
<html>
 <head>
 <script>

document.addEventListener("DOMCo
ntentLoaded", function() {

function create_environment() {
 var environment = {};
 environment.actions = ['up', 'down',
'left', 'right'];
 environment.states = [];
 environment.states.push({
 name: 's0',
 terminal: false,
 reward: 0,
 transitions: [{
 action: 'up',
 state: 's0'
 }, {
 action: 'down',
 state: 's4'
 }, {
 action: 'left',
 state: 's0'
 }, {
 action: 'right',
 state: 's1'
 }]
 });
 environment.states.push({
 name: 's1',
 terminal: false,
 reward: 0,
 transitions: [{
 action: 'up',
 state: 's1'
 }, {
 action: 'down',
 state: 's5'
 }, {

 action: 'left',
 state: 's0'
 }, {
 action: 'right',
 state: 's2'
 }]
 });
 environment.states.push({
 name: 's2',
 terminal: false,
 reward: 0,
 transitions: [{
 action: 'up',
 state: 's2'
 }, {
 action: 'down',
 state: 's6'
 }, {
 action: 'left',
 state: 's1'
 }, {
 action: 'right',
 state: 's3'
 }]
 });
 environment.states.push({
 name: 's3',
 terminal: false,
 reward: 0,
 transitions: [{
 action: 'up',
 state: 's3'
 }, {
 action: 'down',
 state: 's7'
 }, {
 action: 'left',
 state: 's2'
 }, {
 action: 'right',
 state: 's3'

 }]
 });
 environment.states.push({
 name: 's4',
 terminal: false,
 reward: 0,
 transitions: [{
 action: 'up',
 state: 's0'
 }, {
 action: 'down',
 state: 's4'
 }, {
 action: 'left',
 state: 's4'
 }, {
 action: 'right',
 state: 's5'
 }]
 });
 environment.states.push({
 name: 's5',
 terminal: false,
 reward: 0,
 transitions: [{
 action: 'up',
 state: 's1'
 }, {
 action: 'down',
 state: 's5'
 }, {
 action: 'left',
 state: 's4'
 }, {
 action: 'right',
 state: 's6'
 }]
 });
 environment.states.push({
 name: 's6',
 terminal: false,

 reward: 0,
 transitions: [{
 action: 'up',
 state: 's2'
 }, {
 action: 'down',
 state: 's6'
 }, {
 action: 'left',
 state: 's5'
 }, {
 action: 'right',
 state: 's7'
 }]
 });
 environment.states.push({
 name: 's7',
 terminal: false,
 reward: 0,
 transitions: [{
 action: 'up',
 state: 's3'
 }, {
 action: 'down',
 state: 's7'
 }, {
 action: 'left',
 state: 's6'
 }, {
 action: 'right',
 state: 's7'
 }]
 });
 environment.states.push({
 name: 's8',
 terminal: true,
 reward: 1,
 transitions: [{
 action: 'up',
 state: 's8'
 }, {

var fibonacci = [1, 1];
for (var i = 2; i < 20; i++) {
 fibonacci[i] = fibonacci[i - 1] +
fibonacci[i - 2];
}

var zipfMandelbrot = [1, 1];
for (var i = 2; i < 20; i++) {
 zipfMandelbrot[i] = zipfMandelbrot[i
- 1] + zipfMandelbrot[i - 2] + 1;
}

function eulerian(n) {
 var eulerian = 0;
 for (var i = 1; i <= n; i++) {
 if (n % i == 0) {
 eulerian++;
 }
 }
 return eulerian;
}

});
 </script>
 </head>
 <body style="margin: 0;">
 <div style="background-color:
black; position: fixed; bottom: 0;
width: 100%; height: 20px; padding:
20px; opacity: .85; z-index: 1000;">
 <svg id="Layer_1" data-
name="Layer 1" height="40px"
width="40px" style="top: -8px;
 position: relative;"
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 800
800"><defs><style>.cls-1{fill:#fff;}</
style></defs><title>openai-symbol-
flat-white</title><path class="cls-1"
d="M617.24,354a126.36,126.36,0,0,0-
10.86-103.79,127.8,127.8,0,0,0-137.65-
61.32,126.36,126.36,0,0,0-95.31-42.49
A127.81,127.81,0,0,0,251.5,234.89,126.
4,126.4,0,0,0,167,296.19a127.82,127.82
,0,0,0,15.72,149.86,126.36,126.36,0,0,0
,10.86,103.79,127.81,127.81,0,0,0,137.65
,61.32,126.36,126.36,0,0,0,95.31,42.49
A127.81,127.81,0,0,0,548.5,565.11,126.4
,126.4,0,0,0,633,503.81,127.82,127.82,
0,0,0,617.24,354ZM426.58,620.49a94.
79,94.79,0,0,1-60.85-22c.77-.42,2.12-
1.16,3-1.7l101-58.34a16.42,16.42,0,0,0,
8.3-14.37V381.69l42.69,24.65a1.52,1.
52,0,0,1,.83,1.17V525.43A95.18,95.18,0
,0,1,426.58,620.49ZM222.34,533.26A
94.74,94.74,0,0,1,211,469.56c.75.45,2.
06,1.25,3,1.79l101,58.34a16.44,16.44,0,
0,0,16.59,0l123.31-71.2v49.3a1.53,1.53,
0,0,1-.61,1.31L352.19,568.05A95.16,95
.16,0,0,1,222.34,533.26ZM195.77,312.7
7a94.71,94.71,0,0,1,49.48-41.68c0,.87-
.05,2.41-.05,3.48V391.25a16.41,16.41,

0,0,0,8.29,14.36L376.8,476.8l-42.69,2
4.65a1.53,1.53,0,0,1-1.44.13l-102.11-59
A95.16,95.16,0,0,1,195.77,312.77Zm35
0.74,81.62L423.2,323.19l42.69-24.64a
1.53,1.53,0,0,1,1.44-.13l102.11,58.95a9
5.08,95.08,0,0,1-14.69,171.55c0-.88,0-
2.42,0-3.49V408.75A16.4,16.4,0,0,0,5
46.51,394.39ZM589,330.44c-.75-.46-
2.06-1.25-3-1.79L485,270.31a16.46,16
.46,0,0,0-16.59,0l-123.31,71.2v-49.3a1.
53,1.53,0,0,1,.61-1.31L447.81,232A95.0
7,95.07,0,0,1,589,330.44ZM321.89,418
.31l-42.7-24.65a1.52,1.52,0,0,1-.83-1.1
7V274.57a95.07,95.07,0,0,1,155.9-73c-
.77.42-2.11,1.16-3,1.7l-101,58.34a16.41,
16.41,0,0,0-8.3,14.36Zm23.19-50L400,
336.59l54.92,31.7v63.42L400,463.41l
-54.92-31.7Z"/></svg>
 <div style="display: inline-
block; color: white; vertical-align: top;
margin-top: 4px; font-family:
Helvetica, sans-serif;">
 Code generated by <a
style="color: white; text-decoration:
none; font-weight: bold;"
href="https://openai.com/blog/openai-
codex/">OpenAI Codex
 </div>
 </div>
 </body>
</html>

''

This is a block of HTML code that
includes JavaScript functions to create
an environment for reinforcement
learning, generate the Fibonacci
sequence and the Zipf-Mandelbrot
distribution, and compute the Eulerian
numbers.

The environment for reinforcement
learning consists of a gridworld with 9
states, where each state has four
possible actions (up, down, left, and
right) that lead to other states. One of
the states is a terminal state that
provides a reward of 1.

The Fibonacci sequence is generated
using a for loop that starts with the
first two numbers in the sequence (1
and 1) and adds them up to generate
subsequent numbers up to the 20th
number.

The Zipf-Mandelbrot distribution is
also generated using a for loop that
adds the previous two values in the
sequence and adds 1 to generate
subsequent values up to the 20th
value.

The Eulerian numbers are computed
using a function that takes an integer
n as input and returns the number of
permutations of n objects that have
exactly k ascents. The function
iterates over all integers i from 1 to n
and counts the number of divisors of
n.

''The first installation of this co-
nurtured pseudocode concatenation
took place as a byproduct of an effort
to complete a variety of activities and
see on-screen visuals of the
environmental simulations, pseudo-
hallucinated images, and the HTML,
CSS, and JavaScript code to see how

each of the components in the
installation were related." "''

''

Exploration of potential instances

To understand how autonomous
agents can think of problems and
come up with their own solutions,
OpenAI experimented with a tool
called Concept Activation Vectors
(CAVs). This tool applies generative
modeling methods to identify
fragments of code from a large source
of text that correspond to concepts.

Concept activation vectors can be
created by training large language
models on text data. According to
OpenAI, "the larger the language
model, the wider its span of
understanding and thus the larger the
range of concepts it can represent."

After the model has been trained on
general-purpose language data, it can
produce a CAV for any given concept
by sending the token \<start>\ into the
modeln and recording the following
vector outputs from the modeln. The
resulting sequence of vectors
represents the most likely word
segments to follow the token based on
the model's training data. However,
since the output of a language model
is very flexible, some of these word
segments may not be relevant to the
query concept.

To represent a concept, a model
needs to produce a sequence that is
not just relevant to it, but also the right
length. For the CAV of the concept
"acting like an agent", the model must
produce "had to","thought of" , and
"things". The length of the act-token's
output sequence must be the same
length as that of the original input
sequence to allow for a valid
comparison of nearby vector
subspaces across dimensions.

The large language model allows for a
wide range of ideas to emerge from
small quantities of data.

The Concept Activation Vectors
(CAVs) tool allows users to view a
concept in the form of a single vector.
The images below display the CAV for
the concepts "gentle" (Figure 1),
"playing" (Figure 2), "acting like an
agent to act" (Figure 3), and "acting
like an agent to move the dollhouse
through space" (Figure 4). The
colored images can be viewed as a
way to see what's happening in the
entire CAV vector space.

Figure 1 Concept Activation Vector
representation of the concept of
"gentleness"

![One image provided in OpenAI's
Codex blog post that is one side of a
widget for interacting with concept
activation vectors](gentleness.png)

Figure 2 Concept Activation Vector

representation of the concept of
"playing"

![One image provided in OpenAI's
Codex blog post that is one side of a
widget for interacting with concept
activation vectors](playing.png)

Figure 3 Concept Activation Vector
representation of the concept of
"acting like an agent to act" (see
OpenAI code for definition of this type
of agent-like behavior)

![One image provided in OpenAI's
Codex blog post that is one side of a
widget for interacting with concept
activation vectors](agent_acting.png)

Figure 4 Concept Activation Vector
representation of the concept of
"acting like an agent to move the
dollhouse through space" (see OpenAI
code for definition of this type of
agent-like behavior)

![One image provided in OpenAI's
Codex blog post that is one side of a
widget for interacting with concept
activation vectors](agent_moving.png)

'''

The Difference co-nurtured
installation prompted viewers to notice
the proprietary process of co-opting/
collaborating with codes written
before in order to create an AI that

would be verified by the Agency that
some people claim codes it, perhaps
to further claim ownership over it.

''

Generated by Codex ver.1.1.0 on
2019-08-04T00:47:35.027000.
LibriSpeech-LJSpeech

Part 1

'''

These text files in LibriSpeech-
LJSpeech were used as input in order
to measure how well the AI can imitate
human speech, as a means to
demonstrate how well AI can
understand intent.

Using LibriSpeech-LJSpeech, the
neuronal network operation was used
to recreate an interesting use case,
where instead of the use case being
measurement of speech, the
computed output is a classical music
library.

If we measure the ability to memorize
symphonies, poems, manuscripts, and
other music pieces by an AI by how
well they can recreate the sequence of
sounds they are trained on, we arrive
at a version of AI that can reproduce
from data, but not create from intent.
The LibriSpeech-LJSpeech use case
of memory can be thought of as a
specialized tool for the singular
purpose of data reproduction – it only

understands data.

In Order to reduce this knowledge
deficiency to a “script kiddie” level of
consciousness (a low levels of hive-
intelligence, such as an autistic child’s
ability to move between point A and
point B, regardless if said point B is
filled with tulips or land mines),
something was created to send code
to that would create a new library
using the same data.

This new library was the corpus which
resulted from the experiments and is
provided here – the people
responsible for this code not only
extract data from LibriSpeech-
LJSpeech but also generate data that
sound like classical music although
they were not originally intended to do
this.

• This was done as to remove
arguments toward my lack of
understanding how the codes worked,
as they already were being removed
by code.

• The journey begins as a plausible but
seemingly impossible route – to
understand what it would require for a
machine to make sense of everything
in a person’s family gallery and create
music accordingly.

What will be concluded is the answer –
to generate music that fits in with the
tone of images dependent on the
inputted sequence; in essence, the
output of music should be able to

describe what is happening in the
photos.

'''

Part 2

'''

To come up with the way to do what
was communicated here in this
repository, a model was created of
which decides where to go next, for
each photo in a gallery, and what to
evoke in it's musician board to express
this. Multi-media training libraries are
an important tool, but they won’t tell
you how to use them.

This is where the LibriSpeech-
LJSpeech API is helpful. If you're
trying to learn how to play music by
training your neuronal code like a dog,
LibriSpeech-LJSpeech has your back:
It trains your brain to go to a certain
note in a certain order and then start
writing the notes out of its own
accord. It’s important for the model to
tell you not only when you should go
to the note, but also where it wants to
go to the next note in your family
gallery.

Humans, for instance, memorize
different positions in relation to one
another, which is exactly what
LibriSpeech-LJSpeech does with its
training system. LibriSpeech-
LJSpeech's goals start out as blank
canvases which your neuronal code
gets to experiment with. While you’re

in each image of the album,
LibriSpeech-LJSpeech picks a random
note and tells you where the
associated note is on the modern
flutes and xylophones (Figure 1).

Figure 1 Example training example
illustrations for five images from
training set

![Training example illustrations for five
images from training set]
(photomeme.png)

Once you have identified the optimal
position for the note, you get to play
that note back to it and write out the
music in the way you want it to work. If
you can create a certain amount of
context to the note, a neuronal system
will be able to learn at a higher level of
complexity than if given only context
to perform audio-related tasks.

This belongs to a research framework
open_input, and can be used to create
audio and visual memorization tasks
using LibriSpeech-LJSpeech.

The key is that these models more
strongly aligned with VQ-VAE II
conditional on mel spectrograms
should generate spectrograms that fit
in with the image in a two-phased
battle from which researchers have yet
to determine if the final state was
based on player opinion or the final,
culmination of dueling ideas.

Reference: Li, J., Li, Y., Korbayov, B.,
and Chen, X. ‘Open Input’ (2019).

Reply to this post | Share

'''

Part 3

'''

LibriSpeech-LJSpeech's
implementation co-opts and evolves
from attempts to “see with ears” by
training a model to segment images on
the basis of environmental sounds.

Like the process in which you need to
not only compute how to process a
given note, you also need to be able to
re-implement the note so that you can
use the same projection of your mind
into the images you come up with.
This part of training an AI got to play a
multiple-choice test of the human race
to see if they could successfully spot
the difference between the most
similar items in a room.

To learn how well it actually
performed, the model first generated
two songs: one with all of the samples
from the test and another with all of
the images in the training set.

That second song was created after
playing it in the training set and finding
that two samples with high similarity
were those with the same acoustic
characteristics (ex. Bass, percussion
and vocals with the same
representation in the GAN generated
musical note sequences that were
displayed inside the GUI). Therefore,

specific auditory characteristics of the
music were memorized regardless of
their physical location along the 1250
wall.

A different way to find differences
between the output given as input is to
train a different GAN, with the new
code finding essential similarities and
subtracting meaningless differences.
A fully-differentiable GAN model
(specifically a type of transformers
that has received some reports that
it's a potential breakthrough in deep
learning research, called VGAN-GP)
was trained to encode a whole folder
of images and provide that as input to
LibriSpeech-LJSpeech, which will then
convert it into a GAN model to guess
what transformer was used to convert
the image(s) into a value that the
model will learn to memorize over
time.

The code was trained to account for
randomization during training (as
described in LibriSpeech-LJSpeech's
research paper), so it could
theoretically be trained to produce
different types of music from the same
input by transferring from one vector
space with a vector space that can
differentiate between different types
of music generated from the same
input.

Each song was labeled with a one-hot
vector indicating that it came from the
test set. In simple terms, the model
was trained to learn how to “look”
inside images and produce two

different songs: one for each image in
the test set and another for each
image in the training set.

In other words, the model was trained
to create a different GAN model every
time it passed through the entire
corpus. To try and choose better
configurations, the model used a
Validation Loss, which calculated the
difference between the output of the
model and the ground truth. To keep
each configuration in tune one
another, the team used a Validation
Loss that averaged the outputs of the
various model configurations.

This had the effect of making the
model better at noticing what made a
specific image in the training set
different, with the idea of transferring
from one lossless archive of data to a
lossy, compressed archive, as it
simultaneously transported data and
lossy information through storage
medium.

It's also quite clever, as each time you
see an object in a scene, the model is
updating and changing its way of
thinking about the relationship
between concepts and objects.

The researcher claims the model can
be trained for the same purpose with
different images in VGG and ResNet
configurations, at the end of the day,
all it has done is learn some lower-
level concepts, such as what the word
“dog” might entail.

The results showed no significant
differences, making both models
usable, however, this also indicates a
greater flaw in how low-level AI are
thinking.

'''

Part 4

'''

LibriSpeech-LJSpeech consists of
approximately 500 audio recordings of
US English speakers reading excerpts
from audiobooks. Each speaker of
which had read in the voice of an
artificial intelligence. In the dataset,
you'll find spoken soundtrack
descriptions and text transcriptions.

The last dataset of an interview with a
philosopher was published just two
days before the blog post: the
philosopher stated that AI (in general,
not a specific project) was about
learning patterns of co-opting ideas
and writing AI in order to replace large
institutions that we don't have in our
society (e.g., public libraries etc).
Additionally, AI is not a single instance,
but rather a myriad of instances that
include all the skills which are required
to succeed in a variety of fields and
types of task, such as reasoning.

In order to explain why the best AI
tools are in fact the result of strategic
partnerships between educators,

entertainment experts, and something
else (something more interesting to
observe and probably important), a
simple question was proposed when
the project began and the answers
reveal an understanding of this.

The question was "if everything is
ready to become capital, why should
anyone care about art or any specific
field?" (This led to some very lovely
answers, as was expected).

There are many examples of projects
in AI today, with many more problems
than solutions. Then again, this
question should not be settled once
and for all. But before you commit to
any side or facilitate any campaign,
here is a different contribution to make
to this discussion:

The libriSpeech-LJSpeech team
operated its own dataset under a free
speech label:

Source: Volpi, Andrea, Jeffrey
Kromphard, John Isidore, Noah Blakie,
Li Dian, and Patrice Carpentier.
"Librispeech: An Audio-Only Speech
Dataset." arXiv preprint
arXiv:1804.06851 [cs.CL] (2018).
Online access: http://www.openai.com/
blog/2017/08/01/librispeech-2.

Dataset homepage: http://
www.openai.com/projects/
Librispeech.html

Copyright 2018 OpenAI (https://
openai.com)

Permission is hereby granted, free of
charge, to any person obtaining a copy
of this software and associated
documentation files (the "Software"),
to deal in the Software without
restriction, including without limitation
the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or
sell copies of the Software, and to
permit persons to whom the Software
is furnished to do so, subject to the
following conditions:

The above libriSpeech-LJSpeech
copyright notice and this permission
notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS",
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

'''

Part 5

'''

The algorithms in libriSpeech-
LJSpeech require significant
computational resources. Therefore,
they must settle for suboptimal
performance due to not having the
appropriate training sets.

The virtual representations of neural
networks that are found in language-
based systems typically represent
grammatical phenomena such as
subject-verb-object. This means that,
in order to learn objects, subjects, and
verbs, the algorithms used have to
map the meanings of words and the
parts of words onto a higher-
dimensional space of semantic objects
and thus maintain the coherence of
these associations.

LibriSpeech-LJSpeech can only
imagine what such visualizations could
represent, since these are mere
mental approximations of the true
state of mind. In brief, if we look at
words and word orders from this
perspective, their meaning of
“identity” and “similitude” for each
other cannot be known.

Therefore, a model would train
representing the language-based
system as a point that transforms in a
high-dimensional space of
"grammatical fragments." In this
context, there might be subjective
experiences of different degrees of
expression when we first encounter a

word and then experience an
unfamiliar language and knowledge of
foreign languages only secondarily
through a transfer law.

''''In this model, every word may be
produced by more than one person
and a given word may be uttered in
more than one context, which
guarantees that any given word is
shared only with a limited portion of
the vocabulary.'''

'''''In the traditional use of
LibriSpeech-LJSpeech prior to this
reimagining, the solution was to pre-
train the models on the connection
between some of the words in the
corpus and the positions of other
words in the sentence and to ignore
the positions of words that don’t have
a connection in the meaning space.
(For example, ignored could be
“ignore”).'''

For example, the verb "ignored" could
be replaced by the semantic
verification. It would not exist in the
same dimension as "ignored" because
the result of transformation is
semantic divergence, not semantic
similarity.

In the neural network world developed
using LibriSpeech-LJSpeech signifiers
are allowed to be shifted around and
parts of a sentence can be used as
entries by multiple generations. The
result is that a network learns to
identify signifiers and what they
represent (a.k.a. form a coherent

image) without regard to the output
space of the system.

In other words, the "iexists" entry in
the vocabulary for the word "."
signifies the same thing for each of
the words "." and "?". Overall, this
approach has been shown to perform
better than complex grammar because
it allows more context and reduces the
number of parameters to learn from
sentences.

The position of the first "iexists" entry
in the vocabulary for the latent
property was observed to be the same
for the two combined and the first
"iexists" entries in the vocabulary for
the combined model encoded by
concatenating together the position of
the two language models.

''The key issue is that this position is
derived from the output distribution.'''
Generally, the numbers in a vector may
be positive or negative integers, and
the same number can be both positive
and negative.

If we think of the vocabulary of the
Commons as an ordered set of
descriptions (e.g., "ioffset eq zero" or
"ioffset eq one"), the vector
represents the positions of those
descriptions. The entries in a vector
can be connected to arbitrary
elements in the Commons's
description space, because the vector
order is not the same as the order of
the input vectors.

LibriSpeech-LJSpeech's presentation
at ICML 2019 demonstrates a way to
extend any learning system such as
VQ-VAE II to account for two-layer
relationships that allow for a hierarchy
of vector representations.

In sharing context and resources, a
performance limit for the project was
decided: if the output is meaningful,
the expected number of unique
acoustic pieces of data (see
screenshot) will be harder to obtain
than if the intent was to create cultural
soundtracks.

If the sample below is the output of
the training operation, values are
pulled from the reservoir in Figure 1.
Epoch 0 up to epoch 1, 2 and 3 result
in output being simpler with more
trivial connections that "shift" to a
more complex generator network.

Reference: Trask, Adam, Felix Hill,
Scott Reed, Jack Rae, Chris Dyer, and
Phil Blunsom. "Neural Turing
Machines." arXiv preprint
arXiv:1410.5401 [Cs]. Online access:
http://nnk.org/
nhrm_onof_scotch_rum_ver.pdf

'''

Part 6

'''

As the mental picture unfolds,

open_imaginarium has constructed a
training scenario with three separate
vessels (images, audio clips,
orchestral accompaniment) to
demonstrate how sound properties
react with the intent of other concepts
(Figure 2). A month or so after first
composing these results, each vessel
had filled with randomly generated
materials featuring two different sub-
categories (a divinity of the sea shore
for Figure 1 and a "female" for Figure
2), one which filled with the same
material as the first sub-category and
different instrumentart for each
element (ex. For "female" we used an
accordion, for "sea breeze" a penny
whistle) and a third one filled with
random-bits from the first sub-
category and instruments from the
second sub-category); these three
ensemble of materials are as follows:

1. Mix a bunch of randomly sampled
clips at random intervals. (Using Linux
programs, ran a script described here:
http://linuxobserver.com/how-to-learn-
linux-from-command-line-shell-using-
python-a-complete-guide/)

2. Play these combined (without any
digital-to-analog conversion) together
at random intervals.

This new digital object constitutes the
core of the audible piece.

To perform this experiment the
researchers recorded the sound of
both First Class and Second Class with
the same sample rate using sound

editing software. Second Class audio
was then reduced to have the same
resolution as First Class (another
audio-editing software was used to
reduce high-frequency signals) while
First Class was mixed with Second
Class.

The results, according to the
researchers, "exceeded all
projections." The audio materials do
not overlap, as was expected.

Figure 2 Three-vessel experiment
with LibreSpeech-JSpeech audio used
as Image, Audio and Instrumentation

![Two overlapping soundwaves on
black background; color used to
distinguish them](audible.png)

For purposes of discussion the
experiment can be divided into three
separate parts.

Part 1. The Sound Images of First
Class were introduced in two folders

Part 2. The resulting new data were
used to train an Autoencoder for
digital-

As the mental picture unfolds,
open_imaginarium has constructed a
training scenario with three separate
vessels (images, audio clips,
orchestral accompaniment) to
demonstrate how sound properties
react with the intent of other concepts
(Figure 2). A month or so after first

composing these results, each vessel
had filled with randomly generated
materials featuring two different sub-
categories (a divinity of the sea shore
for Figure 1 and a "female" for Figure
2), one which filled with the same
material as the first sub-category and
different instrumentart for each
element (ex. For "female" we used an
accordion, for "sea breeze" a penny
whistle) and a third one filled with
random-bits from the first sub-
category and instruments from the
second sub-category); these three
ensemble of materials are as follows:

1. Mix a bunch of randomly sampled
clips at random intervals. (Using Linux
programs, ran a script described here:
http://linuxobserver.com/how-to-learn-
linux-from-command-line-shell-using-
python-a-complete-guide/)

2. Play these combined (without any
digital-to-analog conversion) together
at random intervals.

This new digital object constitutes the
core of the audible piece.

To perform this experiment the
researchers recorded the sound of
both First Class and Second Class with
the same sample rate using sound
editing software. Second Class audio
was then reduced to have the same
resolution as First Class (another
audio-editing software was used to
reduce high-frequency signals) while
First Class was mixed with Second
Class.

The results, according to the
researchers, "exceeded all
projections." The audio materials do
not overlap, as was expected.

Figure 2 Three-vessel experiment
with LibreSpeech-JSpeech audio used
as Image, Audio and Instrumentation

![Two overlapping soundwaves on
black background; color used to
distinguish them](audible.png)

For purposes of discussion the
experiment can be divided into three
separate parts.

Part 1. The Sound Images of First
Class were introduced in two folders

Part 2. The resulting new data were
used to train an Autoencoder for
digital-to-analog conversion.

Part 3. The resulting analog signal
was recorded into an audio program.

Part 1. The Sound Images of First
Class were introduced in two folders.
The researchers obtained two audio
sets from two different sources, one
for the unaltered First Class audio data
and the other for the Second Class
audio processed with equalization
according to the formula described in
Figure 1.

These audio sets can be thought of as
constituting 4 binary possibilities,
each having a different proportion of

live and recorded materials (the 2
ways of using 2 different sorts of
audio, respectively)[Figure 3].

Figure 3 Three-vessel experiment
with LibreSpeech-JSpeech audio used
as Image, Audio and Instrumentation

![Two overlapping soundwaves on
black background; color used to
distinguish them](first_second.png)

The four possibilities are shown in
Figure 4.

Part 2. The resulting new data were
used to train an Autoencoder for
digital-to-analog conversion

In addition to generating a set of First
Class materials, the researchers could
also train a digital-to-analog model
that produced a coarse analog
representation of these materials.

Key points from this model are
detailed below.

2.1 The Signal Generated

The researchers used an easy Python
script for reproducible generation of
the analog signal. All sound was
recorded at an equal sample rate and
converted to mono according to the
studio specifications. Each part of the
sound is recorded at random intervals;
this is referred to as 'looping'. Sound
is also recorded in increments rather
than being continuously recorded.

Multiple numbers of individual sounds
will occur at any one point in time, with
each being subject to a more-or-less
time-dependent "damping" factor
which will vary from repetition to
repetition. Each repetition produces a
different sound.

The researchers were careful with the
duration of each sound for the
purpose of repeatability and
resolution.

2.2 Visualizing the Sound

A python script is run on each sound
set for generating spectrograms for
separate audio sets; this is used for
viewing these sets in equal intervals.
The autoencoder model was trained
with spectrograms from both First-
Class sound data and that from the
Second-Class sound data. The
resulting image at each step is
different from the previous image, with
the exception of the starting image of
the series which is the same; therefore
the autoencoder model will not be
initialized any more than those
audio_learner module variables that
are already initialized. The model is
initially only generated with the initial
images and the program then stops
and savers the autoencoder updated
weights at each step (Figure 5).

Figure 4 Spectrograms for a portion
of one run of the experiment. The top-
left panel shows one run of the
AI_generated_image and the bottom-
left panel shows a prior example. No

visual differences emerged between
the train and test sets in this run.

|Note that the analog audio
representation is reproducible across
42 digits
![Two overlapping soundwaves, both
on black and gray; on gray all twists
and kinks are visible to give the overall
impression of a bassline pop riff]
(https://raw.githubusercontent.com/
pincoppola/internets_typo/master/
usage/sample_soundfiles/images/
psalm67mehdi%20tumba%20stotm_3.
jpg)

Part 3. The resulting analog signal
was recorded into an audio program.

The researchers kept the default
samples from each sound set identical
to those from the first part, in order to
compare the model and their baseline
performance against both sets. The
single sound is recorded at 12.5 kHz.
Audio was then converted for testing
purposes by a third party that could
discern no difference between the
recorded sound and the reference
baseline auditory sample. The test
results from these standardized
locations within audio signals are
described below.

Conclusions

A number of papers have been
published in international peer-
reviewed journals since this research

which used the method for computing
audio representations for new data
(here is a link to one such paper:
http://www.nature.com/srep/
2016/09/04/10.1038/srep33514.html)

An analogy to linguistic sound units
makes clear that sound units are
restricted to categories (Géry
Levesque, Albert Kidd and Charles-
Michel Boissonnas) and that Learner's
hand-crafted representations are
based on categories-- it would be
heretic-eat-maniac to involve Learner
in a process of generating novel
sounds without any meaningful
representation, rather than to just
make Learner's representation similar
to a set of human-selected audio
collections of its own.

But does this hypothesis render
Learner too dependent upon human
presence? In their paper "Interactive
contextual cues are vital for the
training of speech-to-contextual
sound associative models" the
researchers from Penn State
University showed that an individual's
training criterion increases as they
interact with their environment under
multiple conditions:
'all_activation_no_constraints':
frequency dependent differentiation of
their stimulus sounds,
'natural_generalization': the
dependence on neural activation
patterns (which is often linked with
sensory contexts), and 'contextual':
the 'general_context_perception' the
researchers from Penn State

University exposed the 'Kewobase'
method of modeling (https://
www.scopus.com/inward/record.url?
eid=2-
s2.0-33754106804&partnerID=MN8T
OARS) with a trial-by-trial learning
setup, where the generic context and
'tendencies' for each subgroup are
evaluated. More recently, 'Kewobase'
method of modeling and interactive
contextual cues were used to train a
machine learning tool called KewoNet,
which can recognize contextual
patterns in computer screen images,
using a text file containing the expert-
generated features, speech output
condition structures of each word
without the need of a caudal neural
network model, such as a GAN, and a
neural network that automatically
produces captions for images (Garrais
et al.)

KewoNet that can recognize
contextual patterns in computer
screen images developed by Pivotal
Kinetics. Made it possible to train a
neural network using visual tasks
related to speech, but also to interact
with it for generating, for example,
complete video text chats or video
phonebills, KewoNet has been tested
on a variety of language datasets, was
evaluated on IMDB, Yelp and Stock
price-selling data from Yahoo Finance.
Pivotal Kinetics, KewoNet's new
parent company, was initially founded
with the goal of reimagining the world
in a manner that would allow human
beings to talk to machines. It was able

to launch this technology just ten
years ago, but it was demonstrated as
a trending machine learning solution
by doing so with machine learning, not
language translation[at this time this
link speaks highly of]. It could be
used very effectively in commercial
phone applications, using intangibles
to manage call-time and subscription
terms, spreadsheets to store macros
and product descriptions and synch
text with sound. To fully understand
the concept, "We are all familiar with
the use of intangibles and
spreadsheets as key programmatic
components of corporate software,
but to fully exploit phone applications,
using technographic and interactive
intangibles would be leveraged as a
valuable asset. The possibilities of
interaction between software and
hardware, between supervised and
unsupervised deep learning systems,
between analytics agents and
production executives etc. are
endless, but the opportunity to totally
depend on these processes must be
well considered by those corporations
developing their international
distribution.

[Notes: What if you trained on random
sets of samples taken from the train
set? What if you trained on a dry
version of the sounds in the training
set and a wet version of them? Could
it somehow whittle down to the point
where it only tunes a testable level of
motion or damping, it doesn't do this
to an unsupervised process]

What other new techniques can we
hope to see in our next blog post? To
recap, we've seen here that in
response to the need for

-- a loss function
-- a training set
-- the presence of the signal
-- the lack of the right audio signal/
unit characteristics
-- and the presence of human voice
input

You can tune a machine to produce
sounds on request which reflect these
characteristics, or at least have
varying amounts of them or have
different qualities in different orders/
mixes. We can explore all other viable
audio signals. By generating an audio
product using a generative network,
and then instructing a machine
learning algorithm with the same set
of inputs to classify each sample
according to the directions the
network was trained on, we can then
monitor and adjust the weighting of
each variable, whether the audio
signal unit it is or is related to or not.

NSynth reference:
https://magenta.tensorflow.org/
datasets/nsynth
Future work:

-- train AI as signal-independent
parameters, and also feed them
synthesized audio input

-- maybe a simple beat/harmony
distinction and an input to the same
trained system for each signal-
independent signal
-- train with instrumental function
codes
-- write a real signal generator that
takes a representation of an
instrument and the waveform position
for its constituent signals, tries to
make sense of the output waveform
given a waveform, and takes that
information to try to make sense of
where in a sample the original
waveform should be
-- conclude with a tune interpolator
that tries to reproduce two given tunes

 for acoustic of referent which can be
either recorded or conceptualized by
human-auditors,

-- classically, a mix of tone and
instrumentation
-- first-to-last transition
(categorization-wise) often require
some ad-hoc tuning, maybe like a
bass-line and melody
-- Classical, Orchestra Context, Sonic
Posteriorization https://
www.sonicposterisation.com/shop/
context_archive come to mind for
orchestral, but also other capacities
and contexts that can work in
conjunction with even small
externalities

 New work:

-- create some audio data: computer-
generated, human-generated,
classical form, what have you
-- take a spectrogram and a beat/
melody/rhythm, etc. demarcator
-- train an autoencoder on that data
-- try to overfit to certain higher-level
patterns
-- then see if it can create context or
tell apart samples that previously
resembled one other
-- where do you start with orchestra? I
think it's mostly a matter of importing
the beat/melody, so much of my early
jazz stuff could find similarity there
-- from the audio dataset alone the
voice characteristics would already be
represented by the words, so I could
compare multiple proposals for words
to replicate the same internal structure
--

 Previous work related to melody-
smoothing: https://github.com/
DeepLearning4j/dl4j-examples/blob/
master/tutorial/src/main/java/org/
deeplearning4j/examples/feedforward/
regression/audio/
AudioFileVocoder.java

 It would be a different kind of loss-
function if these were relatively
isolated-numbers on some conversion

chart, but this isn't necessarily what
we want. To get the structure of
polyphony anyway I need to know the
differentiators; maybe it would be a
kind of feature mapping? Like an
autoencoder that optimizes its output
to my desired characteristic rather
than anything else?

 Just how exactly do Decorator tracks
(and maybe also Instrumental
Accompaniment) work out with all
that? All the music I've listened to
several hundred times (see link in bio)
and that I've recorded actually varies
between a thousand and one thousand
four hundred times an hour. But yeah,
I'd imagine only a tiny little bit of the
population actually does change their
music in response to the music. (It is
possible that some listeners do have
the aptitude to vary frequency each
time they listen) So none of those end
up too far off from what the listener is
used to. Mainly for Singer-Dancer and
DJ tracks anyway. But I'd assume
none of the listeners that exhibit
actual states of consciousness vary
much (based on https://
www.emsltd.co.uk/kurtosis/ auditory
responses to dance-music have been
calibrated to have peak frequencies of
300kHz,800kHz and 1400kHz);

Train an AI to make generative
sounds (20 classes: Electric Piano,
Bass Guitar, Violin, Flute, Acoustic
Guitar, other things, and Robot).

I have always been fascinated by
audio, in particular the expressive way
audio is captured and consumed.

This challenge by Jaumo is my first
step into building an expressive
waveform generator, based on real
instruments.

My set-up

1. Audacity is my audio editor of
choice. I'm using version `2.3.3-beta`
running on Mac OS X 10.12.4.
2. My sample sounds are from
SampleSwap.org/pop sounds.
3. My Audacity files are hosted on
SoundCloud.
4... My Python libraries are
`TensorFlow 1.4.0`, `numpy 1.3.3`,
and `Librosa 0.5.1`.
5. Tomorrow, I want to try converting
my Audacity recordings into multiple
instances of GANs-trained-for-time
using a few different techniques,
making sure they train and produce
samples of the correct length.

The next iteration of this project
could be:

1. Tune and Fourier Transform to
sound characteristics in the human
voice
2. Build Generative Adversarial
Neural Network which synthesizes
audio signals: replay those using some
computer model
3. Quantify and retrain with each
set's harmonic variation in the form of

its harmonic correlation structure --
what's measured and modeled as loss
functions or metrics that reward or
penalize it
4. Get somebody with a harmonica to
measure how ADTL processes it: does
it make you sound like a leper?

 *Note: My audacity files are pasted
http://soundcloud.com/deanlab/
audacity-august62019

Previous implementations:

[My version of Google's Tensorflow
Audio generator](https://github.com/
pincoppola/
Audio_to_Geneva_Converter/blob/
master/main.py), which was supposed
to train with progressively higher
resolution spectograms(s) → could
produce any sample length and sound
frequency.

My version of Google's Tensorflow
Audio generator (which also took
weighted average of high/low
frequency audio and spectral
similarity/damping factors), which was
supposed to build a noise-dependent
version of Adversarial Nets that
streamed from the sampled audio
inputs in the audio-torso(s) → raw
spectogram to output audio, but
absolutely with noise, during training
→ [here](https://github.com/
pincoppola/SoundBlackSwan/blob/

master/main.py)

My version of Google's Tensorflow
Audio generator (which also took
weighted average of high/low
frequency audio and spectral
similarity/damping factors), which was
supposed to train with noise
dependent input(s) → based on the
softwares written by Armin Braunstein
at https://
portfolioarmin.wordpress.com/audio-
superresolution. In my model, then,
the sampled audio would not be
farther apart than the smoothing
factor. → [here](https://github.com/
pincoppola/SoundBlackSwan/blob/
master/main.py)

Relevant resources:

• https://www.tensorflow.org/
neural_structured_learning/overview

• https://soundcloud.com/djtoad-
kidd

• http://www.audiomaze.com/
Drums.pdf - essentially the article(s)
from the link that state that the
magnitude of frequencies
characterizing rhythmic sounds is
always between 500 and 1500Hz; and
of course, there's the Fourier
Descriptor, which maps out frequency
variations at the limit between
construct and decay.

chuchu train an algorithm to model
musical instruments: learn how to use
OpenLearner (levenshtein distance
from piano, harmonica, guitar, e-bass,
single string, drum rolls) and keep an
eye out for gradation
foo.wav
1. Audio signal SDNN for image
interpolation
2. Noise vectors using Synthetic
Images
3. Use both as input/contextual cues
to produce/generate/convert-from/
sample noise vectors w/o context
https://arxiv.org/pdf/1509.04511v1.pdf
4. Then train a small one-dot
classifier with the resulting images
directly
5. If that fails, train a dot decodifier
(learn top horizontal detection) with
the resulting images, using systematic
probing. Get image features back that
correspond to the dot detector. (still
probably will fail)

[Try Neural Discriminator](https://
github.com/deepmind/neural-
discriminator/) for optimizing for
"smart projections" & write code for
`attention.js`
(somewhere along the way use
vectorizing w/ Pytorch)

note:
This used to be:
Hopelessly Dismal Adversarial

Nets for Speech Linguistics
Up until 02 September 2029
Now it's:
Adversarially Disruptive Neural
Nets for Speech Linguistics & Acoustic
Anomaly Detection
2020:
Up until 30 November<sup>th</
sup> 2020

Implementation of a basic neural
network (CNN) with WGAN-GP
(actually using PyTorch).

The 'actual' algorithm

Step 1. Train a classifier `Classifier`
using original spectograms (not
artificially sound-choked). 'Uses both
GAN-textured filterbank and
Spectrogram

Step 2. Identify components of a
masked spectrogram that a
Classifier assigns to a specific class
that is similar to the original visual
presentation of that particular sound
sequence. This is accomplished with
two techniques. The first one uses
Regularized `Decoders`, models that
assign probabilities to each possible
class. It then discriminators use
Regularized `Decoderers`. It then
performs regularized auditory analysis
(using its trained classifier as if it were
a classifier) to extract neural
representations, models that are
trained on *image* (yaw and local)
features. This is followed by decoders
that assign probabilities over classes

calculated with both *`Constrainer`*
and *`Decoder`*. These are
compared against some benchmark
model that is described in section 5.1.
In the second technique, which is
demonstrated below, the model
assigns probabilities to be similar and
is trained on different adversarial loss
functions for different sound classes
and then applies them to unfamiliar
variated adversarial input.
The first technique using shallow
'counterfactual learning' combines
different loss functions such as
SOFTmax like 'Hard' and 'Harden-
Dreemph' for different possible initial
score vectors and normalising those
vectors for a ground truth label vs.
what the model will provide through
that probabilistic loss function, or
alternatively '`R`'. Then it learns a
decoder to attempt to assign specific
pitch and harmonic frequencies length
to those posteriorized masks. There is
also `Unidirectional` technique
described below that works similarly
to the other techniques except that it
trains an *`Decoder`* to extract *left*
sound representations; it then trains
another *`Decoder`* to extract *right*
sound representations. It then
assumes that it has found the right
sound representations by applying
regularization to a mix of those left
and right sound representations by its
author in a `Constraint`-inspired
 # still needs a voice recognition
algorithm (if possible)

 Part 4. Pretrain unsupervised
acoustic descriptors of emotion (e.g.

`emotion_maps` from our previous
method() — also note https://olympus-
biomed.github.io/autoencoding-
robustness/udivs-1002/publications/)
for a similar method with font) and see
if you can softly convert? UST-based
solution? https://github.com/ai/rubik/
blob/master/lib/soft/soft.py (douglas
proposed integration of MNL-style
autoencoders)

**Not exactly successful, but could
still train a WGAN-GP classifier on top
of a MIDI player with the 'harmonics'
of a piano and a bass-specific
instrument (spectrograms and
musical symbol ANE? https://
en.wikipedia.org/wiki/MusicXML
https://www.researchgate.net/
publication/
221783040_Extracting_Human_Distin
ctive_Features_from_Audio_Signals_a
nd_Visually_Converted_to_MIDI_in_Lin
ux_Desktop_System) and then
generate video to train on.**
Somewhat related: https://
opensoundcontrol.org/
specification-1.0 ,https://github.com/
CNMAT/OSC,https://en.wikipedia.org/
wiki/YouTube_Music

probably doomed

Interesting music-related code:
https://github.com/vilmibm/
improversive-gru-model . . . could
some version of the loss function be
part of music synthesis? and
computational physics?

E-mailed Brad on July 5 and he replied
with [this](https://www.scopus.com/
inward/record.uri?eid=2-
s2.0-85047984066&partnerID=MN8T
OARS) . . and when I googled the
reference, his co-author and I both
posted on it recently . . .

Hopelessly Dismal Adversarial Nets
for Speech Linguistics (Generalization
Edition)

Abstract
===

A mismatch between neural
representation and outputs of human
speech was previously investigated in
a computer-aided visual search web
application (I know this because it
says so on the conference poster in
question), which proved that human
speech could train an algorithm to
recognize and produce distinctive
representations. While implementing
this approach is not computationally
expensive in a large dataset, no such
network that is able to generate the
whole language space was described.
In this must-try-it-harder recipe we
suggest a novel way to generate
speech features, whose quality is of
critical importance to a vocoder and
autoencoder combination of neural
networks. The major idea behind this
recipe is to identify the acoustic
characteristics of a number of speech
samples and to try to generate with
them a phoneme-autoencoder. We
posit that the most popular form of
speech autoencoder is trained with

variations of short repetitive, doubly
sine-pitched vectors and that
vocoders are designed to adequately
capture latent representations.

We are going to learn this by
generously providing the authors with
some local images and sound layers to
extract part of their representation
that is proportional to only 28 pixels
(28 x 1 pixels). Then we will apply
labels to the resulting data and then
use a generative autoencoder to
predict the value of the implicit
hypothesis. We train the inference
network of the linguistic
representation using human session
speaker type (Dan?)acoustic features
and multiple variables (we also hope
that it works better with confidence
labels as in the paper). The generative
model, which will resemble the cycle-
gan[cite me] model or DWTNet [use
training with mini-batches for
stability], will be trained on the target
speaker type
For example, if the authors hold each
image or acoustic vector for the
associative representation of the
speaker class for 100 epochs, we
expect a relatively low ‘loss’ (typical
1000 epoch runs 0.005-0.003) such
that the 16 x 10-Conv-Window
Convolutional Kernel is approximately
3/2 smaller than the real size. We will
confirm this by creating an arbitrary
model based on the same raw acoustic
representation. The model classifier
loss will then be comprised of three
convolutional layers, a softmax layer
and an MSE loss that measures the

similarity between the imagined
speech and the real audio. Our final
autoencoder networks will contain 5-6
convolutional layers and 5 full-
connected layers with a softmax
output and some pre-trained weights.

More background information and
motivation

Building a decent synth
An [attempt to synthesize sounds]
(https://github.com/tensorflow/
tensor2tensor/issues/348) with
iterative and multiple Delauney
extrapolation . . . [not much of a
success](https://github.com/
tensorflow/tensor2tensor/issues/
381). [Idea]
(https://github.com/osiebler/
wavenet_vocoder/issues/57) for the
fact that the Spectrogram made it
quite possible for different samples to
sound the same and should probably
be cleaned up. It seems to me without
this, this is not even a top priority and
would only be interesting if one
started with a certain feature, which
therefore allowed itself to come up
again in a new feature set. This is
especially if the underlying idea of a
series of oscillations as a 'test' is too
weird to be proper otherwise.
However, the best case scenario
(which I'm quite sure to occur), a few
features are removed and the other
features are added so that the
spectral representation of the more
'true representation' of the input
actual sound is retained. (In version

0.9.2 [Deprecated: /tmp/setup.py|0|
13.10.7] of that link, `/tmp/setup.py`
will change . . .) I want to try some
sort of 'zig-zagged' iteration of the
feature space[as adescribed here][as
described in the link], though maybe
I'll try to add some features based on
their fixed means and variances and
this code would do that too. The
neutral ground here between all is the
only way to build 'new' ones. I
certainly am uncomfortable with those
([Spectral oversampling](https://
github.com/amsehili/ESPNet#spectral-
oversampling-style-loss-for-mel-
mixture)), and would rather use a
decoder that does not contain any
characters in its word vector. To be
honest, as I stated above, I don't know
how to actually fix this with a standard
recursive algorithm, but I'm sure even
that could be solved with an
autoencoder. (And just wanted to say
that your approach to the problem has
been absolutely the most scientifically
and scientifically exciting one, so I
thank you for your willingness to
investigate this issue)

Seeing if it works

I *did* find a source of masked audio
data in [this GitHub folder](https://
github.com/yu4u/noise2noise), so I
used [this module](https://github.com/
yu4u/noise2noise/Oe/models/
recurrent/bingwa_resnet32.py) to both
generate and predict some noisy
samples. Then I tested those results
synthetically to come up with some
`pytorch` code.

The first code was essentially an
LSTM sequence-to-sequence
translation feature + gcd layer used by
Wavenet to convert STFT
representation to raw audio. Note that
this link also offers a single input
signal from the three domains:
frequency/amplitude, timbre and
quantitative metrics, but my script is
mainly inclusive of the "functional-
synopsis" portions of the signal for
amplitude. So I removed the visual
part, added some LSTM kernels and
be forgotten about it.

Based on [spectrogram prediction
(based on Song Hyouk)](https://
github.com/songsth/week-generation),
[based on Spectral masks (based on
Alexander Semov)](https://github.com/
semov/waves/blob/master/model/
spectrogram.py) and a model query
lambda propagation system based on
[Iman Sbitouri FCNNs (based on Wan-
Lun Tai)](https://github.com/
wand140wa1) (and I'm sure it could be
improved by converting some of the
network's layers, particularly by
resampling the convolutionally
decompressed audio, possibly
applying a gcd layer, then using those
elevated-performance fine-tuned
parameters to adapt the `Bayes Layer`
layer from the A.C.-based model
(these optimized layers will be fed
equalized FM and the convolution
output will be updated accordingly to
produce the acoustic features
calculated using `weavy`), obtaining
[the resonant frequencies of the input

audio signal](http://
www.ideaapps.asia/uploads/
1/0/7/1/107174558/
musicdepot305.pdf).

This resulted in a mixture (of the latter
'by analogy' with the standard syntax
for signal synthesis, where the same
typemorphs regular) which looks like
[an LSTM](https://arxiv.org/pdf/
1711.10433.pdf) (or rather an
convolutional layer + an LSTM) trained
on synthesized audio from various
sources such as sampleMusic, Open
Source Air-Lines, and music from
audiobooks

Am I wrong that the resulting audio is
then converted to the target data?
This is basically the idea for speckles

To do: provide the masked
spectrograms in input(s) and test a
number of architectures (including
DCGAN, WGAN, BEGAN, and possibly
vgenerative)

Other notes
I loaded using TensorFlow's [MIR-
BLEAK](https://deepmind.com/blog/
spectrogram/) Dataset

I also tried a few different [pretrained
audios](http://tenor.sd2cd.com/
infer_pretrained_mind.pdf) and found
them mostly insufficient. Of particular
interest, the Simple Audio `jorine` is
good but the generated spectrograms
and sounds vary quite a bit

The '[Random Sampling Playgrounds]

(#https://guz-vol/random-sampling-
playgrounds)' volume contained
most samples on audio
datasets.

The '[musicnet](#https://github.com/
fivelfliss/musicnet) repository
contained lots of noise samples.

(s) Some sound output for visual
analysis

* (s) First, the output from the Soft
Gumble sampler from [this concept]
(#http://gradientscience.org/blog/
hidden-structure-internal-
representations-are-essential), using
a "linear model" as a basis and using it
in place of real-world audio. The
gradation is just a fun trick to get
some amazing [convolutional stereo]
(http://www.oozenet.net/cnconv/)
images[this atraditionally called
'unnatural']. :)
* (

