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Abstract Our recent work characterized the movement of single blood cells within the retinal

vasculature (Joseph et al. 2019) using adaptive optics ophthalmoscopy. Here, we apply this

technique to the context of acute inflammation and discover both infiltrating and tissue-resident

immune cells to be visible without any labeling in the living mouse retina using near-infrared light

alone. Intravital imaging of immune cells can be negatively impacted by surgical manipulation,

exogenous dyes, transgenic manipulation and phototoxicity. These confounds are now overcome,

using phase contrast and time-lapse videography to reveal the dynamic behavior of myeloid cells as

they interact, extravasate and survey the mouse retina. Cellular motility and differential vascular

responses were measured noninvasively and in vivo across hours to months at the same retinal

location, from initiation to the resolution of inflammation. As comparable systems are already

available for clinical research, this approach could be readily translated to human application.

Introduction
A robust and noninvasive method for directly imaging immune cells in humans has not been estab-

lished, limiting our understanding of autoimmune and inflammatory disease. Immune cells typically

provide weak optical contrast requiring exogenous or transgenic labeling for detection even in ani-

mal models. The eye is optimally suited to image immune responses in vivo (Rosenbaum et al.,

2002). As the only transparent organ in mammals, no inflammatory surgical or environmental pertur-

bation is required. However, aberrations of the otherwise clear optics of the eye limit achievable

image resolution. We employed a custom adaptive-optics-scanning-light-ophthalmoscope (AOSLO)

to image the mouse eye. By correcting for the eye’s aberrations, single-cell resolution provides

detailed imaging of photoreceptors to erythrocytes (Joseph et al., 2019; Liang et al., 1997;

Roorda and Duncan, 2015). Incorporating our recent advance (Guevara-Torres et al., 2020) on

AOSLO phase contrast approaches (Chui et al., 2012; Scoles et al., 2014; Sulai et al., 2014; Gue-

vara-Torres et al., 2015; Guevara-Torres et al., 2016) allowed deep tissue detection of translucent

immune cells. We combined and applied these strategies and serendipitously discovered that

immune cells and their dynamics could be imaged without labeling using 796 nm near-infrared light,

to which the eye is less sensitive, and at far lower levels (200–500 mW) than multiphoton systems,

which can be phototoxic (Galli et al., 2014). This new approach builds on our ability to quantify

Joseph, Chu, et al. eLife 2020;9:e60547. DOI: https://doi.org/10.7554/eLife.60547 1 of 14

RESEARCH ADVANCE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.60547
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


single-cell blood flow in vessels (Joseph et al., 2019) revealing the dynamic interplay of blood flow

and single immune cells in response to inflammation in the living eye. Our approach is in a similar

power range to those already employed safely in human AOSLO studies, where phase contrast

approaches have also been used to study other retinal cell types (Scoles et al., 2014; Rossi et al.,

2017). This speaks to the feasibility of translating this technique to the clinic.

Results
To model an immune response, ocular injection of lipopolysaccharide (LPS) was used to provide an

acute but self-resolving inflammatory stimulus: endotoxin induced uveitis (EIU) (Chu et al., 2016).

Potential immune cells were observed adjacent to retinal veins only after image registration, frame

averaging and time-lapse imaging (Figure 1A, Video 1). Membrane remodeling, pseudopodia for-

mation and motility (consistent with immune cell structure and function) were visible, distinct from

static neurons or macroglia (Figure 1B and Video 2). Within post-capillary venules, leukocyte rolling,

crawling, and trans-endothelial migration behaviors were detectable (Figure 1C, Videos 3 and

4). Heterogeneity in cell distribution, size and morphology was imaged with multiple cell types in dif-

ferent stages of interaction (Figure 1D).

We verified these cells comprised neutrophil and monocyte populations by fluorescent marker

co-localization. Simultaneous phase contrast and confocal fluorescence AOSLO revealed most leuko-

cytes rolling along venular endothelium were neutrophils using intravenous anti-Ly6G fluorescent

antibody labeling, although the proportion may be higher as only 10% of circulating leukocytes may

be labeled using this method (Bucher et al., 2015; Figure 1E, Video 5). Conversely, CD68GFP/+

mice distinguished a population of cells were infiltrating monocytes and macrophages present both

in vessels and extravasated into retinal tissue (Figure 1F). More cells were visible using phase con-

trast than by fluorescence labeling, demonstrating its utility for comprehensively detecting diverse

and mixed cellular populations. Tissue resident myeloid cells were also visible by AOSLO phase con-

trast even in healthy eyes without LPS injection. These were confirmed as microglia or hyalocytes by

colocalization of Cx3cr1GFP/+ and CD68GFP/+ fluorescence (Figure 1G–I; Lazarus, 1994). Phase con-

trast even revealed subcellular features, including structures that could represent internal processes

such as endosomes (Figure 1H, Video 6; Uderhardt et al., 2019).

As our approach is uniquely non-invasive, repeated imaging at the same tissue location permits

longitudinal study throughout the initiation, peak and resolution of an immune response across

hours to months within individual eyes (Figure 1J, Video 7). To quantify immune cell behaviour in

these studies, we had to distinguish immune cells from surrounding tissue by using semi-automated

deep learning strategy (Falk et al., 2019). This correlated well with counts made by masked human

observers (R2 = 0.99, p=0.004, Video 8 (final segment)).

Immune cell metrics were quantified in six mice over five timepoints following LPS injection

(Figure 2A–C). Compared to baseline (28.9 ± 34.1 cells/mm2, Mean ± SD) a seven-fold influx of cells

was detected by 6 hr post-injection (208.3 ± 108.6 cells/mm2) rising to over an 18-fold increase by

24 hr (510.4 ± 441 cells/mm2) before returning toward baseline at 72 hr (59.0 ± 27.8 cells/mm2) and

10 days (69.4 ± 41.7 cells/mm2). AOSLO also allowed cell motility quantification with maximum cell

displacement observed at 6 hr (16.1 ± 9.9 mm, n = 12 cells). Despite peak infiltration at 24 hr, motility

was greatly reduced (4.6 ± 4.3 mm, n = 58 cells), best appreciable by longitudinal imaging, consistent

with Resolvin-mediated suppression of chemotaxis (Schwab et al., 2007).

As retinal tissue is not depressurized by this intravital system, true vascular alterations arising

from inflammation can be isolated and correlated to simultaneous immune cell measurements.

Adapting our recent work (Joseph et al., 2019), red blood cell (RBC) velocimetry, vessel dilation

and flow-rate changes were quantified in this same cohort of mice (Figure 2D–H). AOSLO revealed

micron-level vascular dilations and heterogeneous changes in blood flow in arterioles and venules in

response to LPS. Total blood flow increased in the retinal circulation, yet elevated flow in arterioles

and venules was achieved in fundamentally different ways. Venules dilated on average 36% (±8%) at

24 hr post-LPS injection facilitating a total flow increase of 67% (±27%) relative to baseline. Con-

versely, arterioles also showed a total flow increase, however with minimal dilation and a dramatic

elevation in RBC velocity (48% (±31%) increase in arteriole RBC velocity at 24 hr) (Figure 2D–F).
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Figure 1. Label-free adaptive optics imaging of infiltrating and tissue resident immune cells in the retina. (A) Widefield image showing venule baseline

and 72 hr after LPS injection. AOSLO montage (red rectangle) detects dispersed immune cells. (B) Detail of heterogeneous immune cells. (C)

Intravascular trans-endothelial migration (TEM) stages are visible. (D) Field adjacent to vein 72 hr after LPS. (E) Simultaneous phase-contrast and anti-

Ly6G fluorescence reveals leukocyte rolling (arrowheads) and (F) CD68-GFP reporter shows extravascular and intravascular cells. (G) Representative

examples of tissue-resident myeloid cells from Cx3cr1-GFP and (H), CD68-GFP reporter mice showing colocalization of fluorescence with label-free

cells. (I) Phase-contrast image of process remodeling. (J) Longitudinal imaging (hours-to-months) at same location following LPS injection. Scale

bars = 10 mm, except in A = 50 mm. Representative images from cohort of eleven (A to D, J) and three C57BL/6J mice (E), three CD68-GFP mice (F and

H) and four Cx3cr1-GFP mice (G and I).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Time lapse imaging with label-free AOSLO phase-contrast (796 nm) shows single immune cells migrating (yellow), extravasating

(red) and re-entering (green) a retinal venule.
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Despite these different mechanisms, conservation

of flow was confirmed as arterioles and venules

showed correlated changes in flow over time

(R2 = 0.83, for linear-fit, Figure 2G–H). Velocity,

dilation and flow began resolution toward base-

line levels by 10 days post-injection.

Thus, we found that arterioles and venules

have functionally opposing behaviors when it

comes to modulating volumetric blood flow in

inflammation, via opposing changes in lumen

diameter and blood velocity. Venules modulate

blood flow primarily by changing their diameter

while arterioles respond primarily not by a

change in diameter but by showing increased

blood velocity (Figure 2H). In our current study,

by measuring both blood velocity and lumen

diameter, which gives us total flow rate

(Figure 2F), we build on previous reports that

found venular widening in association with inflam-

mation (using diameter measurements alone, and

using fundus photography) (Sun et al., 2009).

However, diameter measurements alone would

not have given a complete picture of volumetric

blood flow rate and would have missed the func-

tionally opposing behaviours of arterioles and

venules shown in Figure 2H. In summary, our single-cell velocimetry combined with AO-resolution

diameter measurements adds to our understanding of hemodynamic control in response to inflam-

mation, achieved by applying our recently developed blood flow measurement tool (Joseph et al.,

2019).

Discussion
This study advances our understanding of the

immune response by imaging both the nuanced

differences of vascular perfusion with the first

detailed imaging of single immune cell activity

imaged without labels. Unlike other approaches,

inflammatory surgery is not required; the label-

free feature avoids confounds from exogenous

fluorescent dyes, gene haplo-insufficiency from

transgenic labels and using near-infrared light

avoids significant phototoxicity inherent to multi-

photon platforms (Galli et al., 2014; You et al.,

2018). This therefore provides the closest fidelity

conditions to an unperturbed biological system

achievable, which is critical particularly in the

context of immune cell behaviours. These advan-

tages are greatest in relation to human transla-

tion, where exogenous manipulation and tissue

biopsy are often prohibitive. Correlative study

using mice to understand AOSLO phase contrast

cell morphologies would be highly informative,

but there are labeling limitations even in murine

systems, and it is rarely possible to label more

than three markers simultaneously in vivo. This

means populations not already known can be

Video 1. Demonstration of image post-processing. (a)

Raw adaptive optics scanning light ophthalmoscope

(AOSLO) corrected 796 nm phase contrast imaging of

C57BL/6J mouse retina. Real-time video obtained at 25

fps acquisition (labelled ‘raw acquisition’)

demonstrating movement from respiration and cardiac

motion. Image following custom frame-registration.

Application of 25 frame temporal averaging and

accelerated time-lapse (labelled ‘frame averaging’).

Top row, cluster of infiltrated immune cells 6 hr post-

LPS. Bottom row, tissue resident cell in healthy retina

adjacent to a retinal capillary. Scale bars = 10 mm.

https://elifesciences.org/articles/60547#video1

Video 2. Label-free AOSLO time-lapse video

demonstrating heterogenous immune cell populations

and motility. Two magnified locations from Figure 1b

showing 796 nm phase contrast video acquired at 25

frames/second from two C57BL/6J mouse retinas 24 hr

post-LPS injection. The second segment of the video is

a full 4.98-degree AOSLO field at a retinal vein 48 hr

after LPS injection, revealing a diversity of cell

morphologies and motility patterns. Videos have

undergone post-processing as described, 25–50 frame

temporal averaging. Scale bars = 10 mm.

https://elifesciences.org/articles/60547#video2
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missed, whereas by phase contrast AOSLO any

cell causing reasonable scatter of light could be

detected, ensuring a more comprehensive char-

acterization of true tissue infiltration.

Our choice of imaging wavelength (796 nm)

provided minimal phototoxicity, greater theoret-

ical penetration through the eye’s anterior optics

and minimal absorption in the retina without

scatter typical of short visible wavelengths. Fur-

thermore, we have previously published a

detailed wave-optics simulation to determine

the source of contrast in our imaging modality

(Guevara-Torres et al., 2020), where we found

that the combination of this wavelength and

other imaging parameters rendered imaging

contrast to translucent cells.

Perivascular imaging of immune cells with

AOSLO appeared to capture transendothelial

migration (TEM). The axial resolution of our system (<16 mm) and known diameters of mouse retinal

veins (30–50 mm) (Joseph et al., 2019) demonstrates vessel bisection in the majority of images,

rather than cells residing above or below the focal plane of imaging. Furthermore, parallel orienta-

tion and motility of cells as they interact with the vascular wall would indicate that they are meeting

mechanical resistance as they pass through the vascular wall. Figure 1—figure supplement 1, sec-

ond-half of Video 2 and Video 4 show that dynamic and motile cells often pause and slow as they

meet the vascular barrier; a finding consistent with diapedesis as seen in transendothelial migration.

Such behaviors would not be expected if cells were moving above or below the vessel, nor would

they be optically visible due to the imaging constraints of the system axial resolution described

above.

Consistent with all AOSLO approaches, in our approach, relatively clear optical media is required

and severe cataract or vitritis during peak inflammation can limit successful imaging. In our study,

this affected 25% of the eyes given EIU. A further limitation is that deeper retinal structures are not

as well visualized due to the nature of contrast (Guevara-Torres et al., 2020). Moreover, the cho-

roid, which is often involved in ocular inflamma-

tion, is challenging to image due to the scatter

Video 3. Leukocyte rolling and crawling in an inflamed

retinal post-capillary venule. 796 nm phase contrast

AOSLO images taken at 6 hr post-LPS injection with 25

frame temporal averaging. Descriptive overlays

provided. Scale bar = 10 mm.

https://elifesciences.org/articles/60547#video3

Video 4. Examples of diverse immune cell behaviour

observable by AOSLO phase contrast imaging. 796 nm

reflectance AOSLO images at 6 or 24 hr post-LPS using

between 5 to 50 frame averaging. Examples include

post-capillary venule leukocyte rolling, transendothelial

migration and perivascular leukocyte accumulation,

venous leukocyte rolling and crawling with and against

blood flow direction, mid tissue infiltrating leukocyte

swarming, perivascular cell process contact with

intravascular cell and cell migration toward lumen of

retinal vein. Scale bars = 10 mm.

https://elifesciences.org/articles/60547#video4

Video 5. Neutrophil endothelial rolling within a post-

capillary venule confirmed using fluorescent labeling

with anti-Ly6G antibody. Representative example of

retinal vein imaged six hours post LPS injection.

Simultaneous aligned acquisition of 796 nm phase

contrast (top panel) and anti-Ly6G conjugated

AlexaFluor 647 (positively labeling neutrophils in

bottom panel) using confocal AOSLO fluorescence.

Scale bar = 10 mm.

https://elifesciences.org/articles/60547#video5
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and absorption of the RPE. Nevertheless, our

approach here on inner retinal pathology likely

extends deep within the retina as work by Scoles et al., 2017 with a similar detection strategy, has

identified a putative macrophage by morphology and motility, deep in the retina of a retinal dystro-

phy patient. This suggests deeper retinal imaging of immune cells could be possible with further

study and refinement. Our work reinforces this exciting finding as we now demonstrate, with trans-

genic markers in the mouse, that tissue immune cells are reliably detectable by label-free phase-con-

trast AOSLO.

There are numerous benefits if this approach can be applied to the human eye. Retinal diseases

could be characterized for contributions by immune cells for the first time at a quantitative single-

cell basis, which has the potential to redefine their clinical status and classification. Active retinal

inflammation can only be assessed currently using surrogate biomarkers such as macular edema, vas-

cular involvement or subjective detection of overspill of infiltrating cells into the vitreous cavity. By

providing a direct method to diagnose the presence of active immune cells, more accurate diagnosis

and differentiation from clinically challenging

masquerade entities such as ocular lymphoma

would be of great benefit. Finally, accurate mon-

itoring of cellular infiltration to detect early

response to treatment could avoid the use of

excessive or ineffective therapy in patients with

uveitis, yet alone support the screening of novel

agents in clinical trials. Furthermore, this could

allow study of the many systemic diseases and

infections that manifest in the eye. By providing

this proof of concept, as AOSLO systems are

already available for clinical research, the

approach stands to be rapidly tested for transla-

tion to human application. Our approach is in a

similar power range to those already employed

safely in human AOSLO studies, where phase

contrast approaches have also been used to

study photoreceptors and other retinal cells

using a similar light source and wavelength

(Scoles et al., 2014; Rossi et al., 2017). This

speaks to the feasibility of translating this

Video 6. Cx3cr1-GFP+ tissue resident cell with motile

processes. Simultaneous aligned acquisition of 796 nm

phase contrast (left panel) and GFP fluorescence (right

panel) in healthy retina from Cx3cr1GFP/+ reporter

mouse. Second section demonstrates process

retraction in tissue resident myeloid cell. Third section

illustrates diversity of morphology observed. Forth

section highlights visible subcellular features in this

population. Scale bar = 10 mm.

https://elifesciences.org/articles/60547#video6

Video 7. Repeated longitudinal imaging of the same

retinal location from initial inflammation to resolution.

Representative recordings from one C57BL/6J

mouse eye at the same anatomical location in the

retina, identifiable by peripapillary location and

capillary and vascular landmarks. Recorded prior to and

6, 24, 72 hr, 10 days and 2 months following a single

LPS injection. Scale bar = 10 mm.

https://elifesciences.org/articles/60547#video7

Video 8. U-Net cell tracking trace example. Recording

from C57BL/6J mouse retina at 6 hr post-LPS injection.

Whole field imaged and quantified is shown on the left

side. Magnification of one representative cell on the

right. Scale bar = 16 mm. Trace is marked with an

overlaid magenta line. Second section shows validation

of U-Net cell count results against masked human

observers across time demonstrating significant

correlation.

https://elifesciences.org/articles/60547#video8
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Figure 2. Longitudinal non-invasive measurement of combined immune cell dynamics and vascular flow. Measurements of neighbouring venules,

arterioles and connecting parenchyma in six C57BL/6J mice given EIU. (A) AOSLO phase-contrast images of same region across five timepoints relative

to LPS injection, in a representative mouse. Scale bar = 30 mm. (B) Magnified image of one cell (marked overlay) with tracked trace (100 s). (C) Cell

displacements for total cohort at indicated timepoints, in six mice. Displacement traces normalized to each cell starting position. Grey dashes indicate

Figure 2 continued on next page
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technique to the clinic. While some studies Rossi et al., 2017 have used up to ~280 mW of NIR light,

other studies Liu et al., 2017 have used 115–130 mW of NIR light.

We also recognize the following challenges to translating our approach to use in human beings.

The larger eye motion of the human eye without anesthesia will include saccades and drift that may

impact image registration critical for stable time-lapse videography. Nevertheless, only a single

image is required over any sparse time interval and therefore may be more lenient to this challenge.

The investigation is rate-limited by the biology of immune cell dynamics, as most cells move rela-

tively slowly, so will require patient cooperation over extended periods of imaging time. As we dem-

onstrate, however, that single-cell surveillance can be observed over minutes, the approach would

be feasible in a single imaging session, and thus still shorter than comparable tests in the clinic such

as electroretinography. Next, on the imaging side, there will be ~4 times reduced axial imaging reso-

lution in the human eye compared to the mouse eye due to the ~2 times smaller numerical aperture

(Geng et al., 2012). This may impact the axial specificity or contrast of the single immune cell

dynamics visualized in humans. However, other translucent cell types have been successfully imaged

using human AOSLO (Chui et al., 2012; Scoles et al., 2014; Sulai et al., 2014; Rossi et al., 2017;

Scoles et al., 2017), holding promise that our approach presented here can be translated to

humans.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(M. musculus, males)

Wildtype C57BL/6J mice The Jackson
Laboratory

RRID:IMSR_JAX:000664,
JAX Stock number 000664

six to 12 weeks old

Strain, strain
background
(M. musculus, males)

Cx3cr1-GFP Cx3cr1tm1Litt

hemizygous mice
The Jackson
Laboratory

RRID:IMSR_JAX:005582,
JAX Stock number 005582

six to 8 months old

Strain, strain
background
(M. musculus, males)

Tg(CD68-EGFP)1Drg
hemizygous mice

The Jackson
Laboratory

RRID:IMSR_JAX:026827,
JAX Stock number 026827

six to 12 weeks old

Antibody Alexa Fluor 647 anti-mouse
Ly-6G antibody (1A8 clone)
for labeling (Mouse monoclonal)

BioLegend Catalogue
number: 127610

2 mg total prepared
in 100 ml PBS

Mouse strains
All mice were sourced from The Jackson Laboratory (Bar Harbor, Maine, USA) and maintained at the

University of Rochester in compliance with all guidelines from the University Committee on Animal

Resources and according to the Association for Research in Vision and Ophthalmology statement for

the Use of Animals in Ophthalmic and Vision Research. Mice were fed with standard laboratory

chow ad libitum and housed under a 12 hr light-dark cycle. The following numbers, types, sex and

Figure 2 continued

radius of typical cell size (13 mm). (D) Space-time images with overlaid single-cell blood velocity, in a representative mouse. Arteriolar velocity increases

then resolves. Scale bars = 200 ms horizontal, 30 mm vertical. (E) Vessel diameter visualized in motion-contrast images of venules (blue) and arterioles

(red), in a representative mouse. Venule diameter dilates then resolves. Scale bar = 30 mm. (F) Population values of RBC velocity change relative to

baseline, lumen diameter and flow rate for venules and arterioles, in six mice. Vein diameter (p=0.008) and artery velocity (p=0.036) exhibit significant

changes across time (Friedman test, n = 6 mice). Mean+ SD shown. (G) Correlation of change in flow between arterioles and venules (colors correspond

to timepoints in A), in six mice. (H) Change in ratio V/D2, plotted across timepoints from F (V = velocity, D = diameter), in six mice (mean ±1 SD). Flow-

rate is proportional to the product V*D2. Since V and D were independently measured, and since change in flow in arterioles and venules was found to

be conserved in G, plotting the ratio of the two shows the relative contributions of each independent variable to the change in flow, in arterioles and

venules. This in effect shows the functionally opposing behaviours of the two vessel types in response to inflammation.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Variation between nasal and temporal retinal veins of the same eye during EIU, in six mice.
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ages of mice were used: Six C57BL/6J mice (JAX stock number 000664, males, 6–12 weeks old)

were analyzed for longitudinal study of immune cell motility and blood flow after induction of EIU

with LPS (Figure 2). A seventh mouse was rejected from analysis due to anterior media opacities

arising from EIU, at peak inflammation, as determined by expert users. Three C57BL/6J mice (males,

6–12 weeks old) were used for Ly6G antibody labeling (Figure 1E). Three hCD68-GFP mice (stock

number 026827, males, 6–12 weeks old) were used for positive confirmation of fluorescent infiltrat-

ing monocytes and macrophages (Figure 1F and H). Four Cx3cr1-GFP hemizygotes (stock number

005582, males, 6–8 months old) were used for positive confirmation of fluorescent tissue-resident

myeloid cells (Figure 1G and I). Further details are included in the transparent reporting form

published.

Mouse preparation for imaging
Mice underwent anesthetic induction with intraperitoneal Ketamine (100 mg/kg) and Xylazine (10

mg/kg) before maintenance on 1% v/v isofluorane and supplemental oxygen through a nose cone.

Pupils were dilated with a single drop of 1% tropicamide and 2.5% phenylephrine (Akorn, Lake For-

est, IL). Internal temperature was controlled using an external heating pad adjusted to maintain con-

tinuous 37˚C with monitoring via a rectal probe electrical thermometer (Physiosuite, Kent). A custom

rigid contact lens of 1.6 mm base curve, 3 mm diameter and +10 Dioptre correction (Advanced

Vision Technologies, Lakewood, Colorado) was placed centrally on the cornea and lubrication of the

eye maintained by aqueous lubricant (GenTeal, Alcon Laboratories, Fort Worth, TX) during imaging.

The eye was imaged in free space meaning there was no physical contact with the AOSLO, ensuring

no compression causing alteration of intraocular pressure.

Endotoxin-induced uveitis model
Following anesthesia, intravitreal injection with a 34-gauge Hamilton microsyringe through the pars

plana was used to deliver 0.5 ng of lipopolysaccharide (LPS) from E. coli 055:B5 (Sigma) in a 1 mL vol-

ume of phosphate buffered saline (PBS) (Chu et al., 2016). Only one eye of each mouse was injected

and used for the study.

Intravenous antibody labeling
2 mg of primary conjugated anti-mouse Ly6G-Alexa Fluor 647 (clone 1A8, Biolegend) diluted into

200 ml PBS were injected intravenously via tail vein 10 mins prior to imaging as previously published

(Marki et al., 2018; Woodfin et al., 2011).

AOSLO imaging
Mice were imaged with a custom adaptive optics scanning light ophthalmoscope (AOSLO), using

near-infrared light (796D17 nm, 200–500 mW, super luminescent diode: S790-G-I-15, Superlum, Ire-

land) (Joseph et al., 2019; Geng et al., 2012). The measured imaging spatial resolution was: lateral:

0.77 mm for 520 nm fluorescence and 1.2 mm for 796 nm reflectance (Joseph et al., 2019;

Geng et al., 2012). Similarly, the confocal axial resolution was 10.5 mm for 520 nm fluorescence. For

phase-contrast imaging, the axial depth of focus is narrow in the mouse (numerical aperture = 0.49)

and provides optimal contrast in a thin optical section less than the diameter of most retinal cell

types as described by us previously (Guevara-Torres et al., 2020). Given this numerical aperture,

nearly 50 diopters of focus covers the mouse retina meaning that cells outside the plane of optimal

focus will be rendered invisible due to defocus blur. Phase-contrast imaging referred to in the con-

text of this paper, was achieved by purposefully displacing the detector axially to a plane conjugate

to the highly reflective RPE/choroid complex, to enable detection of forward and multiply scattered

light from translucent cells, as detailed in our recent publication (Guevara-Torres et al., 2020). In a

subset of experiments for confirmation of immune cell types, fluorescence was simultaneously

imaged using 488 nm excitation (220-330 mW) and 520D35 emission for GFP, and 640 nm excitation

and 676D29 emission for Alexa Fluor 647 (excitation laser diode: iChrome MLE, Toptica Photonics,

Farmington, New York, USA; emission filters: FF01-520/35-25 and FF01-676/29-25, Semrock,

Rochester, New York, USA). For AOSLO data acquisition and electronics control, we implemented a

Xilinx ML605 Virtex-6 based FPGA circuit board (Xilinx Inc, San Jose, CA) integrated with two Analog

Device EVAL-AD9984AEBZ circuit boards (Analog Device Inc, Cambridge, MA) for up to six channels
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of data acquisition from the AOSLO; two imaging channels were used for this study. Mice also

underwent imaging with HRA+OCT Spectralis (Heidelberg Engineering, Germany). Reversible severe

vitritis or cataract precluding AOSLO imaging occurred at a peak inflammation timepoint in 25% of

eyes induced with EIU in our work.

For simultaneous fluorescence and NIR phase-contrast imaging we corrected for LCA using inde-

pendent focusing of the different imaging channels (Geng et al., 2012). A calibration mouse was

used with fluorescein labelled blood plasma to align the visible and NIR channels to the same ana-

tomical locations/focal planes (Joseph et al., 2019). TCA too was corrected online using small shifts

of the entrance pupil, and offline during registration (Granger et al., 2018).

Aberration measurement and correction with adaptive optics
Aberrations in the mouse eye were measured and corrected with a closed-loop adaptive optics sys-

tem operating at 13 corrections per second, built at the University of Rochester and described previ-

ously (Joseph et al., 2019; Geng et al., 2012). Aberrations were measured with a Hartmann-Shack

wavefront sensor using a 904 nm wavefront beacon (QFLD-905–10S, QPhotonics, Ann Arbor, Michi-

gan, USA) imaged onto the retina. Aberration correction was achieved with a continuous membrane

deformable mirror with 97 actuators (DM-97–15, ALPAO, France).

Imaging videography
The AOSLO is a raster-scanning instrument with a resonant scanner frequency of 15 kHz and 25 Hz

orthogonal scanning rendering the retina at 25 frames per second. Point scanning readout was

achieved by two photomultiplier tubes (PMTs) for visible and near infrared wavelengths (H7422–40

and H7422–50, Hamamatsu, Japan). Frame size was 608 by 480 pixels and the image distortion

introduced by sinusoidal scanning was corrected in real-time (Yang et al., 2015). Field sizes were

between 2 and 5 degrees of visual angle corresponding to 68–170 microns in retinal space. Typical

imaging sessions lasted ~2 hr and semi-continuous video acquisition of a target retinal location was

conducted for up to 30 min. AOSLO retinal data was visualized in real-time to facilitate user tracking,

correction and optimization and saved for subsequent post-processing.

Image registration and time-lapse analysis
To correct for residual motion of the eye, image registration was performed with custom software

(Yang et al., 2015; Dubra and Harvey, 2010). Time-lapse videos were generated using running

frame-averaging of 25–50 frames (from 25 Hz native frame rate of AOSLO) with ImageJ and Fiji

(National Institutes of Health, USA) (Schindelin et al., 2012). Montaging multiple fields in Figure 1a

was performed by stitching and blending overlapping 4.98 degree fields manually using Adobe Pho-

toshop (Version: CS6 Extended v13.0.1 � 64).

Statistical analysis
Pearson correlation and Freidman tests were performed using Prism 7.0 (GraphPad Software) and

linear curve-fitting in MATLAB 2020a, version 9.8.0.

Cell migration measurement
Retinal locations were imaged for 100 s for six mice at five timepoints (baseline, 6, 24, 72 hr and 10

days post LPS injection). Sixty AOSLO phase-contrast videos were used to analyse the migration of

extravasated cells. Registered videos were pre-processed by cropping to 512 � 400 pixels and tem-

porally averaged with five frames. A customized semi-automated deep-learning based cell tracking

software was employed to track and quantify the migration behavior of cells. The software consisted

of a deep learning-based cell detector with an encoder-decoder U-Net backbone architecture

(Falk et al., 2019; Tsai et al., 2019). The U-Net was trained on phase-contrast AOSLO images with

the centroids of 387 cells manually identified by expert graders obtained from four mice at either 6

or 24 hr post LPS injection. Immune cell data from mice imaged for training were excluded from the

final analysis of the results in this paper. The trained U-Net outputs a probability map for each frame

of a video that was thresholded (>=90%) to identify the centroids of cells. The cell counts of a video

were calculated by averaging the number of detected objects in the first 25 frames (5 s). To track

the cells, centroid positions detected by the U-Net in adjacent frames were linked with a nearest
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neighbor search algorithm (Tsai et al., 2019). The deep learning strategy facilitated tracking of a

large number of cells across multiple frames captured at different time points across inflammation.

Once the heavy burden of tracking this population over a large data set was complete, a human

user provided quality control of the automated outputted traces to confirm tracking fidelity. Traces

due to incorrect linkage (for example, a single trace that falsely jumped between two adjacent cells)

were manually rejected based on visual inspection (Figure 2b, Video 8). To quantify cell migration,

two quantities were extracted from the traces: 1. cell displacement which is defined as the displace-

ment of a cell over 100 s. 2. confinement ratio which is defined as the ratio of cell displacement and

the total path length over 100 s. Traces in Figure 2c indicate the total positional movement and

direction of movement relative to cell position in the first second of data collection. The U-Net based

cell detection was performed with Python 3.7 and PyTorch 1.0.1, while the tracking and quantifica-

tion procedures were based on MATLAB.

Blood flow measurement
Single cell blood flow was imaged and measured with near infrared light using our recently pub-

lished approach (Joseph et al., 2019), for the same six mice and five timepoints as above, in an arte-

riole and venule surrounding the tissue location at which the cell migration measurements above

were done. Briefly, a fast 15 kHz beam (796D17 nm) was scanned across a vessel of interest to image

passing blood cells without requiring contrast agent. Cellular-scale blood velocity and vessel diame-

ter were quantified automatically. Given the small size of even the largest mouse retinal vessels (<45

mm inner diameter in healthy mice), the spatial resolution of our approach accurately measured the

inner lumen diameter with micrometer precision, accounting for vessel tortuosity, vascular wall thick-

ness and cell-free plasma layer. Additionally, the temporal resolution of the velocity detection

approach was more than sufficient to measure and account for cardiac pulsatility in flow, as demon-

strated previously. This ensured accurate measurement of the average blood velocity through the

vessel. Combined, the volumetric flow rate through the vessel was quantified label-free. The non-

invasive approach enabled us to track blood flow longitudinally from hours to weeks over the course

of inflammation without requiring invasive injections or euthanasia after a single timepoint was

imaged.

Code and data availability statement
Single-cell blood flow was measured using our recently published approach (Joseph et al., 2019),

with custom code written in MATLAB R2017a (Version 9.2, with Image Processing Toolbox, Math-

Works, MA). Source code is available in public repository here: Joseph, 2020 https://github.com/

abyjoseph1991/single_cell_blood_flow (copy archived at https://github.com/elifesciences-publica-

tions/single_cell_blood_flow_2). AOSLO dataset has been made available at a public repository

here: https://doi.org/10.5281/zenodo.2658767.
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