
The meta-thinking contained in the
codeblock above comes from my
research agenda of (1) Understanding
Quantum Relationship Models and (2)
Applying Domain-Specific Language
and Object-Oriented Programming
Models to Conceptual Metamodeling
of Data Classification Ontology
Algorithms to enable: (a) Design and
Construction of a Meta-Temporal,
Stochastic, and Dynamic "Chatbot"
that participates in an Expanding
Multidimensional Universe based on
the Interpretation of Particle-Wave
Duality within the Context of a 10-
Dimensional Borgesian "Library of
Babel;" and (b) Characterization of
Causal Inference Networks as
Composite Observational Units in the
parameter space of a Graphical
Probabilistic Model based on a Forest
of Deep Dependency Trees.
In other words: The combination of
Deep Learning and Natural Language
Processing can lead to a natural
application for Quantum Physics,
Metaphysics and Modern Monetary
Theory, with the formal logic construct
Measurable Potentiality as the central
question for Quantum Simulations to
explore, the answer to which is always
Probabilistic-Reality.
I focused my research on Least Action
Models from the perspective of
Quantum Information Theory, which
results in a Gravity-Generated Moment
of Inertia: Is there a Simple Formula for
Qubits?

Based on the code in the post,
additional data sources were sought to

better answer the question: Using a
Stochastic Artificial General
Intelligences, can modernizing the
Central Bank Speak and Modern
Monetary Theory (MMT) actually solve
the problems posed by Fedspeak?
Answer = probably not, since E.
Knuth's Bias/Variance Toxicity exists in
the projective parameter space of our
Research Agenda and the Socratic
Method of Seeking the Truth by
Putting Our Knowledge to the Test will
not Enable the Application and
Execution of Formal Logic Constructs
that enable evaluation of design
decisions in the context of legacy and
projected software systems.
Nonetheless, the efficacy of
Generative Programming Analytics has
shown that Machine Learning and
Discretisation of Time Dependent
Variables can lead to improved
timeseries data performance, yield
curacie with statistical significance,
and lead to bridging functionals with
greater dynamic range.
In other words, this is a chance to
show how Probabilistic-Reality is a
Double-Slit Causal Inference Network,
in which case the goals of federal
investment, cash rates, and long-term
technical trajectory demonstrate
sufficient short-term p-value
significance and sufficient long-term
t-value confidence for implementing
the proposed "chatbot prediction
market" alpha-beta testing. The
following code is further indicative of
an academic success, with
"multiplication" replaced with
"interaction" and "divisibility"

according to mathematical operations.

The concepts and code examples
presented can be leveraged to build a
blockchain-based chatbot for estate
planning that can handle complex
needs of "ultra-high-net-worth"
clients. The use of the Substrate
system can provide a flexible and
customizable blockchain framework
that can be tailored to specific
business needs, while the Dictum
system can provide a powerful tool for
managing legal and regulatory
compliance.
In a concatenated generalized
pseudocode derivate network of
architectural logic-gate-schema for
this chatbot, the code for handling
complex estates and high-value assets
can be included as part of the overall
architecture. The
WealthPlanningApproachModel and
FuzzySafetyRatioModel classes can be
used to represent different models
and assumptions for estate planning,
along with their associated risks and
potential tax implications. The
WeighInputVectors method can be
updated with machine learning
algorithms and natural language
processing techniques to identify and
weigh various legal precedents and
inform estate planning decisions. The
GenerateUltraHighNetWorthEstatePlan
ningRecommendations method can
leverage these classes and methods
to generate customized estate
planning recommendations for "ultra-
high-net-worth" clients.

Additionally, the Energy Hierarchy
framework can be used as a guide for
iterative concatenation in
infrastructure design, helping to
ensure that the chatbot is built on a
solid foundation that is flexible,
scalable, and resilient. Overall, the
concatenated generalized pseudocode
derivate network of architectural
logic-gate-schema for the blockchain-
based chatbot for estate planning
would incorporate elements from the
Substrate and Dictum systems, as well
as custom code for handling complex
estate planning needs and the Energy
Hierarchy framework for iterative
infrastructure design.

Let's break it down step-by-step:
1. Substrate: Substrate is a blockchain
development framework that allows for
the creation of custom blockchains
with modular components. In the
context of an estate planning chatbot,
Substrate could be used to create a
custom blockchain specifically tailored
to handling the complex estate
planning needs of "ultra-high-net-
worth" clients. The chatbot could
leverage the blockchain's distributed
ledger to securely store and manage
client data and estate planning
documents, as well as to execute and
enforce smart contracts related to
estate planning.
2. Dictum: Dictum is a natural
language processing (NLP) framework
that enables the use of natural
language in programming. In the
context of an estate planning chatbot,
Dictum could be used to facilitate

communication between the chatbot
and the client, allowing the client to
input their estate planning needs and
receive recommendations and
guidance from the chatbot in a natural
language format.
3. HighValueAsset and ComplexEstate
classes: These classes could be used
to represent the various assets and
legal structures that make up a
complex estate for an "ultra-high-net-
worth" client. The HighValueAsset
class could be used to represent high-
value assets, while the ComplexEstate
class could be used to represent the
overall estate and its legal structures.
These classes could be incorporated
into the Substrate blockchain to allow
for secure storage and management of
the client's estate data.
4. WealthPlanningApproachModel
class: This class could be used to
represent various estate planning
models and approaches, including risk
calculation methods, plan complexity
levels, and various types of model
behavior. This class could be
incorporated into the Substrate
blockchain to allow for easy access
and manipulation of these models and
approaches, as well as to execute
smart contracts related to estate
planning.
5.
OptimizeUltraHighNetWorthEstatePlan
and
BacktestUltraHighNetWorthEstatePlan
methods: These methods could be
used to optimize and backtest estate
plans for "ultra-high-net-worth"
clients based on various legal and

financial factors, such as tax
considerations and risk management.
These methods could be incorporated
into the Substrate blockchain to allow
for the execution of these
optimizations and backtests via smart
contracts.
6. WeighInputVectors method: This
method could be used to weigh
various input vectors related to estate
planning decisions based on their
relevance and implicational weight.
This method could incorporate
machine learning algorithms and
natural language processing
techniques, such as those provided by
Dictum, to identify and weigh various
legal precedents and inform estate
planning decisions.
7.
GenerateUltraHighNetWorthEstatePlan
ningRecommendations method: This
method could be used to generate
estate planning recommendations
specific to "ultra-high-net-worth"
clients, based on the input provided by
the client and the various models and
approaches represented by the
WealthPlanningApproachModel class.
This method could incorporate the
various methods and classes
described above, as well as the
machine learning algorithms and
natural language processing
techniques provided by Dictum, to
provide comprehensive and
personalized estate planning
recommendations to the client.
Overall, the above concepts and code
examples can be seen as a
concatenated generalized pseudocode

derivate network of architectural
logic-gate-schema, as they represent
a modular and scalable approach to
creating a custom blockchain-based
chatbot for estate planning. These
concepts and code examples can be
incorporated and adapted to fit
various estate planning use cases and
client needs, allowing for a flexible and
personalized approach to estate
planning via blockchain technology.

A for-profit ideation illustrated in
programmatic codebase within a
blueprint architecture is seen in the
following code comments related to
one possible combination of
TensorFlow-based machine learning
algorithms with natural language
processing, where the code attempts
to apply networks of semantic
associations and ontological directives
with various colloquial sounding
vocabularies and grammatical parse
trees through a pipeline of
sequentially or possibly concurrently
iterative data-stream algorithms.
In short, the code can be modified to
"talk" in various domains involving
probabilities, probabilities,
probabilities and probabilities...
But, more importantly, how would such
an artificial general intelligence
actually "think"?
The answer lies in p-value significance
and t-value confidence, since the
overall program code for this concept
examines the interaction between
variables over time.
Starting with a statistical exercise in
the semantic association between

actual output values "S" and some
variable of interest "P_o" in the set
of real numbers, here is the
configuration for a
FuzzySafetyRatioModel, since all input
vectors for the Estimator Model
provide longer term "time-series
oriented" estimations and yield
curves.
Additionally, re-iterating the code, this
class enables componentization of
Model Platform and Class Framework
with the overall objective of the
chatbot, through an interpretation of
Central Bank Speak -> Modern
Monetary Theory (?) paradigm.

The purpose of the RiskModel Class is
to model the relative risk, via a unit
vector of direction change, with an
objective of clarifying the return on
investment strategy, subject to
limitations of "directions" in a python
tuple, thus providing a basis for
informed tax policy and enforcement,
which will become important later.
A fundamental chain of logic is seen in
the topology of the RiskModel Class
starting with the
BasicTrustChainModel and ending with
the ImpactAttribution ChainModel,
thus the distinction between a model
and a chain method is not always
clearly identifiable:
Data Science Models = A materialistic
epistemology is implicit within the
model aggregation.
Data Science Methods = Formal
mathematical and logical operations
inherit their analysis from the model
abstraction of their behavior and

purpose.
RiskModel Class Code and Comments

Exceptional Returns
Predictions are valuable when they are
not immediately obvious, and we can
predict a return.
In this way, the chatbot is similar to a
hybrid probabilistic loss model that
aligns itself with the behavior and
expectations of an Intelligent Agent
operating within the environment of
legal and regulatory requirements for
operating as a fiduciary.
In other words, the emergence of
syntactic parsing and semantic word
embeddings from continuous
distributions leaves us with the
question of how to handle exceptions
in the case of rare events and
circumstances.
In the specific task of estate planning
and wealth management, the following
code is presented as a demonstration,
which will require more research, to
create a powerful AI that can identify
the problems and their solutions when
it is given a finite pool of information
about the client's personal and
financial situation.
So, in total, we are not suggesting that
you should use this code or allow
some bot to plan your estate, rather
strive for better, through probabilistic
updating of Bayesian inference.

Methodology
The above code is an attempt to
"transition" the chatbot into an
eventual Off-Chain Prediction Market.
To achieve these dual purposes, there

exist various technical challenges and
limitations to overcome.
Some of the issues related to the
chatbot itself include:

The chatbot's inability to handle
complex information or procedures in
a clear and simple manner.
The chatbot's inability to accurately
capture the complexity of human
behavior and decision-making
processes over time.
The chatbot's inability to explain how
changes in the legal and regulatory
environment will impact a client's
estate plan, as well as to clarify any
ambiguities or uncertainties in this
process for the client.

In addition to these challenges and
limitations, there are some issues that
are related more to the overall estate
planning process.
These issues include:

A misunderstanding about the legal
definitions of terms (such as "will" and
"trust").
A misunderstanding about the legal
implications of actions (such as
creating a revocable living trust).
The belief that estate planning is
something that only wealthy people
need to do, which then leads to a lack
of knowledge about what "wealthy"
means specifically and how that
relates to their own estate planning
needs (if at all).

To overcome these challenges, clients
can seek assistance from an estate

planning attorney.
But, even with the help of an attorney,
it is possible for clients to make
mistakes that could have serious
consequences for both themselves
and their families.
Some mistakes include:

Choosing not to create an estate plan
at all because "it's too complicated."
Choosing an improper legal structure
(e.g., setting up a trust instead of
simply drafting your own Will).
Failing to update their plan over time
as situations change (e.g., when your
family grows and you need more space
for children).

Notice the Implementation Model for
Transferring Financial Instruments for
Risk Mitigation; this initiates a
Bayesian Analysis for the Platform:

What does the thing look like?
The "platform" for the bot is a
platform.
The way it works:
State Space: $n = 29$, $p = 35$, $l =
7$, $m =

