are not parallel. If the readers inspect the charted means and confidence 
limits, they will find that they are constructed with the descriptive statistics, means and 
confidence limits, of Output 13-28. 

Now to ferret out significant effects by interpreting the contrasts. We begin with the 
code below. The meat of the output is shown in the upper part of Output 13-31. The lower 
portion is inserted for reference while explaining the model’s output. 

 

##INTERPRETING CONTRASTS FOR DIFFERENCE 

summary.lm(FactorialModel) 

 

The output presents the p-values to the main and interactive effects of the contrasts. 
As already noted, only the two interaction terms can be interpreted. The general rule is that 
any main effect term or contrast involved in a significant interaction term must not be 
interpreted. 

 
Output 13-31: Output of the contrasts to the model. 

Just as for the previous two demonstrations, the terms to the linear model are the 
contrasts rather than the dataset variables. 

The contrasts, Grade1, Strat1 and Strat2, are interpreted in the same manner as 
explained in Section 13.3.2. However, because the interaction terms are showing 
significance, we should not draw conclusions from them. 

Both interaction terms are significant. The significance is telling us that there is 
interaction between the contrasts of the respective factorial variables.  

The interaction, Grade1:Strat1, is telling us that the difference in the NoChng and the 
combined DesignA and DesignB varies depending on the condition of the Grade variable. 
The expression can also be stated in reverse logic. 
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The interaction, Grade1:Strat2, is telling us the difference between the DesignA and 
DesignB varies in magnitude upon the condition of Grade. The expression can be stated in 
reverse logic. 

By overlay on Output 13-30, the interactions are visible. For the Grade1:Strat1 
interactions, average the means of DesignA and DesignB for the two Grade lines. For 
Grade1:Strat2, the contrast is the output with the NoChng condition removed. 

Let’s visualize a step up in complexity. Imagine if Grade was a factorial of three 
conditions. Three additional contrasts, Grade2, Grade2:Strat1 and Grade2:Strat2, would 
appear in the upper portion of the output. However, we would interpret them in the same 
manner. 

Now imagine additional factorial variables. Visual interpretations quickly get out of 
hand. When we get a little past the complexity demonstrated, we must rely on models to 
interpret the main and interaction effects. Models set us free to pursue searches into 
complex comparisons and effects. 

For the one-way ANOVA, we also drew upon post hoc tests to find pairs that were 
significantly different. However, the method is impossible for factorial ANOVA. 

If we wanted to do a post hoc analysis, we would create a new factorial variable as 
the permutation of all conditions.  In the dataset, we would concatenate the conditions to 
each observation as a new variable e.g., CraftDesign. Thence, we would conduct the one-
way ANOVA with the CraftDesign variable. The Grade and Strat variables would not be 
included in the model. 

As for the one-way ANOVA and ANCOVA, to validate the model, we would 
generate the visual of residuals with the plot function below. The reader will find that the 
plot shows, for variance, the residuals take on a blatant funnel shape. They are 
heteroscedastic. The other plot shows the residuals are shown by the Q-Q plot to be 
somewhat, but loosely, normally distributed.  

#PLOTS IN FACTORIAL ANOVA 

par(mfrow=c(2,2))  

plot(FactorialModel) 

par(mfrow=c(1,1)) 

The finding of the plots imply that we should conduct a robust factorial ANOVA. 
How is presented by Section 12.7 of Field. 
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Chapter 14 
Recover Lost Classifications 

Inherent to the data of any operation are the many classifications captured in its process 
management systems. They are the categorical variables in our CMMS and other systems. 
If we comply with our operational procedures, the consequent quality of all classifications 
is almost unavoidably perfect. In turn, we set off a virtuous cycle of data-driven analysis, 
making and execution of strategic, tactical and real-time decisions. 

The cold reality is that compliance is problematic for classifications that are not 
automatic within a system. Especially for those that entail some degree of still less than 
fully informed conclusions. The classifications that are most quick to mind are failure 
modes and codes. Any degree of sloppy misclassification is doubly problematic because 
so much of reliability engineering depends upon analytics to which the classifications are 
the essential feedstock data. 

How many times have we gathered in a discussion of methods in asset reliability and 
maintenance strategy? How many times has it been shoved in our face that we have not 
accurately captured failure history? How many times do we abandon the idea at hand to 
improve plant performance because we assume the necessary history has been forever lost 
to us? 

What has been lost can now be found. There are data analytic methods to recover the 
classifications. This chapter will present the de facto two favorite and most practical 
methods. They are logistic regression and naïve Bayes. 

Of course, there are others. They include K-NN, decision trees, 1R algorithm and K-
means. Readers who wish to explore them and consider their possibilities can find them 
well explained and demonstrated in the book, Machine Learning with R, by Brett Lantz. 

For the two methods, let’s set a comparative point of reference. We all know of linear 
regression. We determine which variables are predictive of a numeric outcome. We use the 
learned model to predict outcomes with respect to a continuous variable such as dollars 
and productivity. In contrast, logistic regression and naïve Bayes predict classifications as 
outcomes such as failure modes and codes. 

Then there is the contrast between logistic regression and naïve Bayes. Logistic 
regression works with all types of structured variables. Naïve Bayes works with free text 
variables. Thus, both are classifiers. Between them, they allow us to work with the full 
range of variables in our super table. We can also use one model to strengthen the other. 
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The chapter will begin with laying out a generalized procedure to recover lost 
classifications as explained in Section 14.1. Section 14.2 will explain by demonstration the 
method of recovering classifications with logistic regression. Section 14.3 do the same with 
respect to the naïve Bayes. 

14.1. Generalized Procedure 
Imagine for every work order pertaining to hundreds of pump assemblies in a refinery over 
the last ten years, we are seeking to understand the occurrence of a particular failure mode. 
No problem, right? The CMMS contains a classification of failure modes by assembly, 
including pump assemblies. 

We pull up a table with, among all variables, the variables of work order number, 
assembly per the criterion of pump assemblies and failure mode. But upon inspection we 
have to ask ourselves what is the chance that 99 percent of all failure modes are “pump?” 

First, pump as the component is not a failure mode. Second, a failure mode that is the 
only classification among multiple and likely possibilities is obviously bogus. 

Our feathers drop. But then, an organization seeking to be excellent cannot be 
stopped. Right? Rather than be defeated, the director of reliability engineering directs an 
appropriately qualified engineer to inspect each work order to any pump assembly and 
classify the failure mode to each order. 

As was demonstrated in Chapter 3, Super Tables from Operational Data, the engineer 
would build a super table. In it, are the many variables to the work orders, tasks and 
resources including craft names. With the super table, the engineer like a detective, 
classifies the failures. 

Readers are thinking this is far too laborious to be practical. Most of us would rather 
get our tails kicked in the parking lot than be given the task. This is the biggest reason why 
failure history will remain lost if we cannot come up with a better way. 

We cannot completely remove the engineer from the task with machine learning and 
artificial intelligence. However, with logistic regression and naïve Bayes probabilities, we 
can reduce the burden to reasonable. We can reduce the task of classification by human 
intelligence to a relatively few orders and use analytics to classify the many upon the few. 

The procedure can be generalized as the following steps: 
• Establish classification strategy upon analytic purpose.
• Establish the window of history.
• Build a super table to window.
• Select initial random sample.
• Classify small set of the initial sample by human intelligence.
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• Train and evaluate model on the human-predicted classifications.
• Select and subject new random sample set to the model and confirm

classifications.
• Append the latest predicted batch to the collective batch of all orders with

confirmed classifications.
• Repeat the previous three steps with the expanding table of correctly

classified orders.
The next two sections will the explain the analytics to the procedure: logistic 

regression and naïve Bayes. The remainder of this section will explain the steps to the 
procedure. 

Establish classification strategy upon analytic purpose. There is a purpose for the 
classifications. For example, we may want to do survival and hazard analysis of 
components to the pump assemblies with respect to an especially significant failure mode. 
We may be motivated because of the ramifications of the failure to some dimension of 
plant’s performance. 

Establish the window of history. Recall that we do not always need the history of 
an entire population. We may only need a statistical sample. It depends upon the purpose 
of the study. Therefore, as explained in Section 13.2.1 we establish a window of age and 
calendar. 

Build a super table to match the window. The super table will combine in a single 
dataset, every variable to each order that will help the engineer to make classifying 
decisions. New indicative variables will likely be created to upon the system variables. In 
fact, with the final super table, the expert will likely be able classify many of the orders 
because criteria to some variables will allow the engineer to isolate or subset the orders on 
an obvious mode. 

Select initial random sample. Depending upon age and calendar, the super table 
may consist of thousands of orders. This is by virtue of the window. Our next step is to 
extract a sample of orders randomly from the total set of the window. We want a sample 
size that the inspecting expert can pass through in less than an hour. The orders must be 
random so that the subsequent stages will be unbiased history. 

Classify a small initial sample upon human intelligence. With the initial randomly 
selected orders from the full super table, the expert can scan through orders and make 
classifying decisions. The decisions are joined to be a variable to the sample super table. 
Now we have a super table that newly contains the orders classified by the mode or modes 
of interest to us. 
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Train and evaluate a model on human-predicted classifications. The table of 
classified cases are now our dataset with which to train the logistic and naïve Bayes models 
to classify orders by artificial intelligence. Once trained, the model is evaluated for its 
ability to accurately classify. 

Select and subject new random sample to the model and confirm classifications. 
We return to the window super table and randomly select a new batch of orders that were 
not included in the previous batch. We submit them to the trained model and attach the 
surmised classifications to the extracted super table. Thence, the expert will scan for and 
correct the few orders that may be Type I and II errors. The model has done most of the 
work, the expert can concentrate on finding those in error. 

Append latest batch to all orders with confirmed classifications. We now have 
the initial and subsequent sample of orders as a block of correctly classified orders. We 
append each new block to the collective previous blocks such that we have a growing 
unbiased collection of correctly classified failure modes. 

Repeat the previous three steps with the expanding table of correctly classified 
orders. The idea is to refine the model upon our correctly finalized classification and 
submit a new sample set to the upgraded classifier. The cycle is repeated until there are an 
adequate number of observation to conduct the analysis for which the classifications are 
feedstock. 

The next two sections will explore the analytics to the procedure. The demonstration 
will be as if we are only seeking two classifications, the one of interest and other. If our 
purpose were to conduct survival hazard analysis, including Weibull, the “exit” event is 
the classification of interest and the “censored” event is the other. 

However, the procedure can be easily expanded to three or more classifications. How 
will be noted as the models for classification are explained. 

14.2. Logistic Regression as Classifier 
For all the hype about machine learning and artificial intelligence, it is most frequently a 
simple two-step dance. Here a model is learning to classify a dataset and then classifying 
unclassified records as the model has learned to do.  

The most utilized classifier is logistic regression. Although powerful, it is hardly a 
exotic as the media hype want us to imagine. As they say in Hollywood, “Nobody is 
interested in just an okay story.” 

Just as for linear regression, the strength of relationships between predictor variables 
and an outcome variable are evaluated: machine learning. The learned model is used to 
predict outcome: artificial intelligence. However, unlike linear regression, we are seeking 
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strength of relationship to classifications as the outcome rather than continuous numeric 
outcomes between positive and negative infinity. 

This section will describe logistic regression to the depth that the reader needs to 
know, rather than everything there is to know. We will start by contrasting the linking and 
systematic components of linear and logistic regression. Then we will get our arms around 
the solution mathematics and interpretation of logistic regression. Thence, we will expand 
upon the explanation of logistic regression in the context of a demonstration. 

14.2.1. Concept of Logistic Regression 
Chapter 7 explained and demonstrated linear regression. The explanation of logistic 

regression is largely a variation on linear regression. 
We can see fundamental differences in Figure 14-1. A linear regression is just that, 

linear. It predicts a continuous outcome along a straight line with points that can range 
from positive to negative infinity. 

Contrast that to the logistic regression curves and axes. The curve is obviously not 
linear. The vertical axis ranges from 0 to 1 to reflect the probability of an outcome. The 
outcomes are categorical variable such as failure modes and codes.  

Also notice the comparative observation of the two plots. For the linear regression, 
the observations are distributed about the fitted line with an even spread of dispersion. 

For the logistic regression, the observations appear either at the top or bottom of the 
frame with horizontal overlap between the extremes. Speaking mathematically, the fitted 
curve depicts the instantaneous probability of the top observation divided by the sum of 
the top and bottom observations. 

Figure 14-1: Comparative perspectives of linear and logistic regression. 

The equations to the respective models are inserted in the charts. The notable 
difference is what is called the linking functions that are to the left of the equality operators. 
For linear regression, it is called the identity: û. For logistic regression it is called the log 
odds: log(π/(1-π)). The systematic components to the right of the equality operator are 
identical. 
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The linking function relates the systematic component to the right of the equality to 
the solution element of the left û for linear and π for logistic. Figure 14-2 presents the 
contrasting solution equations. 

Figure 14-2: Solution equations to linear and 
logistic regression. 

The solution equation for linear regression is straightforward. We are solving a 
simple identity. In contrast, for the logit we are solving for probability, π, the vertical axis 
to the logistic regression curve in Figure 14-1.  

What is shown in the figure is the binary logistic. It is actually a special case of the 
multinomial logistic. Because the reader will most likely use the binary over the 
multinomial logistic the chapter will not demonstrate the multinomial. Instead, the reader 
is referred to Chapter 7, Section 7.9 of the book, Discovering Statistics with R, by Field for 
an entertaining demonstration. There are also good demonstrations with R available on the 
internet. The explanation of the binary variation will prepare the reader to work with the 
multinomial variation.  

The concept for binary and multinomial logistic is the same. Imagine that we seek to 
classify three failure modes rather than two. It is required that the modes be mutually 
exclusive and completely exhaustive. Figure 14-3 shows the solution formula as a set of 
equations, one for each mode. 

Figure 14-3: Solution equations to a 
classifier of three classifications. 

Notice that each of the three solution equations has the same form as we saw for the 
solution equation for binary logistic regression in Figure 14-2. The differences are the 
intercept and coefficient: α and β. They reference to an associated classification. 
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A careful inspection will spot how multinomial works. Notice the numerator to each 
solution equation. A systematic component has been written for two of the three 
classifications. The denominator is same to all three. Consequently, for a case, the formulas 
are computing a probability for each classification. Because they are multinomial, in sum 
they total to 100 percent. 

Chapter 7, Section 7.1.1 for linear regression, explained the systematic component as 
almost limitless in makeup. They can be combinations of main and interactive effects, 
numeric and factorial variables, and polynomial terms. The full range of variables holds 
for logistic regression. The makeup of the systematic component is so unlimited that the 
big issue is what to put in, what to leave out. The overarching process of selection is much 
the same as explained in Chapter 7.  

The interpretation is also largely the same. Except that the effects of the coefficient 
are additive for linear regression and multiplicative for logistic regression, all else follows 
the interpretation as explained in Chapter 7 for linear regression.  

Earlier chapters mentioned or demonstrated the multilevel regression. Until now it 
has surfaced as mentioned for linear regression and utilized for repeated measures 
ANOVA. Multilevel modeling is also possible for binary and multinomial logistic 
regression. If the reader feels that the classifications are somehow sensitive to hierarchy, 
she is directed to the book, Multilevel Modeling Using R, by Finch, Bolin and Kelly.  

There is also the option of what is call “ordinate” logistic regression. It can be used 
if the classifications are ordinately related, e.g., low, medium and high. If that is the case 
the reader is advised to seek examples on the internet. Ordinal logistic regressions tends to 
be more accurate than binary and multinomial.  
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14.3. Naïve Bayes Probability as Classifier 
We can tease many classifications from the structured data of our super table. Some can be 
extracted by merely devising new categorical variables with existing ones. An example 
was given in Chapter 7 when it was demonstrated how to classify orders by lead craft when 
the system did not provide the classification. 

Other classifications can be made with models. The previous section demonstrated 
the use of logistic regression as a classifier. It was great but will only work with the 
structured data in the super table. 

The problem is that there are often unstructured free-text variables in the dataset. An 
example is the work order description variable in a CMMS. 

This is noteworthy because words in free-text variables can be indicative of 
classifications such as failure modes and codes. We can extract the connection with the 
model type upon what is called naïve Bayes probability. 

14.3.1. Concept of Naïve Bayes 
The idea of a model built on naïve Bayes is to determine the probability of a 

classification (e.g., failure mode or code) in union with the probability of a word appearing 
in the classification out of all classified cases in which the word occurred. Rather than a 
single word, the probability is generated upon the large body of words found collectively 
in the free-text variable. 
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This chapter will not expand upon the explanation of naïve Bayes probability. The 
reader is referred to Chapter 4 of the book, Machine Learning With R, by Lantz for a deeper 
but practicable grasp of naïve Bayes probability. 

The models throughout the book have been to fit a model to a dataset. How well the 
model would have predicted the data it is trained upon. In contrast, naïve Bayes makes its 
determination upon probability of occurrence. 

Naïve Bayes is the most common of probability-based methods. That is especially so 
for classification with free text. So much so that it has become the de facto standard for 
working with free text. 

It is called “naïve” because it makes two naïve assumptions. First, it assumes that all 
words are equally important in the determined probability. Second, it assumes that all 
words in a string of text are independent. Of course, both are very naïve. However, all is 
forgiven because the method still performs well. 

It is also forgiven because it has other advantages. One is that it requires relatively 
few cases as an example set and still performs well with large datasets. Another is that it 
does well with noisy and missing data. 

It has other limitations beside naivety. One is that it is not ideal for numeric datasets. 
However, that is not an issue to us because, rather than numeric variables, we seek a tool 
to make classifications on free-text data. 

Another limitation is that its estimated probabilities are less reliable than the 
predicted named classes. Its advocates counter with the point that getting good 
classifications is the whole point. In other words, compared to logistic regression, we 
receive answers but without any solid measure of conviction. 
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1R algorithm, 437 
Accessible on demand, 225–30 
Accessible on demand defined, 222 
Achievable availability, 7, 353 
Adminstration of tables, 80–81 
Aggregation variables, 65–66 

Expression and Where, 72, 252 
Summary options, 66 

Akaike information criteria (AIC), 190 
Analytics, interpretation of 

Akaike information criteria (AIC), 449 
Akaike information criterion (AIC), 190 
Centrality and spread, 120 
Confidence limits, 99 
Exponentially weighted moving average (EWMA). 

See Time series, principles of; Exponentially 
weighted moving average (EWMA) 

Hypothesis test, 98 
Kurtosis, 121 
Mean, 120 
Mean absolute deviation from median, 121 
Mean trimmed of extremes, 121 
Median, 120 
Min-max, 120 
Pearson, 97 
p-value, 99
Quartiles, 120
Range, 121
Skew, 121
Spearman, 97
Standard deviation, 121
Standard error to the mean, 121

Analytics, types of, 95–100 
ANCOVA. See ANCOVA, principles of; ANCOVA, 

templates and interpretation; and ANCOVA, R 
functions 

ANOVA, factorial. See Factorial ANOVA, principles 
of; Factorial ANOVA, templates and 
interpretation; and Factorial ANOVA, R 
functions 

ANOVA, one-way. See One-way ANOVA, principles 
of; One-way ANOVA, templates and 
interpretation; and One-way ANOVA, R 
functions 

ARIMA model. See Time series, principles of; 
ARIMA (Autoregressive integrated moving 
average) 

Correlation analysis 
Between categorical and numeric variables, 

132 
Correlation coefficient (R value), 95 
Correlation defined, 95 
Regression Coefficient defined, 95 

Correlation compared to regression analysis, 103–
8 

Exponentially weighted moving average (EWMA). 
See Time series, principles of; Exponentially 
weighted moving average (EWMA) 

Factorial repeated measures. See Factorial 
repeated measures, principles of; Factorial 
repeated measures, templates and 
interpretation; and Factorial repeated 
measures, R functions 

General linear model (GLM). See general linear 
model 

Holt Winters. See Time series, principles of; Holt 
Winters 

Linear regression. See linear regression templates 
and interpretation 

Logistic regression. See Logistic regression, 
principles of; Logistic regression, templates and 
interpretation; and Logistic regression, R 
functions 

Missing data, 110–17 
Steps to, 110 

Mixed model, 384 
Multilevel model, 384 
Naïve Bayes. See Naïve Bayes, principles of; Naïve 

Bayes, templates and interpretation; and Naïve 
Bayes regression, R functions 

One-way repeated measures. See One-way 
repeated measures, principles of; One-way 
repeated measures, templates and 
interpretation; and One-way repeated 
measures, R functions 

Partial correlation analysis, 100–103 
Correlation (R), 100 
Correlation squared (R2), 100 
Misleading, as, 102 
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Robust difference model, 384 
Robust linear regression, 107 
Survival hazard. See Duration analytics, principles 

of, Duration analytics, templates and 
interpretation, and Duration Analytics, R 
functions 

Time series, 241, See Time series, principles of, 
Time series, templates and interpretation, and 
Time series, R functions 

Two-mean t-test, single factor, two conditions. See 
Two-mean t-test, principles of, Two-mean t-
test, templates and interpretation, and Two-
mean t-test, R functions 

ANCOVA. See ANCOVA, principles of; ANCOVA, 
templates and interpretation; and ANCOVA, R 
functions 

ANCOVA, principles of, 381–82, 404–13 
Continuous variable in ANCOVA, 381 
Covariate, 381 
Mean, se and confidence limits adjusted for 

covariate, 408 
Unexplained variance, 381 

ANCOVA, R functions 
Anova(), 408, 412 
aov(), 407, 408, 412 
effect(), 408 
glht(), 411 

ANCOVA, templates and interpretation 
Anova() to test for homogeneity, 412 
aov() test for significant difference contrasts as 

main effects, 408 
aov() to test covariate as independent, 407 
Build contrast variables and inspect, 407 
by() for descriptive statistics, 406 
effect() to adjust mean, se and limits for covariate, 

408 
factor() to set variable base condition, 405 
ggplot2 to plot points and covariate to score, 410 
ggplot2 to plot variable condition means and 

limits, 419 
ggplot2 to plot variate regression to condition 

points, 412 
glht() to adjust limits with Tukey, 411 
leveneTest() test for constant variance across 

conditions, 406 
plot() of variance and normality to residuals, 411 
summary.lm() test significant difference of means, 

contrasts as effects, adjusted for covariate, 409 
summary.lm() to inspect contrasts for difference, 

420 

ANOVA. See One-way ANOVA, principles of; One-way 
ANOVA, templates and interpretation; and One-
way ANOVA, R functions 

ANOVA, factorial. See Factorial ANOVA 
Apparency insight, 40–41 

Models, 40 
Append query, 50, 56 
ARIMA model. See Time series, principles of; ARIMA 

(Autogressive integrated moving average) 
Artificial intelligence, 438, 441 
Artificial intelligence (AI), 207–17 
Autocorrelation, 37 
Availability performance, 2–4 

Constituent probability, as, 3 
Contrast to OEE, 2 
defined, 2 
Depicted, 3 
Equation, as, 3 
Life curves, 4 
Operational availability, 9–11 

Cost effectiveness, 11–13 
Factors of, 10–11 

Probability, as, 2 
Subtypes, as, 6–7 

Achievable, 7 
Equations, 7–8 
Inherent, 6 
Interrelationships between, 9 
Operational, 7 

Backlog, workload, 249 
Bad data, imputation 

Models for 
Linear regresssion, 163 
Logistic regresssion, 165 
Multilevel (MLM), 167 
Naïve Bayes, 165 
Trees, 166 
Trees, 163 
Trees, 168 

Translation tables, 164 
Bad data, rectification 

Eliminate, 160 
Impute estimate (ML and AI), 160 

Bad data, types 
Inapparent without measurement, 159 
Misformatted and mis mispelled, 159 
Missing, 159 
Outliers, Leveragers and influencers, 161 
Unexpected, 159 

Base condition, set, 395 
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Base model, 380 
Bayes probabilty, 438 
Benjamini-Hochberg adjustment, 385, 402 
Bibliography, 14, 81, 108, 158, 169, 219, 236, 278, 

318, 351, 375, 436, 473 
Binary logistic equation, 442 
Blanchard, Benjamin S, 14 
Bolin, Jocelyn, 443, 474 
Bonferroni adjustment, 385, 402 
Budget and variance, principles and data 

methodology, 240–42, 243–45 
Actuals, table of, 253–55 
Budget, contrast one- and two-dimensional, 242 
Case as progression, 247–49 

Flowchart, 248 
Variance Output reports, 248 
Workload from history, 250 

Craft capacity as workforce, 270–78 
Dual dimensional 

Activity (AKA, workload), 241 
Factor of cost, 241 
Mission, structure and derivation, 238–40 

Derivation, 239 
Mission, 238 
Structure, 238 

Objectives, three, 237 
Template tables, queries and pivots, 249–53 
Variance supertable and pivot, 255–57 
Variance, contrast one- and two-dimensional, 239 
Variance, two-dimensional computations, 243, 

257 
Budget-based schedule cycle. See Schedule cycle, 

stages to 
Budget-based schedule measures and methods. See 

Schedule cycle, measures of 
Budget-based schedule tables. See Schedule cycle, 

tables to 
Budgeting, types of 

Predictive-based, 239 
Zero-based, 239 

Categorical variables, interpret, 188 
Censored event, 358, 360 
Centality and spread, 120 
Classification insight, 39–40 

Models, 39 
Classification, Procedure to recover, 438–40 

Artificial intellegence, 438 
Machine learning, 438 
X, 438 

Classifiers for categories 

Aggregation, upon, 72–78 
Cleanse data, steps to, 207 
Concatenation operator, 58 
Confidence interval to regression coefficient, 189 
Confidence limits, 99 
Contrasts as effects, 386–89 

Contrast variables, build, 387 
Family error, 386 

Cooks distance, test of cases, 209 
Corpus, text dataset, 462 
Correlation (R), 100 
Correlation analysis 

Correlation defined, 95 
Regression Coefficient defined, 95 

Correlation coefficient (R value), 95 
Correlation compared to regression analysis, 103–8 
Correlation defined, 95 
Correlation squared (R2), 100 
Criteria row, Access code 

Conditional expressions, 60 
Contains, 59 
Dates, working with, 60 
Equals, 59 
Numeric, for, 60 
OR and AND, 58 
Text strings, for, 59 

Critical mass and grass roots, 16–19 
Characteristics, qualifying, 17 
Critical mass, 16 
Grass root, 16 
Triad of software, 22 

Cross correlation, 37 
Crosstab query, 50, 233 
Cumulative hazard, 358 
Cumulative hazard function, 361, 364 
Current to capture, 225–30 
Current to capture defined, 221 
Data analytics, principles of 

Multiple predictor model, 370–73 
Parametric model 

Weibull distribution, eras of, 369 
Data and report as layers, 223 

First layer, 224 
Second layer, 224 

Data and variance, principles and data methodology 
Reports and interaction analysis, 258–62, 262–70 

Data driven, 15–16 
depicted, 16 
Essential definitions, 19–22 

Alogrithm, 21 
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Artificial intelligence, 21 
Data and big data, 20 
Machine learning, 21 

Insight deliverables. See Insight deliverables 
Data frame, 98 
Data table compared to Spreadsheet, 223 
Data, entirety of 

Accessible on demand, 230–36 
Relational database, 230 

Accessible on demand defned, 222 
Current to capture, 225–30 
Current to capture defned, 221 
Data and report as layers, 223 

First layer, 224 
Second layer, 224 

Fused data and report, 223 
Layered structure, 222–25 
Layered structure defned, 221 
Spreadsheet compared to data table, 223 
Table as format, 22, 222 

Data, reshape, 428 
Decision tree model, 40 
Decision trees, 437 
Delete query, 50 
Design grid rows, Access, 56–61, 56–61, 56 

Criteria. See Criteria row code, Access 
Field. See Field row code, Access 
Show, 57 
Sort, 57 
Table, 57 
Total, 62, 66 

Summary options, 62 
Deviance as measure of fit, 448 
DFBeta, 451 
Difference analytics, 383–84, See also one-way 

repeated and factorial repeated measures and 
respective principles of and templates and 
interpretation 

Difference insight, 35–36 
Family error, 36 
Models, 36 

Document term matrix, 466 
Dual dimensional budget and variance, 240 
Dummy variables, 182–85 
Dunnett adjustment, 385, 403 
Duration analytics, principles of 

Baseline model, defined, 366 
Empircal construct 

Censored event, 360 
Cumulative hazard function, 361 

Hazard function, 361 
Kaplan-Meir estimator, 360 
Nelson-Aalen estimator, 360 
Survival function, 362 

Empircal construct of, 360–62 
Empirical model, 366–68 
Hazard defined, 357, 359 
Left truncated, 359 
Life data, event and window, 358–60 

Censored event, 358 
Cumulative hazard, 358 
Event, defined, 358 
Life as hazard, 358 

Mathematical construct, 362–64 
Beta parameter, slope, 362 
Cumulative hazard function (H(t)), 364 
Eta parameter, scale, 362 
Failure function (F(t)), 363 
Hazard function (h(t)), 364 
Mean time to specified event (MTTF), 364 
Survival function (R(t)), 363 

Median rank regression method (MRR), 374 
Most likely estimate method (MLE), 374 
Parametric model, 368–70 
Survival defined, 355 
Weibull plot, 373–75 

Duration analytics, R functions 
coxph(), 366 
MLEW2p(), 374 
MRRW2p(), 374 
phreg(), 368, 370, 372 
strata(), 370 
Surv(), 366, 368, 370, 372 
survfit(), 366 

Duration analytics, templates and interpretation 
coxph() for empirical model of data, 366 
phreg() baseline parametric model, 368 
phreg() parametric model with one or more 

variables, 372 
phreg() parametric model with strata variable, 370 
Weibull model with Median rank regression 

method (MRR), 374 
Weibull Model with most likely estimate method 

(MLE), 374 
Weibull prepare data for model, 373 

Duration insight, 38–39 
Models, 39 
Plots to insight 

Cummulative hazard, 38 
Hazard, 38 
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survival, 38 
Durbin Watson test, 200 
Entirety of data. See Data, entirety of 
Event history analysis, 38 
Exponentially weighted moving average (EWMA). See 

Time series, principles of; Exponentially weighted 
moving average (EWMA) 

Factorial ANOVA, principles of, 382–83, 413–21 
Post hoc, method for, 421 
Visualize variance and normality to convert to 

one-way ANOVA, 421 
Factorial ANOVA, R functions 

Anova 
(), 418 

factor(), 414 
summary.lm(), 420 

Factorial ANOVA, templates and interpretation 
aov() fit and test for presence of differences, 418 
by() descriptive statistics, individual and 

interactive, 416 
Contrast() to build contrast variables and inspect, 

418 
factor() t set base conditions to variables, 414 
ggplot2 to visualize relationship of factorial 

variables, 415 
leveneTest() for constant variance across 

conditions, 417 
plot() to visualize variance and normalcy to 

factorial converted to one-way ANOVA, 421 
Factorial repeated measures, principles of, 427–34 

Reshape data, 428 
Robust model, 434 

Factorial repeated measures, R functions 
anova(), 431 
lme(), 431 

Factorial repeated measures, templates and 
interpretation 
Build contrast variables and inspect, 430 
by() for descriptive statistics, 430 
ggplot2 to compare conditions and interaction, 

433 
glht() post hoc of multilevel model with Tukey, 

434 
lme() one variable subjected to multiple measures 

and progressive predictor variables, 431 
melt() make wide data long, 429 

Failure function, 363 
Family error, 36, 379, 385, 386 
Field row, Access code 

Aliases, 69, 78 

Calculated, 59 
IIF, 60, 71 
Switch, 60 

Combined with concatenation, 58 
Concatenation operator, 58 
Names common to multiple subtables, 58 

Field, Andy, 473 
Finch, Holmes, 443, 473, 474 
F-statistic, 187 
Fused data and report, 223 
General linear model (GLM), 172–74 

Defined, 172 
Dummy variables, 182–85 
Interaction variable, 173 
Main effects, 173 
Null model, 172 
Select variables, 185–93 
Three components 

Linking function and solution, 174–77 
Three regressions, 171 
Transformation of variables, 173, 193–94 

ggplot2 geoms 
geom_bar(), 149, 150 
geom_boxplot(), 141, 143, 157 
geom_contour(), 138 
geom_count(), 138, 139 
geom_density(), 147, 205, 206 
geom_freqpoly(), 144, 146 
geom_hex(), 138, 139 
geom_histogram(), 144, 145, 147, 204 
geom_jitter(), 138, 141, 142 
geom_line(), 152, 156, 157 
geom_path(), 154 
geom_point(), 135, 137, 139, 141, 142, 143, 154, 

157, 194, 195, 198, 199, 200, 202, 209, 212 
geom_raster(), 138 
geom_smooth(), 135, 137, 156, 194, 195, 198, 

199, 200, 202, 209, 212 
geom_violin(), 142 

ggplot2 templates 
Barchart as mean, 150 
Barchart with dodge, 149 
Boxplot with bins for continuous variable, 143 
Boxplot with geom_jitter(), 141 
Comparison of confidence limits of mean effects, 

396 
Density plot with geom_density, 205, 206 
Density with geom_histogram, 204 
ggplot2 with geom_boxplot, geom_point for mean 

and points, and geom_jittter, 391 
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Histogram and polygon overlay with 
geom_histogram and geom_freqpoly, 144 

Histogram as density, 147 
Histogram subsetted categories with 

geom_histogram, 145 
Line chart for groups with line fit to overall, 156 
Line chart with boxplot and mean, 157 
Line chart with geom_line, 152 
Path chart over geom_point with geom_path, 154 
Polygon as density, 147 
Polygon with categories overlaid by 

geom_freqpoly, 146 
Q-Q plot, 122, 127, 204 
Q-Q plot with facet_grid(), 129
Q-Q plot with facet_wrap, 125, 128
Scatter chart with geom_point, 154
Scatter plot of multiple datasets with geom_point

and geom_smooth, 209 
Scatter plot with geom_count() for overplotting, 

139 
Scatter plot with geom_hex() for overplotting, 139 
Scatter plot with geom_point, geom_smooth and 

facet_grid, 194, 195, 198, 199, 200, 202 
Scatter plot with geom_point, geom_smooth and 

facet-wrap, 135 
Scatter plot with geom_smooth(), 134 
Scatter plot with multiple datasets, geom_point 

and geom_smooth, 137, 212 
Violin chart with geom_jitter for overlapping, 142 

Hat test of cases, 208 
Hazard function, 361, 364 
Heap, Howard F, 14 
Holt Winters. See Time series, principles of; Holt 

Winters 
Independence of errors, 200 
Industrial internet of things (IIoT), 18 

Feasibility of, 19 
Inherent availability, 6, 353 
Inner join, 53 
Insight deliverables, 31–41 

Know-thy-data, 32–33 
Modeled, 33–41 

Apparency. See Apparency insight 
Classification. See Classification insight 
Difference. See Difference insight 
Duration. See Duration insight 
Relationship. See Relationship insight 
Time series. See Time series insight 

Recountive, 32 
System reports, 31 

Institute for Digital Research and education, 474 
Interaction of variables, 197 
JoinProperties window, 54 
Joins complex 

Concatenated join, 69, 78, 251 
Multiple variables join, 69, 78 

Joins in query 
Join properties window, 54 
Type 

Inner, 53 
Left, 53 
Outer, 54 
Right, 53 

Jones, James V, 14 
Kaplan-Mier estimator, 360 
Kelly, Ken, 443, 474 
K-means, 437
K-Means model, 40
K-NN, 437
Know-thy-data, 90–95

Layered charting, 94 
Normal distribution, 92 

Q-Q graphic, 93
Normal distribution, tests of 

Shapiro-Wilk test, 93 
Pairs panel, 92 

Kurtosis, 121 
Lamb, Richard G, 14 
Lantz, Brett, 437, 474 
Layered charting, 29–31, 94 

Defined, 29 
Traditional, compared to, 29, 32 

Layered structure, 222–25 
Layered structure defined, 221 
Left join, 53 
Left truncated, 359 
Leverage, 451 
Life curves, 4 
Linear regression, 34, 163 
Linear regression templates and interpretation 

lm() with main effect and interaction variables, 
212 

lm() with main effect and transformed variables, 
195 

lm() with main effect variables, 104, 189, 191 
lm() with main effect, interaction and transformed 

variables, 215, 217 
p-value, 187
Residual standard error, 190, 192, 197
Test for generalization
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Variance inflation factor (VIF), 201 
Linear regression, principles of 

Akaike information criterion (AIC), 190 
Artificial intelligence (AI), 207–17 
Categorical variables, interpret, 188 
Cleanse data, steps to, 207 
Confidence interval to regression coefficient, 189 
Cooks distance, test of cases, 208, 209 
Dummy variables, 182–85 
F-statistic, 187
Hat test of cases, 208
Imputation by estimate, 213
Interaction of variables, 197
Machine learning, 177–78
Predict individual cases, 217–18
Residual standard error, 187
R-squared, 187, 192
Select variables, 185–93
Standardized effect, 185
Standardized residuals, 194
Test for generalization, 200–207

Durbin Watson test, 200 
Independence of errors, 200 
Normal distribution of residuals, 203 

Transformation of variables, 193–94 
Linear regression, templates and interpretation 

cooks.distance() to each case in data set, 209 
lm() with main effect variables, 185, 192 
lm() with main effect, interaction and transformed 

variables, 196 
lm()with main effect variables, 187 

Linking function, 441, 442 
Logistic regression, 34, 165, 438 
Logistic regression, principles of, 457–59 

Artificial intelligence, 441 
Binary logistic equation, 442 
Build and interpret, 445–49 
Classification as probability, 450–51 
Classify cases, 452–54 
Confidence limits to probability, computation, 453 
Deviance as measure of fit, 448 
DFBeta, 451 
Leverage, 451 
Linearity, method of, 456 
Linearity, test for, 454–57 
Linking function, 441 
Logistic regression as classifier, 440–59 
Machine learning, 441 
Mulinomial logistic equation, 442 
Multicolinearity, test for, 454–57 

Multilevel model, 443 
Multinomial logistic regression, 445 
Null model, 459 
Odd ratio, 446 
Odds ratio, upper and lower limits, 447 
Ordinal logistic regression, 443 
Regression coefficients, effects of, 443, 446 
Residuals, evaluate, 451 
Solution equation, 442 
Standardized residuals, 451 
Studentized residuals, 451 
Systematic component, 443 

Logistic regression, R functions 
(), 451 
dfbeta(), 451 
dffits(), 451 
glm(), 445, 455, 456, 457 
rstandard(), 451 
rstudent(), 451 

Logistic regression, templates and interpretation 
Cases to be classified, 452 
Compare deviance to null model, 448, 449 
Evaluate residuals to logistic model, 451 
Expand cases table to include probabilities and 

confidence limits, 453 
glm() test for linearity, 456 
glm() to build logistic model, 445, 455 
Logistic regression to classify sample data, 457 
Predict() of probability of the base classification, 

452 
relevel() set baseline category to model, 444 
Table of classification as probabilities, 450 
Upper, lower limits to odds ratio, 447 
vif() to test for multicolinearity, 455 

Machine learning, 177–78, 438, 441 
Main effects, 173 
Maintenance tasks from FMECA, 5–6 
Make table query, 74 
Make Table query, 50 
Matrix, 98 
Mean, 120, 263 
Mean absolute deviation from median, 121 
Mean time to specified event, 364 
Mean trimmed of extremes, 121 
Median, 120 
Min-Max, 120 
Missing data, 110–17 
Mixed model, 384, 435 
Moubray, John, 14 
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Multilevel model, 381, 384, 389, 422, 425, 426, 427, 
431, 434, 435, 443 

Multinomial logistic equation, 442 
Multinomial logistic regression, 445 
Naïve Bayes, principles of, 459–73 

Classify cases, 472–73 
Cleanse and standardize text data, 462–64 
Cleanse and standardize text, steps, 463 
Concept of Naïve Bayes, 460 
Corpus, text dataset, 462 
Document term matrix, 466 
Frequent words, indicators of, 468–69 
Rectify misclassifications, 165 
Train and evaluate model, 469–72 
Train and test datasets, create, 467–68 
Word clouds, visualize text data, 464–66 

Naïve Bayes, R functions 
DocumentTermMatrix(), 466 
findFreqTerms (), 468 
inspect(), 462 
naiveBayes(), 469, 471 
tm_map(), 463 
VCorpus(), 462 
wordcloud(), 464, 465 

Naïve Bayes, templates and interpretation 
Convert document term matrix to categorical 

data, 469 
CrossTable() to evaluate model trained with 

Laplace, 471 
CrossTable()to evaluate model error, 470 
DocumentTermMatrix() to generate matrix of 

terms and freq, 466 
Download text data, 461 
findFreqTerms() to reduce document term matrix 

to frequency threshold, 468 
gsub() to remove one or more sequential items in 

text, 462 
Improve Bayes model with Laplace, 471 
Inspect text in text corpus, 462 
naiveBayes() to created trained model, 469 
predict() to estimate unclassified cases with 

model, 473 
predict() to test model with text dataset, 470 
Subset document term matrix, 467 
tm_map() in steps to cleanse and standardize text 

dataset, 463 
VCorpus() for corpus of text dataset, 462 
wordcloud() of cleansed and standardized dataset, 

464 
wordcloud() subset on classified text dataset, 465 

Nelson-Aalen estimator, 360 
Normal distribution, test of 

Q-Q plots, 204 
Normal distribution, tests of 

Histograms, 64 
Q-Q plots, 93 
Q-Q plots, 64 
Q-Q plots, 122 
Q-Q plots, 123 
Q-Q plots, 127 
Shapiro-Wilk, 64, 93, 124, 126 

Nowlan, F. Stanley, 14 
Null model, 172, 448, 459 
Objects 

Prefixes to object, 51 
odds ratio, 446 
Odds ratio, upper and lower limit, 447 
One-way ANOVA, principles of, 379–81, 394–404 

Base condition, set, 395 
Base model, 380 
Benjamini-Hochberg adjustment, 402 
Bonferroni adjustment, 402 
Concept of ANOVA, 380 
Dependent one-way ANOVA, 381 
Dunnett, 403 
Family error, 379 
Independent one-way ANOVA, 381 
Post hoc adjustment, 381 
Robust molde for one-way ANOVA, 404 
Tukey, 403 
Welch’s F ANOVA, 399 
XContrasts as effects, 381 

One-way ANOVA, R functions 
aov(), 398, 401 
glht(), 403 
leveneTest(), 397 
oneway.test(), 399 

One-way ANOVA, templates and interpretation 
aov() for significant difference to contrasts as 

main effects, 398, 401 
Build contrast variables and inspect, 400 
by() for descriptive statistics, 397 
factor() to set variable base condition, 395 
ggplot2() to compare confidence limits to effects, 

396 
glht() to adjust confidence intervals with Tukey 

and Dunnett, 403 
leveneTest() test for constant variance across 

conditions, 397 
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oneway.test() for difference adjusted for unequal 
variance, 399 

pairwise.t.test() to adjust confidence intervals 
with Benjamini-Hochberg, 403 

pairwise.t.test() to adjust confidence intervals 
with Bonferroni, 402 

plot() of variance and normality to residuals, 399 
One-way repeated measures, principles of, 422–27 

Multilevel model, 422 
Multilevel model, lme(), 425 

One-way repeated measures, R functions 
glht(), 427 
lme(), 426 

One-way repeated measures, templates and 
interpretation 
anova() to test multilevel model with predictor 

against baseline model, 426 
Build contrast variables and inspect, 425 
by() for descriptive statistics, 425 
ggplot2 to compare conditions, 424 
glht() post hoc of multilevel with Tukey, 427 
lme() baseline multilevel model, single repeated 

measure variable, 426 
lme() model with predictor variable and single 

variable repeated measure, 426 
melt() make wide data long, 423 

Operational availability, 7, 353 
Or row, Access code, 58 
Ordinal logistic regression, 443 
Outer join, 54 
Outliers, seek 

Confidence limits 
Contrast Z- to T-Score, 70 

Normal distribution, assumptions of, 63 
Student’s T-Score 

Excel functions for T_Score, 71 
Translation table to measure for outliers, 71 

Student's T-Score, 70–71 
Z-Score, 63–65, 67–70 

Overall equipment effectiveness OEE, 2 
Pairs panel, 92, 131 
Partial correlation analysis, 100–103 

Correlation (R), 100 
Correlation squared (R2), 100 
Misleading, as, 102 

Pearson, 97 
Poisson regression, 35 
Post hoc adjusted confidence limits, 385–86 

Benjamini-Hochberg, 385 
Bonferroni adjustment, 385 

Dunnett, 385 
Family error, 385 
Tukey, 385 

Power BI, 26 
Predictive-based budgeting, 239 
p-value, 99, 187 
Q-Q graphic, 93 
Quartiles, 120 
Query process, overview, 50–53 
Query types 

Append, 50, 340 
Crosstab, 50, 233 
Delete, 50 
Make Table, 50 
Make-table, 340 
Select, 50 
Update, 50 

Query, table and pivot templates 
Budget and variance 

pvtActualVsBudget, 258 
qryActualGrp2020, 254 
qryActualVsBudget, 256 
qryBudget2020, 251 
tblActual2020, 254 
tblHistory2019, 251 

Craft capacity 
pvtCraftCapacity, 272 
qryAggCraftBaseline, 274 
qryAggCraftSample, 274 
qrySampleVsBaseline, 276 
tblCraftBaseline, 274 
tblCraftSample, 274 

Schedule week and day 
ctqStatusCount, 345 
qryScheduleVsActual020320, 339 
tblCraftHrs, 334 
tblSchedVsActual020520, 336 

Status History 
ctqStatusHistoryWide, 233 
qryStageElapsed, 235 

Super table, classifier and outlier 
qryCase1_Foundation, 56 
qryCraftGroupHours, 72 
qryCraftGrpStats, 76 
qryHoursOrder, 65 
qryHrsLeadCraft, 75 
qryLeadCraftClassifier, 74 
qryOrderGrpStats, 67 
qryZScoreOrder, 69 
qryZScoreOrderCraft, 77 
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Variance as outlier or systemic 
pvtOutlierOrders, 268 
qryOutlierAggregate, 263 
qryOutlierAggWithTest, 266 
qryOutlierOrders, 266 

R coding, 447, See also R functions 
[] as filter, 96, 113, 127, 132, 180, 208, 209, 211, 

212, 214, 215, 216, 287, 295, 368, 373, 429, 
455 

'~' as '=', 104 
’|’ as OR, 132 
<- to assign, 89 
Case sensitivity, 86 
confint() for confidence interval, 104 
Data frame, 98, 202 
Hash mark (#), 85 
List, 202 
Matrix, 98, 202 
na.rm=TRUE to ignore missing data, 117 
table$variable syntax, 95, 298, 308, 314, 368, 393, 

429 
Vector, 98 

R functions 
(contrasts(), 425 
abline(), 300 
acf(), 295, 298, 314 
aggregate(), 284, 302 
AIC(), 190, 191, 192, 196, 199 
anova(), 196, 199, 431 
Anova(), 408, 412, 418 
aov(), 398, 401, 407, 408, 412 
as.character(), 120, 462 
as.data.frame(), 473 
as.factor, 452 
as.factor(), 120, 181 
as.matrix() convert object to matrix, 98 
as.numeric(), 120, 304 
as.vector(), 373 
attributes(), 182 
auto.arima(), 298, 311 
autoplot(), 311 
boxplot(), 282, 302, 406 
by(), 397, 406, 416, 425, 430 
c(), 218, 312 
c() combine function, 94, 96 
cbind(), 183, 288, 294, 310, 312, 400, 407, 418, 

430, 452 
ccf(), 301 
class(), 282 
confint(), 187, 189, 403, 411, 427, 447 

contrasts(), 182, 183, 418, 430 
cor(), 455 
cor() for correlation analysis, 97 
cor.test() for correlation analysis, 99, 133 
coxph(), 366 
CrossTable(), 470, 471 
data(), 289 
Data(), 295 
data.frame, 452 
data.frame(), 218, 304, 310, 312 
date_decimal(), 312 
decompose(), 292, 295, 301, 304 
describe(), 91, 121 
dev.off() to close output device, 114, 158 
dfbeta(), 451 
dffits(), 451 
diff(), 314, 318 
distinct(), 214 
DocumentTermMatrix(), 466 
durbinwatsontest(), 200 
effect(), 408 
end(), 282, 288, 289 
exp(), 368, 447 
factor(), 395, 405, 414, 461 
findFreqTerms(), 468 
fitted(), 450 
forecast(), 311 
format(), 310, 312 
frequency(), 282 
ggarrange(), 136, 206 
gl(), 429 
glht(), 403, 411, 427, 434 
glm(), 445, 455, 456, 457 
gsub(), 462 
Guidance, 96 
hatvalues(), 208, 451 
head(), 90, 119 
help(), 96 
Holt Winters(), 308 
ifelse(), 133, 181 
inspect(), 462 
install.packages(), 86, 179, 281 
lapply(), 462, 463 
layout(), 282, 284, 286, 289, 295, 300, 301, 302, 

314 
length(), 208, 211, 212, 295 
leveneTest(), 397, 406, 417 
library(), 87, 179 
lines(), 313 
lm() for linear regression, 104 
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lm.beta, 186 
lme(), 426, 431 
log(), 456 
md.pattern(), 113, 121, 180 
mean(), 318 
melt(), 423, 429 
MLEW2p(), 374 
MRRW2p(), 374 
naiveBayes(), 469, 471 
names(), 429 
oneway.test(), 399 
pairs.panel(), 92, 131, 180 
par(), 399, 406, 411, 465 
par() for parameters, 94 
pchisq(), 448, 449 
pcor() for partial correlation, 102 
pcor.test() for partial correlation, 103 
pdf() output device to pdf document, 158 
phreg(), 368, 370, 372 
plot(), 282, 284, 288, 289, 295, 366, 399 
png() to output .png file, 114 
predict(), 215, 218, 309, 452, 470, 471, 473 
prop.table(), 467 
qqline(), 94 
qqnorm(), 94 
rbind(), 216 
rcorr() for correlation analysis, 98 
read.csv(), 89, 112 
read.delim() to read txt. and dat. file, 89 
read.xlsx(), 89, 113, 119, 286, 299 
relevel(), 184 
rlm() for robust linear regression, 107 
rstandard(), 194, 195, 198, 212, 451 
rstudent(), 451 
seq(), 135 
shapiro.test(), 93, 124 
sqldf(), also see SQL in background, 90 
start(), 282, 288 
str(), 90 
Strata(), 370 
subset(), 465 
summary(), 91, 120, 366, 398, 401, 427 
summary.lm(), 420 
Surv(), 366, 368, 370, 372 
survfit(), 366 
t.test(), 392, 393 
table(), 467 
time(), 312 
tm_map(), 463 
ts(), 284, 286, 287, 300, 302, 314 

ts.intersect(), 287 
ts.plot(), 294, 300, 309 
update(), 431 
VCorpus(), 462 
vif(), 201, 455 
window(), 285, 301, 304 
within(), 452 
wordcloud(), 464, 465 
write() export data from R, 90 
write.xlsx(), 284, 287 
xlsx(), 179 

R packages 
car, 405, 444 
car(), 394 
e1071, 461 
effects, 405 
forecast, 281 
ggfortify, 281 
ggm, 86, 110 
ggplot2, 86, 110, 179, 389, 405, 422, 428 
ggplot2(), 394 
ggplotr, 179 
ggpubr, 110, 179 
gmodels, 461 
Hmisc, 86, 110 
lubricate, 281 
MASS, 86, 110, 179 
mice, 110, 179 
mlogit, 444 
multicomp, 405, 422, 428 
multicomp(), 394 
nlme, 110, 179, 422, 428 
pastec, 389, 428 
pastecs, 86, 405, 422 
pastecs(), 394 
polycor, 86, 110 
psych, 86, 110, 179 
qqplotr, 110 
QuantPsyc, 179 
RColorBrewer, 461 
reshape, 422, 428 
rlm, 86, 110 
Snowballc, 461 
wordcloud, 461 
X, 461 
xlsx, 110, 112, 179, 281, 405, 422, 428 

R session, 84–87 
Console, 84 
Download and install, 84 
Export data, 90 
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Import data, 89–90 
Install packages, 85–87 
Know-thy-data, 90–95 

Layered charting, 94 
Normal distribution, 92 
Pairs panel, 92 

Scipt window, 84–85 
Working directory, 89 

R software, 26–29 
Download and install, 26 
Layered charting. See Layered Charting  
Power BI, 26 
Script (AKA, code), 28 
Tableau, 26 
Windows of, 28 

Range, 121 
Regression Coefficient defined, 95 
Regression coefficients, effects of, 443, 446 
Relational database, 230 
Relationship insight, 34–35 

Linear regression, 34 
Logistic regression, 34 
Poisson regression, 35 

Reshape data, 428 
Residual standard error, 187, 190, 192, 197 
Right join, 53 
Robust difference model, 384 
Robust linear regression, 107 
R-squared, 187, 192 
Schedule cycle, measurement of, 341–51 

Accuracy and variance, job plans, 346–49 
Flowchart, queries, 347 
qryPlanToActualVar, 349 

Execution, planned and scheduled, 343–46 
ctqStatusCount, 345 

Flowchart, queries, 345 
Sustainment, confirm, 341–43 

Flowchart, queries, 341 
Time series, measured by, 349–51 

ARIMA (Autoregressive integrated moving 
average), 350 

Holt Winters, 350 
Lead-lag relationship, 350 
Seven-day cycle, 350 

Schedule cycle, stages to, 321–29 
Datasets, measures and reports, 327–29 

Flowchart, stage, 327 
Goals, two, 321 
Schedule and craft capacity, baseline, 321–24 

Flowchart, stage, 321 

Stages, three, 321 
Weekly schedule and execution, conduct, 324–26 

Flowchart, stage, 325 
Schedule cycle, tables to, 329–40, 333–34 

Craft classification table, 334–36 
Craft hours 

tblCraftHrs, 334 
Day schedule, 331–33 

tblDaySchedule, 332 
Super table to measurement, 336–40 

Flowchart, queries, 337 
qryScheduleVsActual020320, 339 
tblSchedVsActual020520, 336 

System of tables, 329 
Weekly schedule, 330 

Schedule measures and methods. See Schedule cycle, 
measures of 

Select query, 48, 50 
Shapiro-Wilk test, 64, 93, 203 
Skew, 121 
Solution equation, 442 
Spreadsheet compared to data table, 223 
SQL in background, 25–26, 79 
Standard deviation, 121, 263 
Standard error to the mean, 121 
Standardized, 451 
Standardized effect, 185 
Standardized effects of varibles, 186 
Standardized residuals, 194 
Studentized residuals, 451 
Super table with Access, 22–26 

Generate, 61–62 
Pictorial view of, 22 
Process to build, 23 
SQL in background, 25–26 
Steps to build, 46 
Table as format, 22, 222 

Survival function, 362, 363 
Survival hazard analysis, 38 
Systematic component, 443 
Table as format, 22, 222 
Tableau, 26 
Three models, 163 
Time series analytics, 241, See Time series, principles 

of, Time series, templates and interpretation, and 
Time series, R functions 

Time series insight, 36–38, See also header, Time 
series, principles of 
Autocorrelation, 37 
Components, 36 
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Cycles, 36 
Trend, type of, 37 

Cross-correlation, 37 
Lead-lag relationship, 37 
Models, 38 
Prediction compared to forecast, 37 

Time series, principles of 
Aggregate months to year, 284 
ARIMA (Autoregressive integrated moving 

average), 350 
ARIMA model (Autoregressive integrated moving 

average), 311–13 
ARIMA(Autoregressive integrated moving 

average), 298 
Autocorrelation, 295–99 
Correlogram, 295 
Cross correlation, 301 
Cycle, 291 
Decompose and Holt Winters, compared, 308 
Decomposition, 291 
Drift in random walk, test for, 317 
Exponentially weighted moving average (EWMA), 

305 
Holt Winters, 305–11, 350 

Four-year forecast, 309 
Smoothing equation and prediction, 306 

Lead, lag relationship, 299–302 
Lead-lag relationship, 350 
Moving 12-month average, 290 
Notation, of time series, 290 
Questions of a series, 280 
Seven-day cycle, 302–5, 350 
Test as deterministic or stochastic, 314–17 
Time series object, 282 
Trend, 291 

Time series, R functions 
acf(), 295, 298, 314 
aggregate(), 284, 302 
auto.arima(), 311 
autoplot (), 311 
ccf(), 301 
class(), 282 
data(), 289 
Data(), 295 
decompose(), 292, 301, 304 
diff(), 314, 318 
end(), 282, 288, 289 
forecast(), 311 
frequency(), 282 
Holt Winters(), 308 

layout(), 314 
start(), 282, 288 
ts(), 284, 286, 287, 300, 302 
ts.intersect(), 287 
ts.plot(), 294, 300, 309 
window(), 285, 301, 304 

Time series, templates and interpretation 
ARIMA forecasted 4-years out, 311 
ARIMA plot of forecasted mean and limits, 313 
ARIMA, table of forecast mean, and upper and 

lower limits, 312 
Comparative correlograms to observed and 

random series, 301 
Correlogram of random series, 314 
Correlogram of random series and difference 

series, 314 
Correlogram of random series in decomposition, 

295 
Correlogram of residuals to an ARIMA model, 298 
Correlogram of time series, 295 
Extract factors of daily cycle, 304 
Extract random series from time series, 301 
Extract windows from time series object, 285 
Format to time series object, 284 
Holt Winters forecast, plot and data table, 310 
Holt Winters, 4-year forecast, 309 
Holt Winters, smoothing parameters and 

coefficient, multiplicative, 308 
Lead-lag correlogram, multiple datasets, 300 
Multiple variables synchronized by date, 287 
Plot multiple time series dataset, different axis, 

286 
Series cycle plotted over trend, 294 
Test random walk for drift, 318 
Test series as random walk, 316 
Time series decomposed, additive and 

multiplicative, 292 
TS object inspect, 282 
Weekly pattern, observations, aggregate and day 

range, 302 
Totals row, Access code 

Summary Option, 62 
Translation tables, 49–50, 164, 264 
Trees, 166, 168 
Triad of software, 17 
T-Score, 70–71, 262 
T-Score, table of, 265 
Tukey adjustment, 385, 403 
Two-mean t-test, principles of, 379, 389–94 

Data, long and wide, 390 
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Data. Descriptive statistics of, 392 
Dependent t-test (AKA, paired, 379 
Independent t-test, 379 
Paired two-mean t-test, 393 

Two-mean t-test, R functions 
t.test(), 392, 393 

Two-mean t-test, templates and interpretation 
by() for descriptive statitics, 392 
t.test() for significance difference in means, 392 
t.test() to test for significant of paired 

observations, 393 
Update query, 50 
Variance inflation factor (VIF), 201 

Variance reports, 248 
Vector, 98 
Weibull plot, 373 
Work schedule, stages to. See Schedule cycle, stages 

to 
Work schedule, tables to. See Schedule cycle, tables 

to 
Workload from history, 250 
Workload-based budget and variance. See Budget and 

variance, principles and data methodology 
Zero-based budgeting, 239 
Z-Score, 63–65, 262 
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