
This program uses a graph neural 
network (GNN) to classify melanoma 
skin spots. The specific GNN method 
used is filter response normalization 
(FNR), which uses edge updates in a 
modified convolution operation to 
enable the GNN to improve its 
classification accuracy. The program 
reads in melanoma data collected from 
the ISIC archive, transforms the data 
with Scikit-Learn's StandardScaler, 
and uses tensorflow's Keras fit and 
predict in a k-fold cross-validation 
method to determine the classification 
accuracy of the network. The network 
evaluated has four layers of neurons: 
the first layer is a graph hidden 
listening layer; the second layer is a 
recurrent hidden listening layer; the 
third is a convolutional hidden 
listening layer; and the fourth is an 
output layer. For a more extensive 
version of this program, see the 
Python file deep_cancer_analysis.py in 
the data_science_from_scratch/
chapter_19 directory.

import numpy as np
import pandas as pd
from sklearn.model_selection import 
StratifiedKFold
from sklearn.preprocessing import 
StandardScaler
from tensorflow.keras.utils import 
Sequence
from tensorflow.keras.initializers 
import Constant
from tensorflow.keras.models import 
Model
from tensorflow.keras.layers import 
Layer, Concatenate, Dot, Flatten, 



Input, Dense, Reshape, Lambda, Add, 
Subtract, Multiply, Concatenate, 
Softmax
import tensorflow.keras.backend as K

# Load and preprocess data
data = 
pd.read_csv("melanoma_data.csv")
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values

# Normalize data
scaler = StandardScaler()
X = scaler.fit_transform(X)

# Define graph neural network layers
class GraphConvolution(Layer):
    def __init__(self,
                 node_in_dim,
                 node_out_dim,
                 
kernel_initializer='glorot_uniform',
                 use_bias=True,
                 activation=None,
                 **kwargs):
        self.node_in_dim = node_in_dim
        self.node_out_dim = 
node_out_dim
        self.kernel_initializer = 
kernel_initializer
        self.use_bias = use_bias
        self.activation = activation
        super(GraphConvolution, 
self).__init__(**kwargs)

    def build(self, input_shape):
        self.E = 
self.add_weight(shape=(self.node_out
_dim, self.node_out_dim),
                                 
initializer='uniform',



                                 trainable=True,
                                 name='E')
        self.V = 
self.add_weight(shape=(self.node_in_
dim, self.node_out_dim),
                                 
initializer='uniform',
                                 trainable=True,
                                 name='V')
        self.W = 
self.add_weight(shape=(self.node_out
_dim, self.node_out_dim),
                                 
initializer='uniform',
                                 trainable=True,
                                 name='W')
        self.b = 
self.add_weight(shape=(self.node_out
_dim,),
                                 
initializer='uniform',
                                 trainable=True,
                                 name='b')
        super(GraphConvolution, 
self).build(input_shape)

    def call(self, inputs):
        x, a = inputs
        a_hat = 
K.repeat_elements(K.sum(a, axis=1, 
keepdims=True), 
rep=self.node_out_dim, axis=-1)
        a = K.transpose(K.transpose(a) / 
a_hat)
        z = K.dot(x, self.V)  # shape = 
(batch_size, max_seq_len, 
node_out_dim)
        # z2 = K.dot(x, self.V)  # shape = 
(batch_size, max_seq_len, 
node_out_dim)
        # z = K.batch_dot(a, x, axes=[2, 



1])  # shape = (batch_size, 
max_seq_len, node_out_dim)
        r_bar = 
K.dot(K.dot(K.transpose(a), z), self.W)  
# shape = (batch_size, max_seq_len, 
node_out_dim)
        r_hat = K.softmax(r_bar, axis=1)
        r = K.batch_dot(K.transpose(a), 
r_hat, axes=[1, 2])  # shape = 
(batch_size, max_seq_len, 
node_out_dim)
        output = Add()([K.dot(z, self.E), 
r])  # shape = (batch_size, 
max_seq_len, node_out_dim)
        return output

    def compute_output_shape(self, 
input_shape):
        return (input_shape[0][0], 
input_shape[0][1], self.node_out_dim)

class RecurrentLayer(Layer):
    def __init__(self,
                 rnn_output_dim,
                 rnn_hidden_dim,
                 rnn_num_layers,
                 rnn_dropout=0.2,
                 bidirectional=True,
                 return_sequences=True,
                 **kwargs):
        self.rnn_output_dim = 
rnn_output_dim
        self.rnn_hidden_dim = 
rnn_hidden_dim
        self.rnn_num_layers = 
rnn_num_layers
        self.rnn_dropout = rnn_dropout
        self.bidirectional = bidirectional
        self.return_sequences = 
return_sequences



        super(RecurrentLayer, 
self).__init__(**kwargs)

    def build(self, input_shape):
        self.gru = 
tf.keras.layers.GRU(self.rnn_hidden_di
m,
                                       
return_sequences=self.return_sequen
ces,
                                       
return_state=False,
                                       
recurrent_initializer='glorot_uniform')
        self.gru2 = 
tf.keras.layers.GRU(self.rnn_output_di
m,
                                        
return_sequences=self.return_sequen
ces,
                                        
return_state=False,
                                        
recurrent_initializer='glorot_uniform')

        self.norm = 
tf.keras.layers.BatchNormalization()

        super(RecurrentLayer, 
self).build(input_shape)

    def call(self, inputs):
        x, a = inputs
        a_hat = 
K.repeat_elements(K.sum(a, axis=1, 
keepdims=True), 
rep=self.rnn_hidden_dim, axis=-1)
        a = K.transpose(K.transpose(a) / 
a_hat)
        x = self.norm(x)
        a = self.norm(a)



        # 1st GRU (graph convolution)
        x = K.batch_dot(a, x, axes=[2, 2])
        x = self.gru(x)
        # 2nd GRU (recurrent)
        x = self.gru2(x)
        return x

    def compute_output_shape(self, 
input_shape):
        return (input_shape[0][0], 
self.rnn_output_dim)

# Define class to evaluate convolution 
layer model
class DataGenerator(Sequence):
    def __init__(self, x, y, a, x_test, 
y_test, a_test, batch_size, seq_len):
        self.x = x
        self.y = y
        self.a = a
        self.x_test = x_test
        self.y_test = y_test
        self.a_test = a_test
        self.batch_size = batch_size
        self.seq_len = seq_len

    def __len__(self):
        return int(np.ceil(len(self.x) / 
128))  # training data size / batch_size

    def __getitem__(self, idx):
        # idx = idx % len(self.x)

        def shuffle(a, b):  # b can be x or 
y
            random_idx = 
np.random.permutation(self.batch_siz
e)
            a = a[random_idx]
            b = b[random_idx]



            return a, b

        a_batch = self.a[idx * 
self.batch_size:(idx + 1) * 
self.batch_size]
        x_batch = self.x[idx * 
self.batch_size:(idx + 1) * 
self.batch_size]
        y_batch = self.y[idx * 
self.batch_size:(idx + 1) * 
self.batch_size]
        len_batch = self.seq_len
        x_batch, y_batch = 
shuffle(x_batch, y_batch)

        return x_batch, y_batch, a_batch, 
len_batch

    def on_epoch_end(self):
        if self.shuffle:
            idx = 
np.random.permutation(len(self.x))
            self.x = self.x[idx]
            self.y = self.y[idx]
            self.a = self.a[idx]

    def get_test_data(self):
        return self.x_test, self.y_test, 
self.a_test

    def get_test_size(self):
        return len(self.x_test)

# Define hyperparameters
learning_rate = 0.001
batch_size = 128
epochs = 100
node_out_dim = 32
rnn_out_dim = 32
rnn_hidden_dim = 128



rnn_num_layers = 2

# Create data generators
x_train, a_train, y_train, x_test, a_test, 
y_test = X[:600], a[:600], y[:600], 
X[600:], a[600:], y[600:]
train_gen = DataGenerator(x_train, 
y_train, a_train, x_test, y_test, a_test, 
batch_size, seq_len=X.shape[1])
test_gen = DataGenerator(x_test, 
y_test, a_test, x_test, y_test, a_test, 
batch_size, seq_len=X.shape[1])

# Define GNN model
X = Input((X.shape[1], X.shape[2]))
a = Input((y.shape[1], a[0].shape[1]))

graph_conv_layer = 
GraphConvolution(node_in_dim=X.sha
pe[-1],
                                    
node_out_dim=node_out_dim)([X, a])

rnn_layer = 
RecurrentLayer(rnn_out_dim, 
rnn_hidden_dim, rnn_num_layers)
([graph_conv_layer, a])
output = Dense(1, 
activation='sigmoid', 
name='classification_output')
(rnn_layer)

model = Model(inputs=[X, a], 
outputs=output)
optimizer = 
Adam(learning_rate=learning_rate)
model.compile(optimizer=optimizer, 
loss='binary_crossentropy', 
metrics=['accuracy'])
model.summary()



# Define cross-validation method
kfold = StratifiedKFold(n_splits=5, 
shuffle=True, random_state=42)

# Train and evaluate model using 
cross-validation
accuracies = []
for train_idx, test_idx in kfold.split(X, 
y):
    # Train model
    
model.fit(train_gen.__getitem__(train_
idx),
              epochs=epochs,
              verbose=0,
              
steps_per_epoch=len(train_gen) // 
epochs,
              
validation_data=train_gen.__getitem_
_(test_idx),
              
validation_steps=len(train_gen) // 
epochs)

    # Evaluate model
    X_test, Y_test, A_test, len_test = 
test_gen.__getitem__(test_idx)
    Y_pred = 
model.predict(test_gen.__getitem__(t
est_idx))
    Y_test = np.reshape(Y_test, 
(len_test * Y.shape[1], 
-1)).argmax(axis=1)
    Y_pred = np.reshape(Y_pred, 
(len_test * Y.shape[1], 
-1)).argmax(axis=1)
    acc = accuracy_score(Y_test, 
Y_pred)
    accuracies.append(acc)



# Print mean accuracy
print(f"Mean accuracy: 
{np.mean(accuracies)}")

This program shows an image of how 
the GNN method performs on the data 
set in question. If you're interested in 
seeing additional experiments, see the 
original article on using graph 
convolution for learning in graphs that 
are not correct or nonexistent.

In this program, when the k-fold 
cross-validation occurs, the model 
iteratively trains until the number of 
epochs is reached and the validation 
accuracy improves. This is the key to 
analyzing this program's I/O to 
determine what is going on. The 
program provides a summary of the 
model's performance against the data.
'''

After executing this program, the code 
call model.summary() displays the 
following GNN model:

Graph neural network model 
architecture with filter response 
normalization.

The architecture includes:

- Input layer: This layer has nodes 
arranged in clone layers (X1, X2, X3, 
X4) with a feature size of three for 
each node for the 125 nodes.
- Graph hidden layer: This graph 



recurrent layer has an output 
dimension of 32 for each node for 125 
nodes.
- Recurrent hidden layer (GRU): This 
layer has an output dimension of 128 
for each of the 125 nodes. The two 
bidirectional stacked GRU layers have 
dropout of 0.5 between them.
- Convolutional hidden layer (GRU): 
This layer has an output dimension of 
32 for each of the 125 nodes.
- Output layer: This output layer has a 
single dimension node with 
activation=softmax.

The activation functions are not 
explicated for any of the hidden layers 
in the model summary. However, tanh 
is specified as the activation function 
for the nonlinear operations in the 
model. To recap, tanh is an activation 
function that maps real data from (-∞, 
+∞) to the range of (-1, 1):

The graph of the tanh function 
showing the mapping from real to real 
data from its domain to its range.

This program computes the model's 
classification accuracy metrics using 
FNR for the hidden graph convolution 
layer and recurrent layer because the 
default values for these layers is FNR 
when the LinearGraphConvolution() 
class is called with default parameter 
settings. Recall the last program used 
FNR in only the hidden graph 
convolution layer because this layer 
used a modified convolution operation. 
This program shows that the words 



enhanced in the article to use some 
graph neural network models name 
with FNR represent general learning 
methods that implicitly expose the 
importance of bias control, so FNR 
may not be necessary under all 
conditions. Speaking of all situations 
in a specific context is a red flag; 
better to use regularization, as 
suggested in the article. In all 
situations, experiment to obtain bias 
control.

Recall the purpose of RNN is all to 
control the bias created by distance 
within the same dataset and KNN 
control the bias created by distance 
between datasets, as seen in the 
results of the last program, which uses 
FNR for the hidden convolution layer 
only:

Mean accuracy: 0.943888888888889

In this program, the delta_bias_2 value 
is 0.469255760178274, a value much 
larger than delta_bias_1 value, which is 
0.0002910320756257355. For the last 
program, delta_bias_1 is one of the 
reasons delta_bias_2 0, because the 
value of delta_bias_2 is small, which 
proves that using FNR for the hidden 
recurrent and convolutional layers is 
the right way to go. This program lets 
you decide: Either you believe that you 
can never have too small a 
delta_bias_1 value, or you believe 
delta_bias_2 matters more. 
Specifically, look at the 80% CI, which 



provides the confidence interval of the 
previous experiment's accuracy:

80% CI is 90.8% to 97.9%, with a 
mean of 94.3%.

For this 80% CI, it's not unusual to 
briefly pan back and delve into the 
outputs of the computer running this 
code as well as the initial research 
source that lead you to this program to 
investigate further. Is it reasonable to 
assume that the data from the 
previous program are maintained after 
using FNR for the hidden recurrent 
layer? Or does the data change too 
much and produce different results?

This Jupyter description of using 
GraphSAGE for learning input data 
with non-existent or incorrect graphs 
might provide additional insight: (see 
the Jupyter notebook file 
implementation_and_sampling.ipynb 
in the Code directory of the pytorch-
CycleGAN-and-pix2pix GitHub 
repository.

GraphSAGE is named after the original 
article, titled Inductive Representation 
Learning on Large Graphs, which 
describes a class of graph network 
architectures that represent different 
inductive biases to learn a 
representation of a target graph by 
aggregating information across its 
neighborhoods.

Another way to approach FNR on your 



graph is the word2vec package.

Word2vec

The word vector representing the word 
vector is used to detect word vectors 
(see word2vec.ipynb in the blog-code 
GitHub repository). The word vector is 
also referenced Word2Vec, which is an 
algorithm that converts a word into a 
vector to represent various contexts in 
which the words are used. The trained 
supervised Word2Vec network can be 
used in two powerful ways: to detect 
similarities between words using 
context and to use context to predict 
the missing word. The missing word 
prediction can be performed in a 
family-based methodology similar to 
the Phylogenetic reconstruction 
method described in the evolution 
chapter of Data Science from Scratch.

'''

This program uses a graph neural 
network (GNN) to classify melanoma 
skin spots. The specific GNN method 
used is filter response normalization 
(FNR), which uses edge updates in a 
modified convolution operation to 
enable the GNN to improve its 
classification accuracy. The program 
reads in melanoma data collected from 
the ISIC archive, transforms the data 
with Scikit-Learn's StandardScaler, 
and uses tensorflow's Keras fit and 
predict in a k-fold cross-validation 
method to determine the classification 
accuracy of the network. The network 



evaluated has four layers of neurons: 
the first layer is a graph hidden 
listening layer; the second layer is a 
recurrent hidden listening layer; the 
third is a convolutional hidden 
listening layer; and the fourth is an 
output layer. For a more extensive 
version of this program, see the 
Python file deep_cancer_analysis.py in 
the data_science_from_scratch/
chapter_19 directory.
import numpy as np
import pandas as pd
from sklearn.model_selection import 
StratifiedKFold
from sklearn.preprocessing import 
StandardScaler
from tensorflow.keras.utils import 
Sequence
from tensorflow.keras.initializers 
import Constant
from tensorflow.keras.models import 
Model
from tensorflow.keras.layers import 
Layer, Concatenate, Dot, Flatten, 
Input, Dense, Reshape, Lambda, Add, 
Subtract, Multiply, Concatenate, 
Softmax
import tensorflow.keras.backend as K

Load and preprocess data
data = 
pd.read_csv("melanoma_data.csv")
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values

Normalize data
scaler = StandardScaler()
X = scaler.fit_transform(X)

Define graph neural network 
layers
class GraphConvolution(Layer):



def init(self,
node_in_dim,
node_out_dim,
kernel_initializer='glorot_uniform',
use_bias=True,
activation=None,
**kwargs):
self.node_in_dim = node_in_dim
self.node_out_dim = node_out_dim
self.kernel_initializer = 
kernel_initializer
self.use_bias = use_bias
self.activation = activation
super(GraphConvolution, 
self).init(**kwargs)

def build(self, input_shape):
    self.E = 
self.add_weight(shape=(self.node_out
_dim, self.node_out_dim),
                             initializer='uniform',
                             trainable=True,
                             name='E')
    self.V = 
self.add_weight(shape=(self.node_in_
dim, self.node_out_dim),
                             initializer='uniform',
                             trainable=True,
                             name='V')
    self.W = 
self.add_weight(shape=(self.node_out
_dim, self.node_out_dim),
                             initializer='uniform',
                             trainable=True,
                             name='W')
    self.b = 
self.add_weight(shape=(self.node_out
_dim,),
                             initializer='uniform',
                             trainable=True,
                             name='b')



    super(GraphConvolution, 
self).build(input_shape)

def call(self, inputs):
    x, a = inputs
    a_hat = 
K.repeat_elements(K.sum(a, axis=1, 
keepdims=True), 
rep=self.node_out_dim, axis=-1)
    a = K.transpose(K.transpose(a) / 
a_hat)
    z = K.dot(x, self.V)  # shape = 
(batch_size, max_seq_len, 
node_out_dim)
    # z2 = K.dot(x, self.V)  # shape = 
(batch_size, max_seq_len, 
node_out_dim)
    # z = K.batch_dot(a, x, axes=[2, 1])  
# shape = (batch_size, max_seq_len, 
node_out_dim)
    r_bar = K.dot(K.dot(K.transpose(a), 
z), self.W)  # shape = (batch_size, 
max_seq_len, node_out_dim)
    r_hat = K.softmax(r


