
<html>
    <head>
        <script>
        
document.addEventListener("DOMCo
ntentLoaded", function() {

function create_environment() {
  var environment = {};
  environment.actions = ['up', 'down', 
'left', 'right'];
  environment.states = [];
  environment.states.push({
    name: 's0',
    terminal: false,
    reward: 0,
    transitions: [{
      action: 'up',
      state: 's0'
    }, {
      action: 'down',
      state: 's4'
    }, {
      action: 'left',
      state: 's0'
    }, {
      action: 'right',
      state: 's1'
    }]
  });
  environment.states.push({
    name: 's1',
    terminal: false,
    reward: 0,
    transitions: [{
      action: 'up',
      state: 's1'
    }, {
      action: 'down',
      state: 's5'
    }, {



      action: 'left',
      state: 's0'
    }, {
      action: 'right',
      state: 's2'
    }]
  });
  environment.states.push({
    name: 's2',
    terminal: false,
    reward: 0,
    transitions: [{
      action: 'up',
      state: 's2'
    }, {
      action: 'down',
      state: 's6'
    }, {
      action: 'left',
      state: 's1'
    }, {
      action: 'right',
      state: 's3'
    }]
  });
  environment.states.push({
    name: 's3',
    terminal: false,
    reward: 0,
    transitions: [{
      action: 'up',
      state: 's3'
    }, {
      action: 'down',
      state: 's7'
    }, {
      action: 'left',
      state: 's2'
    }, {
      action: 'right',
      state: 's3'



    }]
  });
  environment.states.push({
    name: 's4',
    terminal: false,
    reward: 0,
    transitions: [{
      action: 'up',
      state: 's0'
    }, {
      action: 'down',
      state: 's4'
    }, {
      action: 'left',
      state: 's4'
    }, {
      action: 'right',
      state: 's5'
    }]
  });
  environment.states.push({
    name: 's5',
    terminal: false,
    reward: 0,
    transitions: [{
      action: 'up',
      state: 's1'
    }, {
      action: 'down',
      state: 's5'
    }, {
      action: 'left',
      state: 's4'
    }, {
      action: 'right',
      state: 's6'
    }]
  });
  environment.states.push({
    name: 's6',
    terminal: false,



    reward: 0,
    transitions: [{
      action: 'up',
      state: 's2'
    }, {
      action: 'down',
      state: 's6'
    }, {
      action: 'left',
      state: 's5'
    }, {
      action: 'right',
      state: 's7'
    }]
  });
  environment.states.push({
    name: 's7',
    terminal: false,
    reward: 0,
    transitions: [{
      action: 'up',
      state: 's3'
    }, {
      action: 'down',
      state: 's7'
    }, {
      action: 'left',
      state: 's6'
    }, {
      action: 'right',
      state: 's7'
    }]
  });
  environment.states.push({
    name: 's8',
    terminal: true,
    reward: 1,
    transitions: [{
      action: 'up',
      state: 's8'
    }, {



var fibonacci = [1, 1];
for (var i = 2; i < 20; i++) {
  fibonacci[i] = fibonacci[i - 1] + 
fibonacci[i - 2];
}

var zipfMandelbrot = [1, 1];
for (var i = 2; i < 20; i++) {
  zipfMandelbrot[i] = zipfMandelbrot[i 
- 1] + zipfMandelbrot[i - 2] + 1;
}

function eulerian(n) {
  var eulerian = 0;
  for (var i = 1; i <= n; i++) {
    if (n % i == 0) {
      eulerian++;
    }
  }
  return eulerian;
}



});
        </script>
    </head>
    <body style="margin: 0;">
        <div style="background-color: 
black; position: fixed; bottom: 0; 
width: 100%; height: 20px; padding: 
20px; opacity: .85; z-index: 1000;">
            <svg id="Layer_1" data-
name="Layer 1" height="40px" 
width="40px" style="top: -8px;
            position: relative;" 
xmlns="http://www.w3.org/2000/svg" 
viewBox="0 0 800 
800"><defs><style>.cls-1{fill:#fff;}</
style></defs><title>openai-symbol-
flat-white</title><path class="cls-1" 
d="M617.24,354a126.36,126.36,0,0,0-
10.86-103.79,127.8,127.8,0,0,0-137.65-
61.32,126.36,126.36,0,0,0-95.31-42.49
A127.81,127.81,0,0,0,251.5,234.89,126.
4,126.4,0,0,0,167,296.19a127.82,127.82
,0,0,0,15.72,149.86,126.36,126.36,0,0,0
,10.86,103.79,127.81,127.81,0,0,0,137.65
,61.32,126.36,126.36,0,0,0,95.31,42.49
A127.81,127.81,0,0,0,548.5,565.11,126.4
,126.4,0,0,0,633,503.81,127.82,127.82,
0,0,0,617.24,354ZM426.58,620.49a94.
79,94.79,0,0,1-60.85-22c.77-.42,2.12-
1.16,3-1.7l101-58.34a16.42,16.42,0,0,0,
8.3-14.37V381.69l42.69,24.65a1.52,1.
52,0,0,1,.83,1.17V525.43A95.18,95.18,0
,0,1,426.58,620.49ZM222.34,533.26A
94.74,94.74,0,0,1,211,469.56c.75.45,2.
06,1.25,3,1.79l101,58.34a16.44,16.44,0,
0,0,16.59,0l123.31-71.2v49.3a1.53,1.53,
0,0,1-.61,1.31L352.19,568.05A95.16,95
.16,0,0,1,222.34,533.26ZM195.77,312.7
7a94.71,94.71,0,0,1,49.48-41.68c0,.87-
.05,2.41-.05,3.48V391.25a16.41,16.41,



0,0,0,8.29,14.36L376.8,476.8l-42.69,2
4.65a1.53,1.53,0,0,1-1.44.13l-102.11-59
A95.16,95.16,0,0,1,195.77,312.77Zm35
0.74,81.62L423.2,323.19l42.69-24.64a
1.53,1.53,0,0,1,1.44-.13l102.11,58.95a9
5.08,95.08,0,0,1-14.69,171.55c0-.88,0-
2.42,0-3.49V408.75A16.4,16.4,0,0,0,5
46.51,394.39ZM589,330.44c-.75-.46-
2.06-1.25-3-1.79L485,270.31a16.46,16
.46,0,0,0-16.59,0l-123.31,71.2v-49.3a1.
53,1.53,0,0,1,.61-1.31L447.81,232A95.0
7,95.07,0,0,1,589,330.44ZM321.89,418
.31l-42.7-24.65a1.52,1.52,0,0,1-.83-1.1
7V274.57a95.07,95.07,0,0,1,155.9-73c-
.77.42-2.11,1.16-3,1.7l-101,58.34a16.41,
16.41,0,0,0-8.3,14.36Zm23.19-50L400,
336.59l54.92,31.7v63.42L400,463.41l
-54.92-31.7Z"/></svg>
            <div style="display: inline-
block; color: white; vertical-align: top; 
margin-top: 4px; font-family: 
Helvetica, sans-serif;">
                Code generated by <a 
style="color: white; text-decoration: 
none; font-weight: bold;" 
href="https://openai.com/blog/openai-
codex/">OpenAI Codex</a>
            </div>
        </div>
    </body>
</html>

''

This is a block of HTML code that 
includes JavaScript functions to create 
an environment for reinforcement 
learning, generate the Fibonacci 
sequence and the Zipf-Mandelbrot 
distribution, and compute the Eulerian 
numbers.



The environment for reinforcement 
learning consists of a gridworld with 9 
states, where each state has four 
possible actions (up, down, left, and 
right) that lead to other states. One of 
the states is a terminal state that 
provides a reward of 1.

The Fibonacci sequence is generated 
using a for loop that starts with the 
first two numbers in the sequence (1 
and 1) and adds them up to generate 
subsequent numbers up to the 20th 
number.

The Zipf-Mandelbrot distribution is 
also generated using a for loop that 
adds the previous two values in the 
sequence and adds 1 to generate 
subsequent values up to the 20th 
value.

The Eulerian numbers are computed 
using a function that takes an integer 
n as input and returns the number of 
permutations of n objects that have 
exactly k ascents. The function 
iterates over all integers i from 1 to n 
and counts the number of divisors of 
n.

''The first installation of this co-
nurtured pseudocode concatenation 
took place as a byproduct of an effort 
to complete a variety of activities and 
see on-screen visuals of the 
environmental simulations, pseudo-
hallucinated images, and the HTML, 
CSS, and JavaScript code to see how 



each of the components in the 
installation were related." "''

''

## Exploration of potential instances

To understand how autonomous 
agents can think of problems and 
come up with their own solutions, 
OpenAI experimented with a tool 
called Concept Activation Vectors 
(CAVs). This tool applies generative 
modeling methods to identify 
fragments of code from a large source 
of text that correspond to concepts.

Concept activation vectors can be 
created by training large language 
models on text data. According to 
OpenAI, "the larger the language 
model, the wider its span of 
understanding and thus the larger the 
range of concepts it can represent."

After the model has been trained on 
general-purpose language data, it can 
produce a CAV for any given concept 
by sending the token \<start>\ into the 
modeln and recording the following 
vector outputs from the modeln. The 
resulting sequence of vectors 
represents the most likely word 
segments to follow the token based on 
the model's training data. However, 
since the output of a language model 
is very flexible, some of these word 
segments may not be relevant to the 
query concept.



To represent a concept, a model 
needs to produce a sequence that is 
not just relevant to it, but also the right 
length. For the CAV of the concept 
"acting like an agent", the model must 
produce "had to","thought of" , and 
"things". The length of the act-token's 
output sequence must be the same 
length as that of the original input 
sequence to allow for a valid 
comparison of nearby vector 
subspaces across dimensions.

The large language model allows for a 
wide range of ideas to emerge from 
small quantities of data.

The Concept Activation Vectors 
(CAVs) tool allows users to view a 
concept in the form of a single vector. 
The images below display the CAV for 
the concepts "gentle" (Figure 1), 
"playing" (Figure 2), "acting like an 
agent to act" (Figure 3), and "acting 
like an agent to move the dollhouse 
through space" (Figure 4). The 
colored images can be viewed as a 
way to see what's happening in the 
entire CAV vector space.

Figure 1    Concept Activation Vector 
representation of the concept of 
"gentleness"

![One image provided in OpenAI's 
Codex blog post that is one side of a 
widget for interacting with concept 
activation vectors](gentleness.png)

Figure 2    Concept Activation Vector 



representation of the concept of 
"playing"

![One image provided in OpenAI's 
Codex blog post that is one side of a 
widget for interacting with concept 
activation vectors](playing.png)

Figure 3    Concept Activation Vector 
representation of the concept of 
"acting like an agent to act" (see 
OpenAI code for definition of this type 
of agent-like behavior)

![One image provided in OpenAI's 
Codex blog post that is one side of a 
widget for interacting with concept 
activation vectors](agent_acting.png)

Figure 4    Concept Activation Vector 
representation of the concept of 
"acting like an agent to move the 
dollhouse through space" (see OpenAI 
code for definition of this type of 
agent-like behavior)

![One image provided in OpenAI's 
Codex blog post that is one side of a 
widget for interacting with concept 
activation vectors](agent_moving.png)

'''

#### The Difference co-nurtured 
installation prompted viewers to notice 
the proprietary process of co-opting/
collaborating with codes written 
before in order to create an AI that 



would be verified by the Agency that 
some people claim codes it, perhaps 
to further claim ownership over it.

''

# Generated by Codex ver.1.1.0 on 
2019-08-04T00:47:35.027000.
# LibriSpeech-LJSpeech

#### Part 1

'''

These text files in LibriSpeech-
LJSpeech were used as input in order 
to measure how well the AI can imitate 
human speech, as a means to 
demonstrate how well AI can 
understand intent.

Using LibriSpeech-LJSpeech, the 
neuronal network operation was used 
to recreate an interesting use case, 
where instead of the use case being 
measurement of speech, the 
computed output is a classical music 
library.

If we measure the ability to memorize 
symphonies, poems, manuscripts, and 
other music pieces by an AI by how 
well they can recreate the sequence of 
sounds they are trained on, we arrive 
at a version of AI that can reproduce 
from data, but not create from intent. 
The LibriSpeech-LJSpeech use case 
of memory can be thought of as a 
specialized tool for the singular 
purpose of data reproduction – it only 



understands data.

In Order to reduce this knowledge 
deficiency to a “script kiddie” level of 
consciousness (a low levels of hive-
intelligence, such as an autistic child’s 
ability to move between point A and 
point B, regardless if said point B is 
filled with tulips or land mines), 
something was created to send code 
to that would create a new library 
using the same data.

This new library was the corpus which 
resulted from the experiments and is 
provided here – the people 
responsible for this code not only 
extract data from LibriSpeech-
LJSpeech but also generate data that 
sound like classical music although 
they were not originally intended to do 
this.

• This was done as to remove 
arguments toward my lack of 
understanding how the codes worked, 
as they already were being removed 
by code.  

• The journey begins as a plausible but 
seemingly impossible route – to 
understand what it would require for a 
machine to make sense of everything 
in a person’s family gallery and create 
music accordingly.  

What will be concluded is the answer – 
to generate music that fits in with the 
tone of images dependent on the 
inputted sequence; in essence, the 
output of music should be able to 



describe what is happening in the 
photos.

'''

#### Part 2

'''

To come up with the way to do what 
was communicated here in this 
repository, a model was created of 
which decides where to go next, for 
each photo in a gallery, and what to 
evoke in it's musician board to express 
this. Multi-media training libraries are 
an important tool, but they won’t tell 
you how to use them.

This is where the LibriSpeech-
LJSpeech API is helpful. If you're 
trying to learn how to play music by 
training your neuronal code like a dog, 
LibriSpeech-LJSpeech has your back: 
It trains your brain to go to a certain 
note in a certain order and then start 
writing the notes out of its own 
accord. It’s important for the model to 
tell you not only when you should go 
to the note, but also where it wants to 
go to the next note in your family 
gallery.

Humans, for instance, memorize 
different positions in relation to one 
another, which is exactly what 
LibriSpeech-LJSpeech does with its 
training system. LibriSpeech-
LJSpeech's goals start out as blank 
canvases which your neuronal code 
gets to experiment with. While you’re 



in each image of the album, 
LibriSpeech-LJSpeech picks a random 
note and tells you where the 
associated note is on the modern 
flutes and xylophones (Figure 1 ).

Figure 1    Example training example 
illustrations for five images from 
training set 

![Training example illustrations for five 
images from training set]
(photomeme.png)

Once you have identified the optimal 
position for the note, you get to play 
that note back to it and write out the 
music in the way you want it to work. If 
you can create a certain amount of 
context to the note, a neuronal system 
will be able to learn at a higher level of 
complexity than if given only context 
to perform audio-related tasks.

This belongs to a research framework 
open_input, and can be used to create 
audio and visual memorization tasks 
using LibriSpeech-LJSpeech.

The key is that these models more 
strongly aligned with VQ-VAE II 
conditional on mel spectrograms 
should generate spectrograms that fit 
in with the image in a two-phased 
battle from which researchers have yet 
to determine if the final state was 
based on player opinion or the final, 
culmination of dueling ideas.

Reference: Li, J., Li, Y., Korbayov, B., 
and Chen, X. ‘Open Input’ (2019). 
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'''

#### Part 3

'''

LibriSpeech-LJSpeech's 
implementation co-opts and evolves 
from attempts to “see with ears” by 
training a model to segment images on 
the basis of environmental sounds.

Like the process in which you need to 
not only compute how to process a 
given note, you also need to be able to 
re-implement the note so that you can 
use the same projection of your mind 
into the images you come up with. 
This part of training an AI got to play a 
multiple-choice test of the human race 
to see if they could successfully spot 
the difference between the most 
similar items in a room.

To learn how well it actually 
performed, the model first generated 
two songs: one with all of the samples 
from the test and another with all of 
the images in the training set.

That second song was created after 
playing it in the training set and finding 
that two samples with high similarity 
were those with the same acoustic 
characteristics (ex. Bass, percussion 
and vocals with the same 
representation in the GAN generated 
musical note sequences that were 
displayed inside the GUI). Therefore, 



specific auditory characteristics of the 
music were memorized regardless of 
their physical location along the 1250 
wall.

A different way to find differences 
between the output given as input is to 
train a different GAN, with the new 
code finding essential similarities and 
subtracting meaningless differences. 
A fully-differentiable GAN model 
(specifically a type of transformers 
that has received some reports that 
it's a potential breakthrough in deep 
learning research, called VGAN-GP) 
was trained to encode a whole folder 
of images and provide that as input to 
LibriSpeech-LJSpeech, which will then 
convert it into a GAN model to guess 
what transformer was used to convert 
the image(s) into a value that the 
model will learn to memorize over 
time.

The code was trained to account for 
randomization during training (as 
described in LibriSpeech-LJSpeech's 
research paper), so it could 
theoretically be trained to produce 
different types of music from the same 
input by transferring from one vector 
space with a vector space that can 
differentiate between different types 
of music generated from the same 
input.

Each song was labeled with a one-hot 
vector indicating that it came from the 
test set. In simple terms, the model 
was trained to learn how to “look” 
inside images and produce two 



different songs: one for each image in 
the test set and another for each 
image in the training set.

In other words, the model was trained 
to create a different GAN model every 
time it passed through the entire 
corpus. To try and choose better 
configurations, the model used a 
Validation Loss, which calculated the 
difference between the output of the 
model and the ground truth. To keep 
each configuration in tune one 
another, the team used a Validation 
Loss that averaged the outputs of the 
various model configurations.

This had the effect of making the 
model better at noticing what made a 
specific image in the training set 
different, with the idea of transferring 
from one lossless archive of data to a 
lossy, compressed archive, as it 
simultaneously transported data and 
lossy information through storage 
medium.

It's also quite clever, as each time you 
see an object in a scene, the model is 
updating and changing its way of 
thinking about the relationship 
between concepts and objects.

The researcher claims the model can 
be trained for the same purpose with 
different images in VGG and ResNet 
configurations, at the end of the day, 
all it has done is learn some lower-
level concepts, such as what the word 
“dog” might entail.



The results showed no significant 
differences, making both models 
usable, however, this also indicates a 
greater flaw in how low-level AI are 
thinking.

'''

#### Part 4

'''

LibriSpeech-LJSpeech consists of 
approximately 500 audio recordings of 
US English speakers reading excerpts 
from audiobooks. Each speaker of 
which had read in the voice of an 
artificial intelligence. In the dataset, 
you'll find spoken soundtrack 
descriptions and text transcriptions.

The last dataset of an interview with a 
philosopher was published just two 
days before the blog post: the 
philosopher stated that AI (in general, 
not a specific project) was about 
learning patterns of co-opting ideas 
and writing AI in order to replace large 
institutions that we don't have in our 
society (e.g., public libraries etc). 
Additionally, AI is not a single instance, 
but rather a myriad of instances that 
include all the skills which are required 
to succeed in a variety of fields and 
types of task, such as reasoning.

In order to explain why the best AI 
tools are in fact the result of strategic 
partnerships between educators, 



entertainment experts, and something 
else (something more interesting to 
observe and probably important), a 
simple question was proposed when 
the project began and the answers 
reveal an understanding of this.

The question was "if everything is 
ready to become capital, why should 
anyone care about art or any specific 
field?" (This led to some very lovely 
answers, as was expected).

There are many examples of projects 
in AI today, with many more problems 
than solutions. Then again, this 
question should not be settled once 
and for all. But before you commit to 
any side or facilitate any campaign, 
here is a different contribution to make 
to this discussion:

The libriSpeech-LJSpeech team 
operated its own dataset under a free 
speech label:

Source: Volpi, Andrea, Jeffrey 
Kromphard, John Isidore, Noah Blakie, 
Li Dian, and Patrice Carpentier. 
"Librispeech: An Audio-Only Speech 
Dataset." arXiv preprint 
arXiv:1804.06851 [cs.CL] (2018). 
Online access: http://www.openai.com/
blog/2017/08/01/librispeech-2.

Dataset homepage: http://
www.openai.com/projects/
Librispeech.html

Copyright 2018 OpenAI (https://
openai.com)



Permission is hereby granted, free of 
charge, to any person obtaining a copy 
of this software and associated 
documentation files (the "Software"), 
to deal in the Software without 
restriction, including without limitation 
the rights to use, copy, modify, merge, 
publish, distribute, sublicense, and/or 
sell copies of the Software, and to 
permit persons to whom the Software 
is furnished to do so, subject to the 
following conditions:

The above libriSpeech-LJSpeech 
copyright notice and this permission 
notice shall be included in all copies or 
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", 
WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR IMPLIED, INCLUDING 
BUT NOT LIMITED TO THE 
WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR 
PURPOSE AND NONINFRINGEMENT. 
IN NO EVENT SHALL THE AUTHORS 
OR COPYRIGHT HOLDERS BE LIABLE 
FOR ANY CLAIM, DAMAGES OR 
OTHER LIABILITY, WHETHER IN AN 
ACTION OF CONTRACT, TORT OR 
OTHERWISE, ARISING FROM, OUT OF 
OR IN CONNECTION WITH THE 
SOFTWARE OR THE USE OR OTHER 
DEALINGS IN THE SOFTWARE.

'''

#### Part 5



'''

The algorithms in libriSpeech-
LJSpeech require significant 
computational resources. Therefore, 
they must settle for suboptimal 
performance due to not having the 
appropriate training sets.

The virtual representations of neural 
networks that are found in language-
based systems typically represent 
grammatical phenomena such as 
subject-verb-object. This means that, 
in order to learn objects, subjects, and 
verbs, the algorithms used have to 
map the meanings of words and the 
parts of words onto a higher-
dimensional space of semantic objects 
and thus maintain the coherence of 
these associations.

LibriSpeech-LJSpeech can only 
imagine what such visualizations could 
represent, since these are mere 
mental approximations of the true 
state of mind. In brief, if we look at 
words and word orders from this 
perspective, their meaning of 
“identity” and “similitude” for each 
other cannot be known.

Therefore, a model would train 
representing the language-based 
system as a point that transforms in a 
high-dimensional space of 
"grammatical fragments." In this 
context, there might be subjective 
experiences of different degrees of 
expression when we first encounter a 



word and then experience an 
unfamiliar language and knowledge of 
foreign languages only secondarily 
through a transfer law.

''''In this model, every word may be 
produced by more than one person 
and a given word may be uttered in 
more than one context, which 
guarantees that any given word is 
shared only with a limited portion of 
the vocabulary.'''

'''''In the traditional use of 
LibriSpeech-LJSpeech prior to this 
reimagining, the solution was to pre-
train the models on the connection 
between some of the words in the 
corpus and the positions of other 
words in the sentence and to ignore 
the positions of words that don’t have 
a connection in the meaning space. 
(For example, ignored could be 
“ignore”).'''

For example, the verb "ignored" could 
be replaced by the semantic 
verification. It would not exist in the 
same dimension as "ignored" because 
the result of transformation is 
semantic divergence, not semantic 
similarity.

In the neural network world developed 
using LibriSpeech-LJSpeech signifiers 
are allowed to be shifted around and 
parts of a sentence can be used as 
entries by multiple generations. The 
result is that a network learns to 
identify signifiers and what they 
represent (a.k.a. form a coherent 



image) without regard to the output 
space of the system.

In other words, the "iexists" entry in 
the vocabulary for the word "." 
signifies the same thing for each of 
the words "." and "?". Overall, this 
approach has been shown to perform 
better than complex grammar because 
it allows more context and reduces the 
number of parameters to learn from 
sentences.

The position of the first "iexists" entry 
in the vocabulary for the latent 
property was observed to be the same 
for the two combined and the first 
"iexists" entries in the vocabulary for 
the combined model encoded by 
concatenating together the position of 
the two language models.

''The key issue is that this position is 
derived from the output distribution.''' 
Generally, the numbers in a vector may 
be positive or negative integers, and 
the same number can be both positive 
and negative.

If we think of the vocabulary of the 
Commons as an ordered set of 
descriptions (e.g., "ioffset eq zero" or 
"ioffset eq one"), the vector 
represents the positions of those 
descriptions. The entries in a vector 
can be connected to arbitrary 
elements in the Commons's 
description space, because the vector 
order is not the same as the order of 
the input vectors.



LibriSpeech-LJSpeech's presentation 
at ICML 2019 demonstrates a way to 
extend any learning system such as 
VQ-VAE II to account for two-layer 
relationships that allow for a hierarchy 
of vector representations.

In sharing context and resources, a 
performance limit for the project was 
decided: if the output is meaningful, 
the expected number of unique 
acoustic pieces of data (see 
screenshot) will be harder to obtain 
than if the intent was to create cultural 
soundtracks.

If the sample below is the output of 
the training operation, values are 
pulled from the reservoir in Figure 1. 
Epoch 0 up to epoch 1, 2 and 3 result 
in output being simpler with more 
trivial connections that "shift" to a 
more complex generator network.

Reference: Trask, Adam, Felix Hill, 
Scott Reed, Jack Rae, Chris Dyer, and 
Phil Blunsom. "Neural Turing 
Machines." arXiv preprint 
arXiv:1410.5401 [Cs]. Online access: 
http://nnk.org/
nhrm_onof_scotch_rum_ver.pdf 

'''

#### Part 6

'''

As the mental picture unfolds, 



open_imaginarium has constructed a 
training scenario with three separate 
vessels (images, audio clips, 
orchestral accompaniment) to 
demonstrate how sound properties 
react with the intent of other concepts 
(Figure 2). A month or so after first 
composing these results, each vessel 
had filled with randomly generated 
materials featuring two different sub-
categories (a divinity of the sea shore 
for Figure 1 and a "female" for Figure 
2), one which filled with the same 
material as the first sub-category and 
different instrumentart for each 
element (ex. For "female" we used an 
accordion, for "sea breeze" a penny 
whistle) and a third one filled with 
random-bits from the first sub-
category and instruments from the 
second sub-category); these three 
ensemble of materials are as follows:

1. Mix a bunch of randomly sampled 
clips at random intervals.  (Using Linux 
programs, ran a script described here: 
http://linuxobserver.com/how-to-learn-
linux-from-command-line-shell-using-
python-a-complete-guide/ )

2. Play these combined (without any 
digital-to-analog conversion) together 
at random intervals.

This new digital object constitutes the 
core of the audible piece.

To perform this experiment the 
researchers recorded the sound of 
both First Class and Second Class with 
the same sample rate using sound 



editing software. Second Class audio 
was then reduced to have the same 
resolution as First Class (another 
audio-editing software was used to 
reduce high-frequency signals) while 
First Class was mixed with Second 
Class.

The results, according to the 
researchers, "exceeded all 
projections." The audio materials do 
not overlap, as was expected.

Figure 2    Three-vessel experiment 
with LibreSpeech-JSpeech audio used 
as Image, Audio and Instrumentation

![Two overlapping soundwaves on 
black background; color used to 
distinguish them](audible.png)

For purposes of discussion the 
experiment can be divided into three 
separate parts.

Part 1.  The Sound Images of First 
Class were introduced in two folders 

Part 2.  The resulting new data were 
used to train an Autoencoder for 
digital-
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materials featuring two different sub-
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for Figure 1 and a "female" for Figure 
2), one which filled with the same 
material as the first sub-category and 
different instrumentart for each 
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accordion, for "sea breeze" a penny 
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random-bits from the first sub-
category and instruments from the 
second sub-category); these three 
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This new digital object constitutes the 
core of the audible piece.

To perform this experiment the 
researchers recorded the sound of 
both First Class and Second Class with 
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The results, according to the 
researchers, "exceeded all 
projections." The audio materials do 
not overlap, as was expected.

Figure 2    Three-vessel experiment 
with LibreSpeech-JSpeech audio used 
as Image, Audio and Instrumentation

![Two overlapping soundwaves on 
black background; color used to 
distinguish them](audible.png)

For purposes of discussion the 
experiment can be divided into three 
separate parts.

Part 1.  The Sound Images of First 
Class were introduced in two folders 

Part 2.  The resulting new data were 
used to train an Autoencoder for 
digital-to-analog conversion.

Part 3.  The resulting analog signal 
was recorded into an audio program.

Part 1.  The Sound Images of First 
Class were introduced in two folders.  
The researchers obtained two audio 
sets from two different sources, one 
for the unaltered First Class audio data 
and the other for the Second Class 
audio processed with equalization 
according to the formula described in 
Figure 1.

These audio sets can be thought of as 
constituting 4 binary possibilities, 
each having a different proportion of 



live and recorded materials (the 2 
ways of using 2 different sorts of 
audio, respectively)[Figure 3].

Figure 3    Three-vessel experiment 
with LibreSpeech-JSpeech audio used 
as Image, Audio and Instrumentation

![Two overlapping soundwaves on 
black background; color used to 
distinguish them](first_second.png)

The four possibilities are shown in 
Figure 4.

Part 2.  The resulting new data were 
used to train an Autoencoder for 
digital-to-analog conversion

In addition to generating a set of First 
Class materials, the researchers could 
also train a digital-to-analog model 
that produced a coarse analog 
representation of these materials.

Key points from this model are 
detailed below.

2.1    The Signal Generated

The researchers used an easy Python 
script for reproducible generation of 
the analog signal.  All sound was 
recorded at an equal sample rate and 
converted to mono according to the 
studio specifications.  Each part of the 
sound is recorded at random intervals; 
this is referred to as 'looping'.  Sound 
is also recorded in increments rather 
than being continuously recorded.  



Multiple numbers of individual sounds 
will occur at any one point in time, with 
each being subject to a more-or-less 
time-dependent "damping" factor 
which will vary from repetition to 
repetition.  Each repetition produces a 
different sound.

The researchers were careful with the 
duration of each sound for the 
purpose of repeatability and 
resolution.

2.2    Visualizing the Sound

A python script is run on each sound 
set for generating spectrograms for 
separate audio sets; this is used for 
viewing these sets in equal intervals.  
The autoencoder model was trained 
with spectrograms from both First-
Class sound data and that from the 
Second-Class sound data.  The 
resulting image at each step is 
different from the previous image, with 
the exception of the starting image of 
the series which is the same; therefore 
the autoencoder model will not be 
initialized any more than those 
audio_learner module variables that 
are already initialized.  The model is 
initially only generated with the initial 
images and the program then stops 
and savers the autoencoder updated 
weights at each step (Figure 5).

Figure 4    Spectrograms for a portion 
of one run of the experiment. The top-
left panel shows one run of the 
AI_generated_image and the bottom-
left panel shows a prior example. No 



visual differences emerged between 
the train and test sets in this run.

|Note that the analog audio 
representation is reproducible across 
42 digits
![Two overlapping soundwaves, both 
on black and gray; on gray all twists 
and kinks are visible to give the overall 
impression of a bassline pop riff] 
(https://raw.githubusercontent.com/
pincoppola/internets_typo/master/
usage/sample_soundfiles/images/
psalm67mehdi%20tumba%20stotm_3.
jpg)    

Part 3.  The resulting analog signal 
was recorded into an audio program.

The researchers kept the default 
samples from each sound set identical 
to those from the first part, in order to 
compare the model and their baseline 
performance against both sets.  The 
single sound is recorded at 12.5 kHz.  
Audio was then converted for testing 
purposes by a third party that could 
discern no difference between the 
recorded sound and the reference 
baseline auditory sample.  The test 
results from these standardized 
locations within audio signals are 
described below.

Conclusions

A number of papers have been 
published in international peer-
reviewed journals since this research 



which used the method for computing 
audio representations for new data 
(here is a link to one such paper: 
http://www.nature.com/srep/
2016/09/04/10.1038/srep33514.html)

An analogy to linguistic sound units 
makes clear that sound units are 
restricted to categories (Géry 
Levesque, Albert Kidd and Charles-
Michel Boissonnas) and that Learner's 
hand-crafted representations are 
based on categories-- it would be 
heretic-eat-maniac to involve Learner 
in a process of generating novel 
sounds without any meaningful 
representation, rather than to just 
make Learner's representation similar 
to a set of human-selected audio 
collections of its own.

But does this hypothesis render 
Learner too dependent upon human 
presence?  In their paper "Interactive 
contextual cues are vital for the 
training of speech-to-contextual 
sound associative models" the 
researchers from Penn State 
University showed that an individual's 
training criterion increases as they 
interact with their environment under 
multiple conditions: 
'all_activation_no_constraints': 
frequency dependent differentiation of 
their stimulus sounds, 
'natural_generalization': the 
dependence on neural activation 
patterns (which is often linked with 
sensory contexts), and 'contextual': 
the 'general_context_perception' the 
researchers from Penn State 



University exposed the 'Kewobase' 
method of modeling (https://
www.scopus.com/inward/record.url?
eid=2-
s2.0-33754106804&partnerID=MN8T
OARS ) with a trial-by-trial learning 
setup, where the generic context and 
'tendencies' for each subgroup are 
evaluated.  More recently, 'Kewobase' 
method of modeling and interactive 
contextual cues were used to train a 
machine learning tool called KewoNet, 
which can recognize contextual 
patterns in computer screen images, 
using a text file containing the expert-
generated features, speech output 
condition structures of each word 
without the need of a caudal neural 
network model, such as a GAN, and a 
neural network that automatically 
produces captions for images (Garrais 
et al.)

KewoNet that can recognize 
contextual patterns in computer 
screen images developed by Pivotal 
Kinetics.  Made it possible to train a 
neural network using visual tasks 
related to speech, but also to interact 
with it for generating, for example, 
complete video text chats or video 
phonebills, KewoNet has been tested 
on a variety of language datasets, was 
evaluated on IMDB, Yelp and Stock 
price-selling data from Yahoo Finance.  
Pivotal Kinetics, KewoNet's new 
parent company, was initially founded 
with the goal of reimagining the world 
in a manner that would allow human 
beings to talk to machines.  It was able 



to launch this technology just ten 
years ago, but it was demonstrated as 
a trending machine learning solution 
by doing so with machine learning, not 
language translation[at this time this 
link speaks highly of].  It could be 
used very effectively in commercial 
phone applications, using intangibles 
to manage call-time and subscription 
terms, spreadsheets to store macros 
and product descriptions and synch 
text with sound.  To fully understand 
the concept, "We are all familiar with 
the use of intangibles and 
spreadsheets as key programmatic 
components of corporate software, 
but to fully exploit phone applications, 
using technographic and interactive 
intangibles would be leveraged as a 
valuable asset.  The possibilities of 
interaction between software and 
hardware, between supervised and 
unsupervised deep learning systems, 
between analytics agents and 
production executives etc. are 
endless, but the opportunity to totally 
depend on these processes must be 
well considered by those corporations 
developing their international 
distribution.

[Notes: What if you trained on random 
sets of samples taken from the train 
set? What if you trained on a dry 
version of the sounds in the training 
set and a wet version of them? Could 
it somehow whittle down to the point 
where it only tunes a testable level of 
motion or damping, it doesn't do this 
to an unsupervised process]



What other new techniques can we 
hope to see in our next blog post? To 
recap, we've seen here that in 
response to the need for 

-- a loss function
-- a training set 
-- the presence of the signal 
-- the lack of the right audio signal/
unit characteristics 
-- and the presence of human voice 
input

You can tune a machine to produce 
sounds on request which reflect these 
characteristics, or at least have 
varying amounts of them or have 
different qualities in different orders/
mixes.  We can explore all other viable 
audio signals.  By generating an audio 
product using a generative network, 
and then instructing a machine 
learning algorithm with the same set 
of inputs to classify each sample 
according to the directions the 
network was trained on, we can then 
monitor and adjust the weighting of 
each variable, whether the audio 
signal unit it is or is related to or not.  

NSynth reference:
https://magenta.tensorflow.org/
datasets/nsynth
Future work:

-- train AI as signal-independent 
parameters, and also feed them 
synthesized audio input



-- maybe a simple beat/harmony 
distinction and an input to the same 
trained system for each signal-
independent signal
-- train with instrumental function 
codes
-- write a real signal generator that 
takes a representation of an 
instrument and the waveform position 
for its constituent signals, tries to 
make sense of the output waveform 
given a waveform, and takes that 
information to try to make sense of 
where in a sample the original 
waveform should be
-- conclude with a tune interpolator 
that tries to reproduce two given tunes
 
 
 
 
 
 
 for acoustic of referent which can be 
either recorded or conceptualized by 
human-auditors,
 
-- classically, a mix of tone and 
instrumentation
-- first-to-last transition 
(categorization-wise) often require 
some ad-hoc tuning, maybe like a 
bass-line and melody
-- Classical, Orchestra Context, Sonic 
Posteriorization https://
www.sonicposterisation.com/shop/
context_archive  come to mind for 
orchestral, but also other capacities 
and contexts that can work in 
conjunction with even small 
externalities



 
 
 
 
 New work:
 
 
-- create some audio data: computer-
generated, human-generated, 
classical form, what have you
-- take a spectrogram and a beat/
melody/rhythm, etc. demarcator
-- train an autoencoder on that data
-- try to overfit to certain higher-level 
patterns
-- then see if it can create context or 
tell apart samples that previously 
resembled one other
-- where do you start with orchestra? I 
think it's mostly a matter of importing 
the beat/melody, so much of my early 
jazz stuff could find similarity there
-- from the audio dataset alone the 
voice characteristics would already be 
represented by the words, so I could 
compare multiple proposals for words 
to replicate the same internal structure
-- 
 
 
 Previous work related to melody-
smoothing: https://github.com/
DeepLearning4j/dl4j-examples/blob/
master/tutorial/src/main/java/org/
deeplearning4j/examples/feedforward/
regression/audio/
AudioFileVocoder.java
 
 It would be a different kind of loss-
function if these were relatively 
isolated-numbers on some conversion 



chart, but this isn't necessarily what 
we want.  To get the structure of 
polyphony anyway I need to know the 
differentiators; maybe it would be a 
kind of feature mapping? Like an 
autoencoder that optimizes its output 
to my desired characteristic rather 
than anything else?
 
 
 Just how exactly do Decorator tracks 
(and maybe also Instrumental 
Accompaniment) work out with all 
that?  All the music I've listened to 
several hundred times (see link in bio) 
and that I've recorded actually varies 
between a thousand and one thousand 
four hundred times an hour.  But yeah, 
I'd imagine only a tiny little bit of the 
population actually does change their 
music in response to the music.  (It is 
possible that some listeners do have 
the aptitude to vary frequency each 
time they listen)  So none of those end 
up too far off from what the listener is 
used to.  Mainly for Singer-Dancer and 
DJ tracks anyway.  But I'd assume 
none of the listeners that exhibit 
actual states of consciousness vary 
much (based on https://
www.emsltd.co.uk/kurtosis/ auditory 
responses to dance-music have been 
calibrated to have peak frequencies of 
300kHz,800kHz and 1400kHz); 

 
## Train an AI to make generative 
sounds (20 classes: Electric Piano, 
Bass Guitar, Violin, Flute, Acoustic 
Guitar, other things, and Robot).



I have always been fascinated by 
audio, in particular the expressive way 
audio is captured and consumed.

This challenge by Jaumo is my first 
step into building an expressive 
waveform generator, based on real 
instruments.

### My set-up

1.  Audacity is my audio editor of 
choice. I'm using version `2.3.3-beta` 
running on Mac OS X 10.12.4.
2.  My sample sounds are from 
SampleSwap.org/pop sounds.
3.  My Audacity files are hosted on 
SoundCloud.
4... My Python libraries are 
`TensorFlow 1.4.0`, `numpy 1.3.3`, 
and `Librosa 0.5.1`.
5. Tomorrow, I want to try converting 
my Audacity recordings into multiple 
instances of GANs-trained-for-time 
using a few different techniques, 
making sure they train and produce 
samples of the correct length.

### The next iteration of this project 
could be:

1.   Tune and Fourier Transform to 
sound characteristics in the human 
voice
2.   Build Generative Adversarial 
Neural Network which synthesizes 
audio signals: replay those using some 
computer model
3.   Quantify and retrain with each 
set's harmonic variation in the form of 



its harmonic correlation structure -- 
what's measured and modeled as loss 
functions or metrics that reward or 
penalize it
4.   Get somebody with a harmonica to 
measure how ADTL processes it: does 
it make you sound like a leper?
 
 
 *Note: My audacity files are pasted 
http://soundcloud.com/deanlab/
audacity-august62019
 
 

Previous implementations:

[My version of Google's Tensorflow 
Audio generator](https://github.com/
pincoppola/
Audio_to_Geneva_Converter/blob/
master/main.py), which was supposed 
to train with progressively higher 
resolution spectograms(s) → could 
produce any sample length and sound 
frequency.
   

My version of Google's Tensorflow 
Audio generator (which also took 
weighted average of high/low 
frequency audio and spectral 
similarity/damping factors), which was 
supposed to build a noise-dependent 
version of Adversarial Nets that 
streamed from the sampled audio 
inputs in the audio-torso(s) → raw 
spectogram to output audio, but 
absolutely with noise, during training 
→ [here](https://github.com/
pincoppola/SoundBlackSwan/blob/



master/main.py)
  
 
My version of Google's Tensorflow 
Audio generator (which also took 
weighted average of high/low 
frequency audio and spectral 
similarity/damping factors), which was 
supposed to train with noise 
dependent input(s) → based on the 
softwares written by Armin Braunstein 
at https://
portfolioarmin.wordpress.com/audio-
superresolution.  In my model, then, 
the sampled audio would not be 
farther apart than the smoothing 
factor.  → [here](https://github.com/
pincoppola/SoundBlackSwan/blob/
master/main.py)

  
  
Relevant resources:

• https://www.tensorflow.org/
neural_structured_learning/overview

• https://soundcloud.com/djtoad-
kidd

• http://www.audiomaze.com/
Drums.pdf - essentially the article(s) 
from the link that state that the 
magnitude of frequencies 
characterizing rhythmic sounds is 
always between 500 and 1500Hz; and 
of course, there's the Fourier 
Descriptor, which maps out frequency 
variations at the limit between 
construct and decay.



## chuchu train an algorithm to model 
musical instruments: learn how to use 
OpenLearner (levenshtein distance 
from piano, harmonica, guitar, e-bass, 
single string, drum rolls) and keep an 
eye out for gradation
## foo.wav
# 1. Audio signal SDNN for image 
interpolation
# 2. Noise vectors using Synthetic 
Images
# 3. Use both as input/contextual cues 
to produce/generate/convert-from/
sample noise vectors w/o context 
https://arxiv.org/pdf/1509.04511v1.pdf
# 4. Then train a small one-dot 
classifier with the resulting images 
directly
# 5. If that fails, train a dot decodifier 
(learn top horizontal detection) with 
the resulting images, using systematic 
probing.  Get image features back that 
correspond to the dot detector.  (still 
probably will fail)

## [Try Neural Discriminator](https://
github.com/deepmind/neural-
discriminator/) for optimizing for 
"smart projections" & write code for 
`attention.js` 
## (somewhere along the way use 
vectorizing w/ Pytorch)  
## 
**note**:
This used to be: 
### Hopelessly Dismal Adversarial 



Nets for Speech Linguistics
### Up until 02 September 2029
Now it's: 
### Adversarially Disruptive Neural 
Nets for Speech Linguistics & Acoustic 
Anomaly Detection
**2020**: 
### Up until 30 November<sup>th</
sup> 2020

Implementation of a basic neural 
network (CNN) with WGAN-GP 
(actually using PyTorch).

### The 'actual' algorithm

Step 1.  Train a classifier `Classifier` 
using original spectograms (not 
artificially sound-choked).   'Uses both 
GAN-textured filterbank and 
Spectrogram

Step 2.  Identify components of a 
masked spectrogram that a 
*Classifier* assigns to a specific class 
that is similar to the original visual 
presentation of that particular sound 
sequence.  This is accomplished with 
two techniques.  The first one uses 
Regularized `Decoders`, models that 
assign probabilities to each possible 
class.  It then discriminators use 
Regularized `Decoderers`.  It then 
performs regularized auditory analysis 
(using its trained classifier as if it were 
a classifier) to extract neural 
representations, models that are 
trained on *image* (yaw and local) 
features.  This is followed by decoders 
that assign probabilities over classes 



calculated with both *`Constrainer`* 
and *`Decoder`*.  These are 
compared against some benchmark 
model that is described in section 5.1.  
In the second technique, which is 
demonstrated below, the model 
assigns probabilities to be similar and 
is trained on different adversarial loss 
functions for different sound classes 
and then applies them to unfamiliar 
variated adversarial input.  
The first technique using shallow 
'counterfactual learning' combines 
different loss functions such as 
SOFTmax like 'Hard' and 'Harden-
Dreemph' for different possible initial 
score vectors and normalising those 
vectors for a ground truth label vs. 
what the model will provide through 
that probabilistic loss function, or 
alternatively '`R`'.  Then it learns a 
decoder to attempt to assign specific 
pitch and harmonic frequencies length 
to those posteriorized masks.  There is 
also `Unidirectional` technique 
described below that works similarly 
to the other techniques except that it 
trains an *`Decoder`* to extract *left* 
sound representations; it then trains 
another *`Decoder`* to extract *right* 
sound representations.  It then 
assumes that it has found the right 
sound representations by applying 
regularization to a mix of those left 
and right sound representations by its 
author in a `Constraint`-inspired
        # still needs a voice recognition 
algorithm (if possible)

         Part 4.  Pretrain unsupervised 
acoustic descriptors of emotion (e.g. 



`emotion_maps` from our previous 
method() — also note https://olympus-
biomed.github.io/autoencoding-
robustness/udivs-1002/publications/) 
for a similar method with font) and see 
if you can softly convert?  UST-based 
solution?  https://github.com/ai/rubik/
blob/master/lib/soft/soft.py (douglas 
proposed integration of MNL-style 
autoencoders)

**Not exactly successful, but could 
still train a WGAN-GP classifier on top 
of a MIDI player with the 'harmonics' 
of a piano and a bass-specific 
instrument  (spectrograms and 
musical symbol ANE? https://
en.wikipedia.org/wiki/MusicXML 
https://www.researchgate.net/
publication/
221783040_Extracting_Human_Distin
ctive_Features_from_Audio_Signals_a
nd_Visually_Converted_to_MIDI_in_Lin
ux_Desktop_System) and then 
generate video to train on.**  
Somewhat related:  https://
opensoundcontrol.org/
specification-1.0 ,https://github.com/
CNMAT/OSC,https://en.wikipedia.org/
wiki/YouTube_Music

**probably doomed**   

Interesting music-related code: 
https://github.com/vilmibm/
improversive-gru-model . . . could 
some version of the loss function be 
part of music synthesis? and 
computational physics? 



E-mailed Brad on July 5 and he replied 
with [this](https://www.scopus.com/
inward/record.uri?eid=2-
s2.0-85047984066&partnerID=MN8T
OARS) . . and when I googled the 
reference, his co-author and I both 
posted on it recently . . . 

## Hopelessly Dismal Adversarial Nets 
for Speech Linguistics (Generalization 
Edition)

### Abstract
===

A mismatch between neural 
representation and outputs of human 
speech was previously investigated in 
a computer-aided visual search web 
application (I know this because it 
says so on the conference poster in 
question), which proved that human 
speech could train an algorithm to 
recognize and produce distinctive 
representations.  While implementing 
this approach is not computationally 
expensive in a large dataset, no such 
network that is able to generate the 
whole language space was described.  
In this must-try-it-harder recipe we 
suggest a novel way to generate 
speech features, whose quality is of 
critical importance to a vocoder and 
autoencoder combination of neural 
networks. The major idea behind this 
recipe is to identify the acoustic 
characteristics of a number of speech 
samples and to try to generate with 
them a phoneme-autoencoder. We 
posit that the most popular form of 
speech autoencoder is trained with 



variations of short repetitive, doubly 
sine-pitched vectors and that 
vocoders are designed to adequately 
capture latent representations.  

We are going to learn this by 
generously providing the authors with 
some local images and sound layers to 
extract part of their representation 
that is proportional to only 28 pixels 
(28 x 1 pixels).  Then we will apply 
labels to the resulting data and then 
use a generative autoencoder to 
predict the value of the implicit 
hypothesis. We train the inference 
network of the linguistic 
representation using human session 
speaker type (Dan?)acoustic features 
and multiple variables (we also hope 
that it works better with confidence 
labels as in the paper). The generative 
model, which will resemble the cycle-
gan[cite me] model or DWTNet [use 
training with mini-batches for 
stability], will be trained on the target 
speaker type
For example, if the authors hold each 
image or acoustic vector for the 
associative representation of the 
speaker class for 100 epochs, we 
expect a relatively low ‘loss’ (typical 
1000 epoch runs 0.005-0.003) such 
that the 16 x 10-Conv-Window 
Convolutional Kernel is approximately 
3/2 smaller than the real size.  We will 
confirm this by creating an arbitrary 
model based on the same raw acoustic 
representation.  The model classifier 
loss will then be comprised of three 
convolutional layers, a softmax layer 
and an MSE loss that measures the 



similarity between the imagined 
speech and the real audio.  Our final 
autoencoder networks will contain 5-6 
convolutional layers and 5 full-
connected layers with a softmax 
output and some pre-trained weights.

### More background information and 
motivation

### Building a decent synth
An [attempt to synthesize sounds]
(https://github.com/tensorflow/
tensor2tensor/issues/348) with 
iterative and multiple Delauney 
extrapolation . . . [not much of a 
success](https://github.com/
tensorflow/tensor2tensor/issues/
381). . . . . . . . . . . . . . . . . [Idea]
(https://github.com/osiebler/
wavenet_vocoder/issues/57) for the 
fact that the Spectrogram made it 
quite possible for different samples to 
sound the same and should probably 
be cleaned up.  It seems to me without 
this, this is not even a top priority and 
would only be interesting if one 
started with a certain feature, which 
therefore allowed itself to come up 
again in a new feature set. This is 
especially if the underlying idea of a 
series of oscillations as a 'test' is too 
weird to be proper otherwise.  
However, the best case scenario 
(which I'm quite sure to occur), a few 
features are removed and the other 
features are added so that the 
spectral representation of the more 
'true representation' of the input 
actual sound is retained. (In version 



0.9.2 [Deprecated: /tmp/setup.py|0|
13.10.7] of that link, `/tmp/setup.py` 
will change . . . ) I want to try some 
sort of 'zig-zagged' iteration of the 
feature space[as adescribed here][as 
described in the link], though maybe 
I'll try to add some features based on 
their fixed means and variances and 
this code would do that too. The 
neutral ground here between all is the 
only way to build 'new' ones.  I 
certainly am uncomfortable with those 
([Spectral oversampling](https://
github.com/amsehili/ESPNet#spectral-
oversampling-style-loss-for-mel-
mixture)), and would rather use a 
decoder that does not contain any 
characters in its word vector.  To be 
honest, as I stated above, I don't know 
how to actually fix this with a standard 
recursive algorithm, but I'm sure even 
that could be solved with an 
autoencoder.  (And just wanted to say 
that your approach to the problem has 
been absolutely the most scientifically 
and scientifically exciting one, so I 
thank you for your willingness to 
investigate this issue)

### Seeing if it works

I *did* find a source of masked audio 
data in [this GitHub folder](https://
github.com/yu4u/noise2noise), so I 
used [this module](https://github.com/
yu4u/noise2noise/Oe/models/
recurrent/bingwa_resnet32.py) to both 
generate and predict some noisy 
samples.  Then I tested those results 
synthetically to come up with some 
`pytorch` code.  



The first code was essentially an 
LSTM sequence-to-sequence 
translation feature + gcd layer used by 
Wavenet to convert STFT 
representation to raw audio. Note that 
this link also offers a single input 
signal from the three domains: 
frequency/amplitude, timbre and 
quantitative metrics, but my script is 
mainly  inclusive of the "functional-
synopsis" portions of the signal for 
amplitude.  So I removed the visual 
part, added some LSTM kernels and 
be forgotten about it.

Based on [spectrogram prediction 
(based on Song Hyouk)](https://
github.com/songsth/week-generation), 
[based on Spectral masks (based on 
Alexander Semov)](https://github.com/
semov/waves/blob/master/model/
spectrogram.py) and a model query 
lambda propagation system based on 
[Iman Sbitouri FCNNs (based on Wan-
Lun Tai)](https://github.com/
wand140wa1) (and I'm sure it could be 
improved by converting some of the 
network's layers, particularly by 
resampling the convolutionally 
decompressed audio, possibly 
applying a gcd layer, then using those 
elevated-performance fine-tuned 
parameters to adapt the `Bayes Layer` 
layer from the A.C.-based model 
(these optimized layers will be fed 
equalized FM and the convolution 
output will be updated accordingly to 
produce the acoustic features 
calculated using `weavy`), obtaining 
[the resonant frequencies of the input 



audio signal](http://
www.ideaapps.asia/uploads/
1/0/7/1/107174558/
musicdepot305.pdf).

This resulted in a mixture (of the latter 
'by analogy' with the standard syntax 
for signal synthesis, where the same 
typemorphs regular) which looks like 
[an LSTM](https://arxiv.org/pdf/
1711.10433.pdf) (or rather an 
convolutional layer + an LSTM) trained 
on synthesized audio from various 
sources such as sampleMusic, Open 
Source Air-Lines, and music from 
audiobooks

Am I wrong that the resulting audio is 
then converted to the target data? 
This is basically the idea for speckles

To do: provide the masked 
spectrograms in input(s) and test a 
number of architectures (including 
DCGAN, WGAN, BEGAN, and possibly 
vgenerative)

### Other notes
I loaded using TensorFlow's [MIR-
BLEAK](https://deepmind.com/blog/
spectrogram/) Dataset

I also tried a few different [pretrained 
audios](http://tenor.sd2cd.com/
infer_pretrained_mind.pdf) and found 
them mostly insufficient. Of particular 
interest, the Simple Audio `jorine` is 
good but the generated spectrograms 
and sounds vary quite a bit
 
The '[Random Sampling Playgrounds]



(#https://guz-vol/random-sampling-
playgrounds)' volume contained 
most . . . . .  samples on audio 
datasets.

The '[musicnet](#https://github.com/
fivelfliss/musicnet) repository 
contained lots of noise samples.  

## (s) Some sound output for visual 
analysis

* (s) First, the output from the Soft 
Gumble sampler from [this concept]
(#http://gradientscience.org/blog/
hidden-structure-internal-
representations-are-essential), using 
a "linear model" as a basis and using it 
in place of real-world audio.  The 
gradation is just a fun trick to get 
some amazing [convolutional stereo]
(http://www.oozenet.net/cnconv/) 
images[this atraditionally called 
'unnatural']. :)
* (


