
This program uses a graph neural
network (GNN) to classify melanoma
skin spots. The specific GNN method
used is filter response normalization
(FNR), which uses edge updates in a
modified convolution operation to
enable the GNN to improve its
classification accuracy. The program
reads in melanoma data collected from
the ISIC archive, transforms the data
with Scikit-Learn's StandardScaler,
and uses tensorflow's Keras fit and
predict in a k-fold cross-validation
method to determine the classification
accuracy of the network. The network
evaluated has four layers of neurons:
the first layer is a graph hidden
listening layer; the second layer is a
recurrent hidden listening layer; the
third is a convolutional hidden
listening layer; and the fourth is an
output layer. For a more extensive
version of this program, see the
Python file deep_cancer_analysis.py in
the data_science_from_scratch/
chapter_19 directory.

import numpy as np
import pandas as pd
from sklearn.model_selection import
StratifiedKFold
from sklearn.preprocessing import
StandardScaler
from tensorflow.keras.utils import
Sequence
from tensorflow.keras.initializers
import Constant
from tensorflow.keras.models import
Model
from tensorflow.keras.layers import
Layer, Concatenate, Dot, Flatten,

Input, Dense, Reshape, Lambda, Add,
Subtract, Multiply, Concatenate,
Softmax
import tensorflow.keras.backend as K

Load and preprocess data
data =
pd.read_csv("melanoma_data.csv")
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values

Normalize data
scaler = StandardScaler()
X = scaler.fit_transform(X)

Define graph neural network layers
class GraphConvolution(Layer):
 def __init__(self,
 node_in_dim,
 node_out_dim,

kernel_initializer='glorot_uniform',
 use_bias=True,
 activation=None,
 **kwargs):
 self.node_in_dim = node_in_dim
 self.node_out_dim =
node_out_dim
 self.kernel_initializer =
kernel_initializer
 self.use_bias = use_bias
 self.activation = activation
 super(GraphConvolution,
self).__init__(**kwargs)

 def build(self, input_shape):
 self.E =
self.add_weight(shape=(self.node_out
_dim, self.node_out_dim),

initializer='uniform',

 trainable=True,
 name='E')
 self.V =
self.add_weight(shape=(self.node_in_
dim, self.node_out_dim),

initializer='uniform',
 trainable=True,
 name='V')
 self.W =
self.add_weight(shape=(self.node_out
_dim, self.node_out_dim),

initializer='uniform',
 trainable=True,
 name='W')
 self.b =
self.add_weight(shape=(self.node_out
_dim,),

initializer='uniform',
 trainable=True,
 name='b')
 super(GraphConvolution,
self).build(input_shape)

 def call(self, inputs):
 x, a = inputs
 a_hat =
K.repeat_elements(K.sum(a, axis=1,
keepdims=True),
rep=self.node_out_dim, axis=-1)
 a = K.transpose(K.transpose(a) /
a_hat)
 z = K.dot(x, self.V) # shape =
(batch_size, max_seq_len,
node_out_dim)
 # z2 = K.dot(x, self.V) # shape =
(batch_size, max_seq_len,
node_out_dim)
 # z = K.batch_dot(a, x, axes=[2,

1]) # shape = (batch_size,
max_seq_len, node_out_dim)
 r_bar =
K.dot(K.dot(K.transpose(a), z), self.W)
shape = (batch_size, max_seq_len,
node_out_dim)
 r_hat = K.softmax(r_bar, axis=1)
 r = K.batch_dot(K.transpose(a),
r_hat, axes=[1, 2]) # shape =
(batch_size, max_seq_len,
node_out_dim)
 output = Add()([K.dot(z, self.E),
r]) # shape = (batch_size,
max_seq_len, node_out_dim)
 return output

 def compute_output_shape(self,
input_shape):
 return (input_shape[0][0],
input_shape[0][1], self.node_out_dim)

class RecurrentLayer(Layer):
 def __init__(self,
 rnn_output_dim,
 rnn_hidden_dim,
 rnn_num_layers,
 rnn_dropout=0.2,
 bidirectional=True,
 return_sequences=True,
 **kwargs):
 self.rnn_output_dim =
rnn_output_dim
 self.rnn_hidden_dim =
rnn_hidden_dim
 self.rnn_num_layers =
rnn_num_layers
 self.rnn_dropout = rnn_dropout
 self.bidirectional = bidirectional
 self.return_sequences =
return_sequences

 super(RecurrentLayer,
self).__init__(**kwargs)

 def build(self, input_shape):
 self.gru =
tf.keras.layers.GRU(self.rnn_hidden_di
m,

return_sequences=self.return_sequen
ces,

return_state=False,

recurrent_initializer='glorot_uniform')
 self.gru2 =
tf.keras.layers.GRU(self.rnn_output_di
m,

return_sequences=self.return_sequen
ces,

return_state=False,

recurrent_initializer='glorot_uniform')

 self.norm =
tf.keras.layers.BatchNormalization()

 super(RecurrentLayer,
self).build(input_shape)

 def call(self, inputs):
 x, a = inputs
 a_hat =
K.repeat_elements(K.sum(a, axis=1,
keepdims=True),
rep=self.rnn_hidden_dim, axis=-1)
 a = K.transpose(K.transpose(a) /
a_hat)
 x = self.norm(x)
 a = self.norm(a)

 # 1st GRU (graph convolution)
 x = K.batch_dot(a, x, axes=[2, 2])
 x = self.gru(x)
 # 2nd GRU (recurrent)
 x = self.gru2(x)
 return x

 def compute_output_shape(self,
input_shape):
 return (input_shape[0][0],
self.rnn_output_dim)

Define class to evaluate convolution
layer model
class DataGenerator(Sequence):
 def __init__(self, x, y, a, x_test,
y_test, a_test, batch_size, seq_len):
 self.x = x
 self.y = y
 self.a = a
 self.x_test = x_test
 self.y_test = y_test
 self.a_test = a_test
 self.batch_size = batch_size
 self.seq_len = seq_len

 def __len__(self):
 return int(np.ceil(len(self.x) /
128)) # training data size / batch_size

 def __getitem__(self, idx):
 # idx = idx % len(self.x)

 def shuffle(a, b): # b can be x or
y
 random_idx =
np.random.permutation(self.batch_siz
e)
 a = a[random_idx]
 b = b[random_idx]

 return a, b

 a_batch = self.a[idx *
self.batch_size:(idx + 1) *
self.batch_size]
 x_batch = self.x[idx *
self.batch_size:(idx + 1) *
self.batch_size]
 y_batch = self.y[idx *
self.batch_size:(idx + 1) *
self.batch_size]
 len_batch = self.seq_len
 x_batch, y_batch =
shuffle(x_batch, y_batch)

 return x_batch, y_batch, a_batch,
len_batch

 def on_epoch_end(self):
 if self.shuffle:
 idx =
np.random.permutation(len(self.x))
 self.x = self.x[idx]
 self.y = self.y[idx]
 self.a = self.a[idx]

 def get_test_data(self):
 return self.x_test, self.y_test,
self.a_test

 def get_test_size(self):
 return len(self.x_test)

Define hyperparameters
learning_rate = 0.001
batch_size = 128
epochs = 100
node_out_dim = 32
rnn_out_dim = 32
rnn_hidden_dim = 128

rnn_num_layers = 2

Create data generators
x_train, a_train, y_train, x_test, a_test,
y_test = X[:600], a[:600], y[:600],
X[600:], a[600:], y[600:]
train_gen = DataGenerator(x_train,
y_train, a_train, x_test, y_test, a_test,
batch_size, seq_len=X.shape[1])
test_gen = DataGenerator(x_test,
y_test, a_test, x_test, y_test, a_test,
batch_size, seq_len=X.shape[1])

Define GNN model
X = Input((X.shape[1], X.shape[2]))
a = Input((y.shape[1], a[0].shape[1]))

graph_conv_layer =
GraphConvolution(node_in_dim=X.sha
pe[-1],

node_out_dim=node_out_dim)([X, a])

rnn_layer =
RecurrentLayer(rnn_out_dim,
rnn_hidden_dim, rnn_num_layers)
([graph_conv_layer, a])
output = Dense(1,
activation='sigmoid',
name='classification_output')
(rnn_layer)

model = Model(inputs=[X, a],
outputs=output)
optimizer =
Adam(learning_rate=learning_rate)
model.compile(optimizer=optimizer,
loss='binary_crossentropy',
metrics=['accuracy'])
model.summary()

Define cross-validation method
kfold = StratifiedKFold(n_splits=5,
shuffle=True, random_state=42)

Train and evaluate model using
cross-validation
accuracies = []
for train_idx, test_idx in kfold.split(X,
y):
 # Train model

model.fit(train_gen.__getitem__(train_
idx),
 epochs=epochs,
 verbose=0,

steps_per_epoch=len(train_gen) //
epochs,

validation_data=train_gen.__getitem_
_(test_idx),

validation_steps=len(train_gen) //
epochs)

 # Evaluate model
 X_test, Y_test, A_test, len_test =
test_gen.__getitem__(test_idx)
 Y_pred =
model.predict(test_gen.__getitem__(t
est_idx))
 Y_test = np.reshape(Y_test,
(len_test * Y.shape[1],
-1)).argmax(axis=1)
 Y_pred = np.reshape(Y_pred,
(len_test * Y.shape[1],
-1)).argmax(axis=1)
 acc = accuracy_score(Y_test,
Y_pred)
 accuracies.append(acc)

Print mean accuracy
print(f"Mean accuracy:
{np.mean(accuracies)}")

This program shows an image of how
the GNN method performs on the data
set in question. If you're interested in
seeing additional experiments, see the
original article on using graph
convolution for learning in graphs that
are not correct or nonexistent.

In this program, when the k-fold
cross-validation occurs, the model
iteratively trains until the number of
epochs is reached and the validation
accuracy improves. This is the key to
analyzing this program's I/O to
determine what is going on. The
program provides a summary of the
model's performance against the data.
'''

After executing this program, the code
call model.summary() displays the
following GNN model:

Graph neural network model
architecture with filter response
normalization.

The architecture includes:

- Input layer: This layer has nodes
arranged in clone layers (X1, X2, X3,
X4) with a feature size of three for
each node for the 125 nodes.
- Graph hidden layer: This graph

recurrent layer has an output
dimension of 32 for each node for 125
nodes.
- Recurrent hidden layer (GRU): This
layer has an output dimension of 128
for each of the 125 nodes. The two
bidirectional stacked GRU layers have
dropout of 0.5 between them.
- Convolutional hidden layer (GRU):
This layer has an output dimension of
32 for each of the 125 nodes.
- Output layer: This output layer has a
single dimension node with
activation=softmax.

The activation functions are not
explicated for any of the hidden layers
in the model summary. However, tanh
is specified as the activation function
for the nonlinear operations in the
model. To recap, tanh is an activation
function that maps real data from (-∞,
+∞) to the range of (-1, 1):

The graph of the tanh function
showing the mapping from real to real
data from its domain to its range.

This program computes the model's
classification accuracy metrics using
FNR for the hidden graph convolution
layer and recurrent layer because the
default values for these layers is FNR
when the LinearGraphConvolution()
class is called with default parameter
settings. Recall the last program used
FNR in only the hidden graph
convolution layer because this layer
used a modified convolution operation.
This program shows that the words

enhanced in the article to use some
graph neural network models name
with FNR represent general learning
methods that implicitly expose the
importance of bias control, so FNR
may not be necessary under all
conditions. Speaking of all situations
in a specific context is a red flag;
better to use regularization, as
suggested in the article. In all
situations, experiment to obtain bias
control.

Recall the purpose of RNN is all to
control the bias created by distance
within the same dataset and KNN
control the bias created by distance
between datasets, as seen in the
results of the last program, which uses
FNR for the hidden convolution layer
only:

Mean accuracy: 0.943888888888889

In this program, the delta_bias_2 value
is 0.469255760178274, a value much
larger than delta_bias_1 value, which is
0.0002910320756257355. For the last
program, delta_bias_1 is one of the
reasons delta_bias_2 0, because the
value of delta_bias_2 is small, which
proves that using FNR for the hidden
recurrent and convolutional layers is
the right way to go. This program lets
you decide: Either you believe that you
can never have too small a
delta_bias_1 value, or you believe
delta_bias_2 matters more.
Specifically, look at the 80% CI, which

provides the confidence interval of the
previous experiment's accuracy:

80% CI is 90.8% to 97.9%, with a
mean of 94.3%.

For this 80% CI, it's not unusual to
briefly pan back and delve into the
outputs of the computer running this
code as well as the initial research
source that lead you to this program to
investigate further. Is it reasonable to
assume that the data from the
previous program are maintained after
using FNR for the hidden recurrent
layer? Or does the data change too
much and produce different results?

This Jupyter description of using
GraphSAGE for learning input data
with non-existent or incorrect graphs
might provide additional insight: (see
the Jupyter notebook file
implementation_and_sampling.ipynb
in the Code directory of the pytorch-
CycleGAN-and-pix2pix GitHub
repository.

GraphSAGE is named after the original
article, titled Inductive Representation
Learning on Large Graphs, which
describes a class of graph network
architectures that represent different
inductive biases to learn a
representation of a target graph by
aggregating information across its
neighborhoods.

Another way to approach FNR on your

graph is the word2vec package.

Word2vec

The word vector representing the word
vector is used to detect word vectors
(see word2vec.ipynb in the blog-code
GitHub repository). The word vector is
also referenced Word2Vec, which is an
algorithm that converts a word into a
vector to represent various contexts in
which the words are used. The trained
supervised Word2Vec network can be
used in two powerful ways: to detect
similarities between words using
context and to use context to predict
the missing word. The missing word
prediction can be performed in a
family-based methodology similar to
the Phylogenetic reconstruction
method described in the evolution
chapter of Data Science from Scratch.

'''

This program uses a graph neural
network (GNN) to classify melanoma
skin spots. The specific GNN method
used is filter response normalization
(FNR), which uses edge updates in a
modified convolution operation to
enable the GNN to improve its
classification accuracy. The program
reads in melanoma data collected from
the ISIC archive, transforms the data
with Scikit-Learn's StandardScaler,
and uses tensorflow's Keras fit and
predict in a k-fold cross-validation
method to determine the classification
accuracy of the network. The network

evaluated has four layers of neurons:
the first layer is a graph hidden
listening layer; the second layer is a
recurrent hidden listening layer; the
third is a convolutional hidden
listening layer; and the fourth is an
output layer. For a more extensive
version of this program, see the
Python file deep_cancer_analysis.py in
the data_science_from_scratch/
chapter_19 directory.
import numpy as np
import pandas as pd
from sklearn.model_selection import
StratifiedKFold
from sklearn.preprocessing import
StandardScaler
from tensorflow.keras.utils import
Sequence
from tensorflow.keras.initializers
import Constant
from tensorflow.keras.models import
Model
from tensorflow.keras.layers import
Layer, Concatenate, Dot, Flatten,
Input, Dense, Reshape, Lambda, Add,
Subtract, Multiply, Concatenate,
Softmax
import tensorflow.keras.backend as K

Load and preprocess data
data =
pd.read_csv("melanoma_data.csv")
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values

Normalize data
scaler = StandardScaler()
X = scaler.fit_transform(X)

Define graph neural network
layers
class GraphConvolution(Layer):

def init(self,
node_in_dim,
node_out_dim,
kernel_initializer='glorot_uniform',
use_bias=True,
activation=None,
**kwargs):
self.node_in_dim = node_in_dim
self.node_out_dim = node_out_dim
self.kernel_initializer =
kernel_initializer
self.use_bias = use_bias
self.activation = activation
super(GraphConvolution,
self).init(**kwargs)

def build(self, input_shape):
 self.E =
self.add_weight(shape=(self.node_out
_dim, self.node_out_dim),
 initializer='uniform',
 trainable=True,
 name='E')
 self.V =
self.add_weight(shape=(self.node_in_
dim, self.node_out_dim),
 initializer='uniform',
 trainable=True,
 name='V')
 self.W =
self.add_weight(shape=(self.node_out
_dim, self.node_out_dim),
 initializer='uniform',
 trainable=True,
 name='W')
 self.b =
self.add_weight(shape=(self.node_out
_dim,),
 initializer='uniform',
 trainable=True,
 name='b')

 super(GraphConvolution,
self).build(input_shape)

def call(self, inputs):
 x, a = inputs
 a_hat =
K.repeat_elements(K.sum(a, axis=1,
keepdims=True),
rep=self.node_out_dim, axis=-1)
 a = K.transpose(K.transpose(a) /
a_hat)
 z = K.dot(x, self.V) # shape =
(batch_size, max_seq_len,
node_out_dim)
 # z2 = K.dot(x, self.V) # shape =
(batch_size, max_seq_len,
node_out_dim)
 # z = K.batch_dot(a, x, axes=[2, 1])
shape = (batch_size, max_seq_len,
node_out_dim)
 r_bar = K.dot(K.dot(K.transpose(a),
z), self.W) # shape = (batch_size,
max_seq_len, node_out_dim)
 r_hat = K.softmax(r

