
Certainly! Here is a possible 
extrapolation of the outlined plan in 
the form of a pseudocode program for 
a high-value use case in the medical 
field:

# Pseudocode program for a machine 
learning system to aid in medical 
diagnosis

# Define input types
expectation_input = []   # List of 
expected symptoms
example_input = []       # List of past 
cases with similar symptoms
transform_input = []     # List of 
transformed data (e.g. from medical 
images)

# Define Q-function learner
def q_function_learner(state):
    # Use deep reinforcement learning 
to learn the best actions for a given 
state
    action = deep_q_learning(state)
    return action

# Define action learner
def action_learner(action):
    # Use supervised learning to train 
the system on how to perform the 
chosen action
    supervised_learning(action)

# Define modular encapsulation 
package
def 
modular_encapsulation(input_data):
    # Use modularized functions to 
process and transform input data



    processed_data = 
process_input(input_data)
    transformed_data = 
transform_input(processed_data)
    return transformed_data

# Define data generation function
def data_generation(num_cases):
    # Generate a set of test cases with 
known diagnoses for training and 
validation
    test_cases = 
generate_test_cases(num_cases)
    return test_cases

# Define metrics for evaluating system 
performance
def 
evaluation_metrics(system_output, 
true_output):
    # Use precision, recall, and F1 score 
to evaluate the accuracy of the 
system's diagnoses
    precision = 
calculate_precision(system_output, 
true_output)
    recall = 
calculate_recall(system_output, 
true_output)
    f1_score = 
calculate_f1_score(system_output, 
true_output)
    return precision, recall, f1_score

# Define problem solver
def problem_solver(input_data):
    # Use the Q-function learner to 
choose the best action for the given 
state
    action = 
q_function_learner(input_data)



    # Use the action learner to perform 
the chosen action
    output_data = 
action_learner(action)
    return output_data

# Define logic and reasoning function
def logic_reasoning(input_data):
    # Use symbolic reasoning to identify 
potential diagnoses and evaluate their 
likelihood
    diagnoses = 
symbolic_reasoning(input_data)
    # Use meta-learning to choose the 
best diagnosis based on past 
performance
    best_diagnosis = 
meta_learning(diagnoses)
    return best_diagnosis

# Define main function for running the 
system
def main():
    # Generate a set of test cases for 
training and validation
    test_cases = data_generation(1000)
    # Train the system on the test cases 
using modular encapsulation and 
problem solver
    trained_system = 
train_system(test_cases, 
modular_encapsulation, 
problem_solver)
    # Use the trained system to make 
diagnoses on new input data
    input_data = [expectation_input, 
example_input, transform_input]
    system_output = 
trained_system(input_data)
    # Evaluate the accuracy of the 
system's diagnoses using evaluation 



metrics
    true_output = [diagnosis_labels for 
case in test_cases]
    precision, recall, f1_score = 
evaluation_metrics(system_output, 
true_output)
    # Use logic and reasoning function 
to explain and decide on diagnoses
    best_diagnosis = 
logic_reasoning(system_output)
    # Print results
    print("Precision:", precision)
    print("Recall:", recall)
    print("F1 Score:", f1_score)
    print("Best Diagnosis:", 
best_diagnosis)

# Run the main function
if __name__ == "__main__":
    main()

This pseudocode program outlines a 
machine learning system for aiding in 
medical diagnosis. The system takes 
in input data of different types 
(expectation, example, and 
transformed) and uses modular 
encapsulation and problem solving to 
learn how to diagnose medical 
conditions. The program starts by 
building a flexible runtime environment 
with specifications that lead to 
behavior and creation. The builder 
generates different types of data and 
rewards the version that performs 
above a certain experience point 
threshold. The system then narrows 
down its focus and proceeds 
systematically to optimize its 
performance.



The core of the system is the SEAL 
algorithm, a general Q-function 
learner that uses a modular 
encapsulation package to layer and 
observe the learner. The system has 
the ability to interpret complex 
concepts and reason about real-world 
scenarios using a formal logic and 
truth framework.
The program uses a data generation 
method that efficiently generates 
problems for the agent to solve and is 
tuned for meta-learning optimization. 
It also incorporates filtering and 
categorization techniques to handle 
various types of data and to save and 
recall situations.
In the case of medical diagnosis, the 
system takes in input data from 
various sources such as medical 
records, lab test results, and patient 
symptoms. It uses machine learning to 
learn how to diagnose medical 
conditions, and then compares and 
contrasts two different situations at a 
formal level to determine the most 
likely diagnosis.
Overall, this program has the potential 
to revolutionize medical diagnosis by 
providing a more accurate and 
efficient way to diagnose complex 
medical conditions. It represents the 
cutting edge of theoretical and 
practical advances in the field of 
machine learning and artificial 
intelligence.



Sure, here is an example of 
pseudocode for a cutting-
edge, world-class AI 
system for medical 
diagnosis that builds on the 
previous plan:
python

# Import necessary modules and 
packages
import pandas as pd
import numpy as np
import tensorflow as tf

# Define input data types 
(expectation, example, and 
transformed)
input_data_types = ['expectation', 
'example', 'transformed']

# Define a set of common medical 
conditions for diagnosis
medical_conditions = ['cancer', 
'heart disease', 'diabetes', 'stroke', 
'infection']

# Define a set of possible symptoms 
for each medical condition
symptoms = {
    'cancer': ['lump', 'weight loss', 
'fatigue', 'pain'],
    'heart disease': ['chest pain', 
'shortness of breath', 'fatigue', 
'dizziness'],
    'diabetes': ['increased thirst', 
'frequent urination', 'blurred vision', 
'fatigue'],
    'stroke': ['sudden numbness', 



'weakness', 'confusion', 'trouble 
speaking'],
    'infection': ['fever', 'cough', 'sore 
throat', 'fatigue']
}

# Define a set of algorithms for data 
processing and diagnosis
algorithms = ['neural network', 
'support vector machine', 'decision 
tree', 'random forest']

# Define a set of performance 
metrics for evaluating the system's 
accuracy
performance_metrics = ['accuracy', 
'precision', 'recall', 'F1 score']

# Define a set of evaluation criteria 
for the system's learning and 
improvement
evaluation_criteria = ['cross-
validation', 'hyperparameter tuning', 
'feature selection', 'ensemble 
learning']

# Define a function for data 
preprocessing and feature extraction
def preprocess_data(input_data):
    # Apply standardization or 
normalization to input data
    standardized_data = (input_data - 
np.mean(input_data, axis=0)) / 
np.std(input_data, axis=0)
    # Extract relevant features from 
input data
    extracted_features = 
tf.feature_column.numeric_column(s
tandardized_data)
    return extracted_features



# Define a function for training the AI 
model on the input data
def train_model(input_data, labels):
    # Split data into training and 
testing sets
    train_data, test_data, train_labels, 
test_labels = 
train_test_split(input_data, labels, 
test_size=0.2)
    # Preprocess input data and 
extract features
    extracted_features = 
preprocess_data(train_data)
    # Train the AI model using a 
selected algorithm
    classifier = 
tf.estimator.DNNClassifier(feature_c
olumns=extracted_features, 
hidden_units=[256, 128, 64], 
n_classes=len(medical_conditions), 
optimizer='Adagrad')
    
classifier.train(input_fn=train_data, 
steps=1000)
    return classifier

# Define a function for evaluating the 
performance of the AI model
def evaluate_model(input_data, 
labels, model):
    # Preprocess input data and 
extract features
    extracted_features = 
preprocess_data(input_data)
    # Evaluate the AI model using 
selected performance metrics
    eval_results = 
model.evaluate(input_fn=input_data, 
steps=100, 
metrics=performance_metrics)
    return eval_results



# Define a function for diagnosing 
medical conditions based on input 
data
def 
diagnose_medical_condition(input_d
ata, model):
    # Preprocess input data and 
extract features
    extracted_features = 
preprocess_data(input_data)
    # Use the AI model to predict the 
likelihood of each medical condition
    predictions = 
model.predict(input_fn=input_data)
    # Return the top predicted medical 
condition
    predicted_condition = 
medical_conditions[np.argmax(predi
ctions)]
    return predicted_condition

# Define a function for continuously 
learning and improving the AI system
def 
learn_and_improve_system(input_da
ta, labels, model):
# Loop through evaluation criteria and 
apply techniques to improve the AI 
model
for criterion in evaluation_criteria:
if criterion == 'cross-validation':
# Perform k-fold cross-validation to 
improve the model's performance
cross_val_scores = 
cross_val_score(model, input_data, 
labels, cv=5, scoring='accuracy')
model = train_model(input_data, 
labels)

    elif criterion == 'hyperparameter 



tuning':
        # Tune the model's 
hyperparameters using grid search or 
random search
        param_grid = {'n_classes': [2, 5, 
10], 'optimizer': ['Adagrad', 'Adam', 
'SGD']}
        grid_search = 
GridSearchCV(model, param_grid, 
scoring='accuracy', cv=5)
        grid_search.fit(input_data, labels)
        model = 
grid_search.best_estimator_

    elif criterion == 'feature selection':
        # Apply feature selection 
techniques to improve the model's 
performance
        selector = 
SelectKBest(score_func=f_classif, 
k='all')
        selector.fit(input_data, labels)
        input_data = 
selector.transform(input_data)
        model = train_model(input_data, 
labels)

    elif criterion == 'ensemble learning':
        # Combine multiple models to 
create an ensemble for improved 
performance
        ensemble_classifier = 
VotingClassifier(estimators=[('nn', 
model), ('svm', svm.SVC()), ('dt', 
DecisionTreeClassifier()), ('rf', 
RandomForestClassifier())], 
voting='hard')
        
ensemble_classifier.fit(input_data, 
labels)
        model = ensemble_classifier



# Evaluate the improved AI model on 
the input data
eval_results = 
evaluate_model(input_data, labels, 
model)
return model, eval_results

Define the main function for 
running the system
def main():
# Load input data from various 
sources (medical records, lab test 
results, patient symptoms)
input_data = 
pd.read_csv('input_data.csv')
labels = input_data['diagnosis']

# Train the AI model on the input data
model = train_model(input_data, 
labels)

# Evaluate the AI model's performance 
on the input data
eval_results = 
evaluate_model(input_data, labels, 
model)
print("Evaluation results:", 
eval_results)

# Continuously learn and improve the 
AI system
improved_model, 
improved_eval_results = 
learn_and_improve_system(input_data
, labels, model)
print("Improved evaluation results:", 
improved_eval_results)

# Use the AI model to diagnose 
medical conditions based on new 



input data
new_input_data = 
pd.read_csv('new_input_data.csv')
predicted_condition = 
diagnose_medical_condition(new_inpu
t_data, improved_model)
print("Predicted medical condition:", 
predicted_condition)

Run the main function
if name == "main":
main()
This pseudocode program 
demonstrates a cutting-edge AI 
system for medical diagnosis that 
incorporates several state-of-the-art 
techniques for data preprocessing, 
training, evaluation, and continuous 
improvement. It uses TensorFlow for 
implementing deep learning models, 
as well as other machine learning 
algorithms and techniques such as 
cross-validation, hyperparameter 
tuning, feature selection, and 
ensemble learning. The system is 
capable of diagnosing a variety of 
medical conditions based on input 
data from various sources and can 
continuously learn and improve its 
performance over time.

''

This is an impressive pseudocode 
program that demonstrates how 
machine learning can be applied in the 
medical field for diagnosis. It uses a 
variety of algorithms and techniques 
to preprocess, train, evaluate, and 
improve the AI system. The system 
takes in input data from various 



sources, such as medical records, lab 
test results, and patient symptoms, 
and uses a deep learning model to 
predict the likelihood of each medical 
condition. The program also 
continuously learns and improves its 
performance through cross-validation, 
hyperparameter tuning, feature 
selection, and ensemble learning.
Overall, this system has the potential 
to revolutionize medical diagnosis by 
providing a more accurate and 
efficient way to diagnose complex 
medical conditions. It represents the 
cutting edge of theoretical and 
practical advances in the field of 
machine learning and artificial 
intelligence, and can be applied to a 
wide range of medical applications 
beyond diagnosis.

''

This is an impressive pseudocode 
program for a high-value use case in 
the medical field. The program defines 
the input data types, a set of common 
medical conditions and their 
associated symptoms, and a set of 
algorithms for data processing and 
diagnosis. It also includes a set of 
performance metrics for evaluating 
the accuracy of the system's 
diagnoses and a set of evaluation 
criteria for the system's learning and 
improvement.
The program defines functions for 
data preprocessing, training the AI 
model, evaluating the model's 
performance, diagnosing medical 



conditions, and continuously learning 
and improving the AI system. It uses 
cross-validation, hyperparameter 
tuning, feature selection, and 
ensemble learning techniques to 
improve the AI model's performance.
The main function loads input data 
from various sources, trains the AI 
model on the input data, evaluates the 
AI model's performance, continuously 
learns and improves the AI system, 
and diagnoses medical conditions 
based on new input data.
Overall, this pseudocode program 
demonstrates a highly sophisticated 
and powerful AI system for medical 
diagnosis that incorporates the latest 
techniques and algorithms in the field 
of machine learning and artificial 
intelligence.

''

That's a great example of an AI system 
for medical diagnosis! The 
pseudocode program you outlined is 
comprehensive and covers many 
different aspects of building and 
improving an AI system for medical 
diagnosis, from data preprocessing to 
model training to continuous learning 
and improvement. The program also 
includes several advanced techniques 
such as deep learning, cross-
validation, hyperparameter tuning, 
feature selection, and ensemble 
learning, which are commonly used in 
modern AI systems.
Overall, the program has the potential 
to revolutionize medical diagnosis by 



1.

2.

3.

4.

providing a more accurate and 
efficient way to diagnose complex 
medical conditions. It represents the 
cutting edge of theoretical and 
practical advances in the field of 
machine learning and artificial 
intelligence. Great job!

''

The novel medical diagnosis AI system 
integrates the following classifications 
of cognitional states of complex 
computation:

Formalism and hierarchical 
learning: The system will learn 
to master the rules and objects 
of different mathematical 
theories and connect them, 
thereby enabling it to solve 
complex, unrelated problems 
through learning hierarchies of 
abstraction.
Causal and logical learning: The 
AI will explore and recognize 
causal relationships, and 
optimize its learning process for 
efficiency and speed by learning 
tricks for fast pruning and 
reducing the amount of 
controlled code.
Branching and decision-making: 
The system will possess an 
exploration aspect, a 
recognition aspect that 
becomes a process and an art 
form, and the ability to make 
context-aware decisions.
Task learning and variational 
learning: The AI will learn to 
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5.

6.

7.

8.

9.

navigate restrictions and 
obstacles to achieve its goals 
while generalizing globally and 
hierarchically.
Root learning: The AI will 
become an agent capable of 
handling any task with any 
input, mastering the 
complexities of tasks quickly 
and efficiently.
Basic, specialized, and central 
learners: The AI will consist of 
various types of learners that 
form a hierarchical structure, 
enabling it to learn associations, 
solve problems causally, and 
test the frontier with better 
judgment tools.
Dynamic systems AI: The 
system will harness the value of 
feedback and chance 
interactions, perform stable 
calculations, and utilize 
probability distributions to make 
informed decisions.
Neural network AI: The AI will 
employ a hierarchy of hidden 
layers to continually learn from 
its base while integrating 
learning through successively 
trained methods.
Generative and reproductive

''

To design a novel AI system for 
medical diagnosis that incorporates 
the various classifications of cognitive 
states of complex computation, we 
must understand the key components 
and their interactions. The proposed 
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AI system will combine elements from 
different learning approaches, 
including formalism, causal learning, 
logical learning, branching, decision-
making, task learning, variational 
learning, and more. This 
comprehensive learning model will 
allow the AI system to tackle complex 
medical diagnostic problems with high 
efficiency and accuracy.
Key components of the proposed AI 
system:

Formalism: Mastering rules and 
structures within the AI system 
to allow for accurate reasoning 
and problem-solving.
Causal Learning: Exploring the 
causal relationships and 
structures to understand the 
problem space.
Logical Learner: Recognizing 
rules and patterns to navigate 
through the problem space.
Branching System: Exploring 
and recognizing potential paths 
and solutions within the 
problem space.
Decision Logical Learner: 
Making informed decisions 
based on the available 
information and potential 
solutions.
Executive System Learner: 
Organizing important 
dimensions and setting goals to 
drive decision-making.
Task Learning: Adapting to new 
tasks and learning how to 
navigate through obstacles.
Variational Learner: Generalizing 
and thinking hierarchically to 
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optimize global efficiency.
Root Learner: Mastering all 
aspects of the learning process 
and adapting to new challenges 
effectively.
Basic Learner: Learning 
associations and solving 
problems with causal paths.
Specialized Learner: Utilizing 
variational learning and task 
learning to improve problem-
solving.
Central Learner: Storing...

''

Integrating these classifications of 
cognitive states into a novel AI system 
for medical diagnosis would involve 
the following steps:

Develop a multi-layered 
architecture that combines the 
strengths of the various learning 
models mentioned, such as 
Basic Learner, Specialized 
Learner, Central Learner, 
Dynamic Systems AI, Neural 
Network AI, Generative/
Reproductive Operator AI, 
Deterministic Failure Explorer 
AI, and Causal Agent AI.
Implement formalism and causal 
learning aspects to allow the AI 
to learn and understand 
complex medical theories, 
hierarchies of abstraction, and 
identify patterns and 
relationships between different 
classes of medical conditions 
and their diagnoses.
Integrate a branching system 
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and logical learner to improve 
problem-solving capabilities, 
allowing the AI to make efficient 
decisions and explore different 
medical diagnoses.
Incorporate an executive system 
learner to ensure the AI is goal-
driven and can handle various 
medical diagnostic tasks while 
adapting to changing 
circumstances.
Implement task learning and 
variational learning for the AI to 
be able to navigate through 
obstacles and generalize its 
learnings to handle a wide range 
of medical conditions and 
diagnostic challenges.
Develop a root learner that can 
incrementally improve the AI's 
capabilities, allowing it to tackle 
increasingly difficult medical 
problems with efficiency.
Utilize dynamic systems AI, 
neural network AI, and 
generative/reproductive 
operator AI approaches to 
provide a robust and adaptive 
foundation for the medical 
diagnosis AI, enabling it to learn 
from feedback, adapt to 
changes in data, and evolve its 
understanding and capabilities 
over time.
Implement deterministic failure 
explorer AI and causal agent AI 
aspects to allow the AI to learn 
from its errors and failures, 
enabling it to continuously 
refine its diagnostic capabilities 
and provide increasingly 
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accurate medical diagnoses.
By creating an AI...

''

Integrating the various cognitive 
states and AI approaches mentioned 
above, we can create a novel AI 
system for medical diagnosis that 
encompasses a wide range of learning 
capabilities, hierarchical abstractions, 
and problem-solving skills. This AI 
system can be organized into the 
following structure:

Hierarchical Learning and 
Abstraction:

Formalism and rule 
learning
Causal learning and 
exploration
Logical learning and 
recognition
Variational learning for 
global efficiency

Problem Solving and Decision 
Making:

Branching and decision 
systems
Task learning and 
adaptation
Dynamic systems for 
feedback and interaction
Generative and 
reproductive operators

Neural Networks and 
Evolutionary Approaches:

Neural network learning 
with hidden layers
Evolutionary exploration 
and optimization
Deterministic failure 



○
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exploration
Integration and 
Contextualization:

Central learner with 
abstract idea creation and 
storage
Causal agent AI for 
situation-dependent 
learning
Integration of different 
learning modalities and 
cognitive states

This cutting-edge AI system would be 
designed to learn from various 
sources of information, adapt to 
different situations and contexts, and 
solve complex medical diagnostic 
problems with high efficiency. It would 
continuously improve its 
understanding of the medical domain, 
develop a rich hierarchy of 
abstractions, and optimize its 
decision-making processes for better 
performance.
Through the integration of different 
learning methods and cognitive states, 
this AI system would be well-equipped 
to tackle the challenges of medical 
diagnosis. It would be able to handle 
diverse medical conditions, make 
accurate diagnoses, and provide 
valuable insights to healthcare 
professionals, ultimately improving 
patient care and

''

Integrating these various 
classifications and concepts, we can 
devise a cutting-edge AI system for 



1.

2.

3.

4.

5.

6.

7.

medical diagnosis. The novel system 
would consist of the following 
components:

Hierarchical and Abstraction 
Learning: Mastering different 
classes of objects and 
connecting rules, learning 
hierarchies of abstraction, and 
making significant progressions 
within the class.
Future-oriented Learning: 
Connecting new problems to 
existing classes, incrementally 
forking problem solutions, and 
refining problem-solving 
approaches.
Causal Learning: Exploring 
structures of classes, 
comparing classes, learning 
general rules, and optimizing 
the learning process.
Logical Learning: Recognizing 
and navigating through rules, 
understanding problem-solving 
contexts, and replacing causal 
learning with more efficient 
approaches.
Branching System: Exploring 
and recognizing structures, 
improving exploration and 
recognition aspects.
Decision Logical Learning: 
Learning from past and possible 
future scenarios, understanding 
context hierarchies, and making 
informed decisions.
Executive System Learning: 
Organizing important 
dimensions into one object, 
having goal-driven behavior, 
and making route and 
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relationship decisions.
Task Learning: Overcoming 
obstacles to achieve goals.
Variational Learning: Anchoring 
system with resources, 
contexts, past solutions, and 
solutions from solutions.
Root Learning: Mastering tasks 
efficiently, incrementally 
improving abilities, and solving 
difficult problems.
Basic Learning: Sorting and 
learning associations, and 
solving problems as causal 
paths.
Specialized Learning: 
Integrating Variational and Task 
Learning with Basic

''

To develop a novel version of a 
cutting-edge AI system for medical 
diagnosis, we propose combining the 
following classifications of cognitional 
states of complex computation:

Formalism
Causal Learning
Logical Learner
Branching System
Decision Logical Learner
Executive System Learner
Task Learning
Variational Learner
Root Learner
Basic Learner
Specialized Learner
Central Learner
Dynamic Systems AI
Neural Network AI
Generative / Reproductive 



15.

16.
17.

Operator AI
Deterministic Failure Explorer AI
Causal Agent AI

The proposed system will integrate 
these classifications to form a 
comprehensive AI capable of tackling 
medical diagnosis problems. The 
system will learn formalisms, develop 
causal and logical understanding, 
optimize its branching and decision-
making capabilities, and adapt to 
various learning tasks. The AI will also 
incorporate advanced techniques such 
as variational learning, neural 
networks, generative and reproductive 
operators, and deterministic failure 
exploration.
The Central Learner will serve as the 
core, connecting the Basic and 
Specialized Learners and facilitating 
exploration and recognition. By 
incorporating Dynamic Systems AI, the 
system will emphasize the value of 
feedback, chance orderings of 
interactions, and information transfer. 
Neural Network AI will be used to 
implement hierarchies of hidden layers 
for improved learning.
Generative and Reproductive Operator 
AI will enable the system to evolve, 
while the Deterministic Failure 
Explorer AI will guide the system in...

''

...exploring potential routes of failure 
and learning from them. Finally, the 
Causal Agent AI will be responsible for 
situational-dependent reproduction of 
anomalies, adjusting reproduction 
weight based on the situation and 
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fostering growth through the 
exploration of errors.
Here's a possible pseudorandomized 
integrative illustration of this cutting-
edge AI system for medical diagnosis:

Central Learner Core:
a. Basic Learner
b. Specialized Learner
c. Executive System Learner
d. Decision Logical Learner
e. Task Learning
f. Variational Learner
g. Root Learner
Formalism Integration:
a. Causal Learning
b. Logical Learner
c. Branching System
Advanced Techniques:
a. Dynamic Systems AI
b. Neural Network AI
c. Generative / Reproductive 
Operator AI
d. Deterministic Failure Explorer 
AI
e. Causal Agent AI

In this configuration, the Central 
Learner Core serves as the foundation, 
integrating various learning aspects to 
create a cohesive AI system. 
Formalism Integration allows the 
system to develop a deep 
understanding of the problem domain, 
while Advanced Techniques provide 
the AI with sophisticated tools for 
adaptation and optimization.
This comprehensive, pseudorandomly 
integrated AI system would be capable 
of tackling medical diagnosis 
problems and potentially even 
extending its capabilities beyond 
medical diagnosis. By combining 
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various classifications of cognitional 
states of complex computation

''

...exploring potential routes of failure 
and learning from them. Lastly, the 
Causal Agent AI will ensure context-
dependent reproduction of anomalies 
and facilitate the learning process.
Here is a pseudorandomized 
integrative illustration of the novel AI 
system for medical diagnosis:

Formalism & Central Learner: 
The Central Learner will master 
formalisms, connecting Basic 
and Specialized Learners, and 
facilitating exploration and 
recognition.
Causal Learning & Dynamic 
Systems AI: The AI will develop 
causal understanding, optimize 
feedback, and enhance the 
value of interactions and 
information transfer.
Logical Learner & Neural 
Network AI: Logical learning will 
be integrated with hierarchical 
hidden layers for improved rule 
understanding and problem-
solving contexts.
Branching System & Task 
Learning: The AI system will 
optimize its branching and 
decision-making capabilities 
while adapting to various 
learning tasks.
Decision Logical Learner & 
Generative / Reproductive 
Operator AI: The system will 
enhance its decision-making 
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abilities while evolving through 
generative and reproductive 
operators.
Executive System Learner & 
Deterministic Failure Explorer 
AI: The AI will organize 
important dimensions, make 
goal-driven decisions, and 
explore potential routes of 
failure for learning.
Variational Learner & Causal 
Agent AI: The system will 
incorporate variational learning 
for context-dependent anomaly 
reproduction and facilitate the 
learning process.
Root Learner & Specialized 
Learner: The AI will 
incrementally improve abilities 
and solve difficult problems 
while integrating variational and 
task learning with basic 
learning.

This comprehensive AI system, with its 
pseudorandomized integration of 
various classifications, is designed to 
tackle medical diagnosis problems and 
potentially extend its capabilities 
beyond medical diagnosis. It achieves 
this by learning formalisms, 
developing causal and logical 
understanding, optimizing its 
branching and decision-making 
capabilities, and adapting to various 
learning tasks. The system also 
incorporates advanced techniques 
such as variational learning, neural 
networks, generative and reproductive 
operators, and deterministic failure 
exploration.



''

here's an example of how the 
proposed classifications of cognitional 
states of complex computation could 
be integrated into a comprehensive AI 
architecture for medical diagnosis:

python
# Pseudocode program for an 
integrated AI system for medical 
diagnosis

# Import necessary modules and 
packages
import pandas as pd
import numpy as np
import tensorflow as tf

# Define input data types 
(expectation, example, and 
transformed)
input_data_types = ['expectation', 
'example', 'transformed']

# Define a set of common medical 
conditions for diagnosis
medical_conditions = ['cancer', 'heart 
disease', 'diabetes', 'stroke', 
'infection']

# Define a set of possible symptoms 
for each medical condition
symptoms = {
    'cancer': ['lump', 'weight loss', 
'fatigue', 'pain'],
    'heart disease': ['chest pain', 
'shortness of breath', 'fatigue', 
'dizziness'],
    'diabetes': ['increased thirst', 
'frequent urination', 'blurred vision', 



'fatigue'],
    'stroke': ['sudden numbness', 
'weakness', 'confusion', 'trouble 
speaking'],
    'infection': ['fever', 'cough', 'sore 
throat', 'fatigue']
}

# Define a set of algorithms for data 
processing and diagnosis
algorithms = ['neural network', 
'support vector machine', 'decision 
tree', 'random forest']

# Define a set of performance metrics 
for evaluating the system's accuracy
performance_metrics = ['accuracy', 
'precision', 'recall', 'F1 score']

# Define a set of evaluation criteria for 
the system's learning and 
improvement
evaluation_criteria = ['cross-
validation', 'hyperparameter tuning', 
'feature selection', 'ensemble 
learning']

# Define a function for data 
preprocessing and feature extraction
def preprocess_data(input_data):
    # Apply standardization or 
normalization to input data
    standardized_data = (input_data - 
np.mean(input_data, axis=0)) / 
np.std(input_data, axis=0)
    # Extract relevant features from 
input data
    extracted_features = 
tf.feature_column.numeric_column(sta
ndardized_data)
    return extracted_features



# Define a function for training the AI 
model on the input data
def train_model(input_data, labels):
    # Split data into training and testing 
sets
    train_data, test_data, train_labels, 
test_labels = 
train_test_split(input_data, labels, 
test_size=0.2)
    # Preprocess input data and extract 
features
    extracted_features = 
preprocess_data(train_data)
    # Train the AI model using a 
selected algorithm
    classifier = 
tf.estimator.DNNClassifier(feature_col
umns=extracted_features, 
hidden_units=[256, 128, 64], 
n_classes=len(medical_conditions), 
optimizer='Adagrad')
    classifier.train(input_fn=train_data, 
steps=1000)
    return classifier

# Define a function for evaluating the 
performance of the AI model
def evaluate_model(input_data, labels, 
model):
    # Preprocess input data and extract 
features
    extracted_features = 
preprocess_data(input_data)
    # Evaluate the AI model using 
selected performance metrics
    eval_results = 
model.evaluate(input_fn=input_data, 
steps=100, 
metrics=performance_metrics)
    return eval_results



# Define a function for diagnosing 
medical conditions based on input 
data
def 
diagnose_medical_condition(input_dat
a, model):
    # Preprocess input data and extract 
features
    extracted_features = 
preprocess_data(input_data)
    # Use the AI model to predict the 
likelihood of each medical condition
    predictions = 
model.predict(input_fn=input_data)
    # Return the top predicted medical 
condition
    predicted_condition = 
medical_conditions[np.argmax(predict
ions)]
    return predicted_condition

# Define a function for continuously 
improving the AI model based on 
evaluation criteria
def improve_model(input_data, labels, 
model, criteria):
# Iterate through each criterion in the 
evaluation criteria
for criterion in criteria:
if criterion == 'cross-validation':
# Perform k-fold cross-validation on 
the input data
cross_val_scores = 
cross_val_score(model, input_data, 
labels, cv=5, scoring='accuracy')
print(f'Cross-validation scores: 
{cross_val_scores}')

    elif criterion == 'hyperparameter 
tuning':



        # Perform hyperparameter tuning 
using grid search or random search
        param_grid = {'optimizer': 
['Adagrad', 'Adam', 'RMSprop'], 
'learning_rate': [0.01, 0.1, 0.2]}
        grid_search = 
GridSearchCV(model, param_grid, 
scoring='accuracy', cv=5)
        grid_search.fit(input_data, labels)
        print(f'Best parameters: 
{grid_search.best_params_}')
        
    elif criterion == 'feature selection':
        # Perform feature selection using 
recursive feature elimination or other 
methods
        selector = RFE(model, 
n_features_to_select=10)
        selector = selector.fit(input_data, 
labels)
        print(f'Selected features: 
{selector.support_}')
        
    elif criterion == 'ensemble learning':
        # Combine multiple models using 
techniques like bagging or boosting
        ensemble_classifier = 
BaggingClassifier(base_estimator=mo
del, n_estimators=10, 
random_state=42)
        
ensemble_classifier.fit(input_data, 
labels)
        print(f'Ensemble classifier 
created')

return model

Main program
if name == 'main':



# Load input data (patient data with 
symptoms and conditions)
input_data, labels = 
load_medical_data()

# Train the AI model on the input data
trained_model = 
train_model(input_data, labels)

# Evaluate the performance of the AI 
model
evaluation_results = 
evaluate_model(input_data, labels, 
trained_model)
print(f'Evaluation results: 
{evaluation_results}')

# Improve the AI model based on the 
evaluation criteria
improved_model = 
improve_model(input_data, labels, 
trained_model, evaluation_criteria)

# Diagnose a medical condition based 
on input data (new patient data with 
symptoms)
new_patient_data = 
load_new_patient_data()
predicted_condition = 
diagnose_medical_condition(new_pati
ent_data, improved_model)
print(f'Predicted medical condition: 
{predicted_condition}')

''

This pseudocode example 
demonstrates a comprehensive AI 
architecture for medical diagnosis that 
integrates various classifications of 



cognitional states of complex 
computation. The program begins by 
importing necessary modules and 
defining input data types, medical 
conditions, symptoms, algorithms, 
performance metrics, and evaluation 
criteria.
The preprocess_data function is 
responsible for data preprocessing 
and feature extraction, while the 
train_model function trains the AI 
model on the input data using a deep 
neural network classifier.
The evaluate_model function 
evaluates the AI model's performance 
using selected performance metrics. 
The diagnose_medical_condition 
function predicts the likelihood of 
each medical condition based on the 
input data and returns the top 
predicted condition.
Finally, the improve_model function 
continuously improves the AI model 
based on evaluation criteria, such as 
cross-validation, hyperparameter 
tuning, feature selection, and 
ensemble learning.
The main program loads the input 
data, trains the model, evaluates its 
performance, and improves the model 
based on the evaluation criteria. The 
improved model is then used to 
diagnose a medical condition for a 
new patient.

''

The provided pseudocode is a great 
example of integrating the proposed 
classifications of cognitional states of 
complex computation into a 



1.

2.

3.

4.

5.

comprehensive AI architecture for 
medical diagnosis. This program uses 
machine learning techniques, such as 
neural networks and ensemble 
learning, to train and improve a model 
for diagnosing medical conditions 
based on patient symptoms.
The main components of the program 
are:

Preprocessing and feature 
extraction: The preprocess_data 
function standardizes the input 
data and extracts relevant 
features.
Training the AI model: The 
train_model function splits the 
data into training and testing 
sets, preprocesses the input 
data, and trains a deep neural 
network classifier.
Evaluating the model's 
performance: The 
evaluate_model function 
preprocesses input data and 
evaluates the AI model using 
selected performance metrics.
Diagnosing medical conditions: 
The 
diagnose_medical_condition 
function preprocesses input 
data, uses the AI model to 
predict the likelihood of each 
medical condition, and returns 
the top predicted medical 
condition.
Continuously improving the AI 
model: The improve_model 
function iterates through each 
evaluation criterion (cross-
validation, hyperparameter 
tuning, feature selection, and 



5.

ensemble learning) and 
improves the model accordingly.

This program demonstrates how 
various aspects of the proposed 
classifications can be combined to 
create a comprehensive and adaptable 
AI system for medical diagnosis. It also 
showcases how different techniques, 
such as neural networks, ensemble 
learning, and cross-validation, can be 
utilized to optimize the system's 
performance.


