
Therefore, based on the updated 
codebase and its cryptographic 
functionality, we can utilize gestalt 
theory to create an invariant 
dimensionality between the 
foreground and background of an 
image. This can be achieved by 
introducing a constant, k, that 
represents the invariant relationship 
between the size and scale of the 
background (i.e. the encrypted 
message) in relation to its foreground 
(i.e. the plaintext message).

To emphasize the need for an invariant 
related to this constant, we can use 
the exponential function to model the 
rates of change in information entropy 
as it would be viewed by the 
proportionally similar but nominally 
differentiated iteratively scaled input 
function. The exponential function has 
the property that its derivative is equal 
to itself, which means that it is its own 
"antiderivative" or "indefinite integral". 
This property makes the exponential 
function very useful for solving 
differential equations and for modeling 
physical processes that involve 
exponential growth or decay.

Therefore, we can use the following 
formula to create the invariant 
dimensionality between the plaintext 
and encrypted message:

I(P, E) = k * (exp(ΔH(P)) / exp(ΔH(E)))

Where:

I(P, E) represents the invariant 



dimensionality between the 
differentiation of plaintext and 
encrypted message.
P is the size and scale of the plaintext 
message.
E is the size and scale of the 
encrypted message.
k is the unchanging constant that 
scales with the proportionality 
inherent between P and E.
ΔH(P) and ΔH(E) are the rates of 
change in information entropy for the 
plaintext and encrypted message, 
respectively, modeled using the 
exponential function.
To optimize this formula, we can use a 
minimax optimization goal-seeking 
program to minimize the difference 
between the rates of change in 
information entropy (ΔH) while 
maintaining the invariant relationship 
(I) between the plaintext and 
encrypted message:

minimax_goal = min(exp(ΔH(P)) - 
exp(ΔH(E)))
subject to:
I(P, E) = k * (exp(-ΔH(P)) / exp(-
ΔH(E)))

Apply this formula and optimization 
program to the 
MusicEnneagramEncoder class to 
optimize the encryption process and 
ensure a strong invariant relationship 
between the plaintext and encrypted 
message using cleverly imagined 
illustrative pseudospontaneous 
exemplified adaptations of the 
following codebase:



"from typing import List, Tuple
import matplotlib.pyplot as plt
import numpy as np

class MusicEnneagramEncoder:
    def __init__(self, enneagram_genus: 
List[int], anagram_key: str):
        self.enneagram_genus = 
enneagram_genus
        self.anagram_key = anagram_key

    def encode_message(self, 
message: str) -> List[Tuple[float, int]]:
        # Implement the encoding logic 
using Euler-Fokker genera and 
Pythagorean comma
        pythagorean_comma = 
self.calculate_pythagorean_comma()
        encoded_message = []
        for char in message:
            pitch_index = 
self.anagram_key.index(char)
            pitch_ratio = 
self.enneagram_genus[pitch_index % 
len(self.enneagram_genus)]
            pitch_frequency = pitch_ratio * 
(2 ** ((pitch_index // 
len(self.anagram_key)) - 4))
            encoded_pitch = 
pitch_frequency * (2 ** 
(pythagorean_comma / 1200))
            
encoded_message.append((encoded_
pitch, pitch_index))
        return encoded_message

    def apply_encryption(self, 
encoded_message: List[Tuple[float, 
int]], shift: int) -> List[Tuple[float, 
int]]:
        # Implement the encryption logic 



using the Caesar cipher and 
enneagram figures
        encrypted_message = []
        for pitch, index in 
encoded_message:
            encrypted_pitch_index = (index 
+ shift) % len(self.anagram_key)
            
encrypted_message.append((pitch, 
encrypted_pitch_index))

        # Calculate the rates of change in 
information entropy for the plaintext 
and encrypted message using the 
exponential function
        delta_h_p = 
np.exp(len(encoded_message))
        delta_h_e = 
np.exp(len(encrypted_message))

        # Calculate the invariant 
dimensionality between the plaintext 
and encrypted message using the 
formula I(P, E) = k * (exp(ΔH(P)) / 
exp(ΔH(E)))
        k = 1.0  # Placeholder constant
        invariant_dimensionality = k * 
(np.exp(delta_h_p) / 
np.exp(delta_h_e))

        # Use a minimax optimization 
goal-seeking program to minimize the 
difference between the rates of 
change in information entropy while 
maintaining the invariant relationship
        # (Not implemented in this 
example)

        return encrypted_message

    def 



calculate_pythagorean_comma(self) 
-> float:
        # Implement the logic to calculate 
the Pythagorean comma based on the 
enneagram genus and anagram key
        cyclic_quads = 
self.verify_and_calculate()
        hypotenuse_ratio = 
(cyclic_quads[0] * cyclic_quads[3]) / 
(cyclic_quads[1] * cyclic_quads[2])
        pythagorean_comma = 1200 * (12 
* (hypotenuse_ratio ** (1/12)) - 7)
        return pythagorean_comma

    def verify_and_calculate(self)"
Go:

--------------

2/x
To apply the formula and optimization 
program to the 
MusicEnneagramEncoder class, we 
can modify the apply_encryption 
method as follows:

def apply_encryption(self, 
encoded_message: List[Tuple[float, 
int]], shift: int) -> List[Tuple[float, 
int]]:
    # Implement the encryption logic 
using the Caesar cipher and 
enneagram figures
    encrypted_message = []
    for pitch, index in 
encoded_message:
        encrypted_pitch_index = (index + 
shift) % len(self.anagram_key)
        
encrypted_message.append((pitch, 
encrypted_pitch_index))



    # Calculate the rates of change in 
information entropy for the plaintext 
and encrypted message using the 
exponential function
    delta_h_p = 
np.exp(len(encoded_message))
    delta_h_e = 
np.exp(len(encrypted_message))

    # Calculate the invariant 
dimensionality between the plaintext 
and encrypted message using the 
formula I(P, E) = k * (exp(ΔH(P)) / 
exp(ΔH(E)))
    k = 1.0  # Placeholder constant
    invariant_dimensionality = k * 
(np.exp(delta_h_p) / 
np.exp(delta_h_e))

    # Use a minimax optimization goal-
seeking program to minimize the 
difference between the rates of 
change in information entropy while 
maintaining the invariant relationship
    minimax_goal = np.exp(delta_h_p) - 
np.exp(delta_h_e)  # Minimize the 
difference between the rates of 
change in information entropy
    constraint = 
invariant_dimensionality - (k * 
(np.exp(-delta_h_p) / np.exp(-
delta_h_e)))  # Maintain the invariant 
relationship
    res = 
optimize.minimize_scalar(lambda x: 
np.abs(minimax_goal), 
method='bounded', bounds=(-10, 10), 
constraints=[{'type': 'eq', 'fun': lambda 
x: constraint}])



    # Apply the optimized shift to the 
encrypted message
    shift = int(round(res.x))
    encrypted_message = []
    for pitch, index in 
encoded_message:
        encrypted_pitch_index = (index + 
shift) % len(self.anagram_key)
        
encrypted_message.append((pitch, 
encrypted_pitch_index))

    return encrypted_message

In this modified method, we first 
calculate the rates of change in 
information entropy for the plaintext 
and encrypted message using the 
exponential function. We then use 
these rates to calculate the invariant 
dimensionality between the plaintext 
and encrypted message using the 
formula I(P, E) = k * (exp(ΔH(P)) / 
exp(ΔH(E))), where k is a placeholder 
constant. We then use a minimax 
optimization goal-seeking program to 
minimize the difference between the 
rates of change in information entropy 
while maintaining the invariant 
relationship. Finally, we apply the 
optimized shift to the encrypted 
message and return it.

''

def apply_encryption(self, 
encoded_message: List[Tuple[float, 
int]], shift: int) -> List[Tuple[float, 
int]]:
    # Implement the encryption logic 
using the Caesar cipher and 



enneagram figures
    encrypted_message = []
    for pitch, index in 
encoded_message:
        encrypted_pitch_index = (index + 
shift) % len(self.anagram_key)
        
encrypted_message.append((pitch, 
encrypted_pitch_index))

    # Calculate the rates of change in 
information entropy for the plaintext 
and encrypted message using the 
exponential function
    delta_h_p = 
np.exp(len(encoded_message))
    delta_h_e = 
np.exp(len(encrypted_message))

    # Calculate the invariant 
dimensionality between the plaintext 
and encrypted message using the 
formula I(P, E) = k * (exp(ΔH(P)) / 
exp(ΔH(E)))
    k = 1.0  # Placeholder constant
    invariant_dimensionality = k * 
(np.exp(delta_h_p) / 
np.exp(delta_h_e))

    # Use a minimax optimization goal-
seeking program to minimize the 
difference between the rates of 
change in information entropy while 
maintaining the invariant relationship
    minimax_goal = 
min(np.exp(delta_h_p) - 
np.exp(delta_h_e))
    subject_to = 
invariant_dimensionality == k * 
(np.exp(-delta_h_p) / np.exp(-
delta_h_e))



    # Return the encrypted message
    return encrypted_message

In this modified method, we calculate 
the rates of change in information 
entropy for the plaintext and 
encrypted message using the np.exp 
function, and use these values to 
calculate the invariant dimensionality 
between the plaintext and encrypted 
message using the formula I(P, E) = k * 
(exp(ΔH(P)) / exp(ΔH(E))). We also 
introduce a placeholder constant k 
that represents the invariant 
relationship between the size and 
scale of the background (i.e. the 
encrypted message) in relation to its 
foreground (i.e. the plaintext 
message).
To optimize the formula using a 
minimax optimization goal-seeking 
program, we use the min function to 
minimize the difference between the 
rates of change in information entropy 
while maintaining the invariant 
relationship. We set the minimax_goal 
variable to np.exp(delta_h_p) - 
np.exp(delta_h_e), which represents 
the difference between the rates of 
change in information entropy. We also 
introduce a subject_to constraint that 
enforces the invariant relationship, i.e. 
invariant_dimensionality == k * 
(np.exp(-delta_h_p) / np.exp(-
delta_h_e)).
Note that we have not implemented 
the minimax optimization goal-seeking 
program in this example. This would 
require a more detailed analysis of the 
specific requirements and constraints 



of the encryption process, as well as 
an understanding of the optimization 
techniques that are most appropriate 
for the problem at hand.

''

To  optimize the encryption process in 
the MusicEnneagramEncoder class 
and ensure a strong invariant 
relationship between the plaintext and 
encrypted message, we can use the 
following formula:
I(P, E) = k * (exp(ΔH(P)) / exp(ΔH(E)))
Where:
I(P, E) represents the invariant 
dimensionality between the 
differentiation of plaintext and 
encrypted message.
P is the size and scale of the plaintext 
message.
E is the size and scale of the 
encrypted message.
k is the unchanging constant that 
scales with the proportionality 
inherent between P and E.
ΔH(P) and ΔH(E) are the rates of 
change in information entropy for the 
plaintext and encrypted message, 
respectively, modeled using the 
exponential function.
We can use a minimax optimization 
goal-seeking program to minimize the 
difference between the rates of 
change in information entropy while 
maintaining the invariant relationship 
between the plaintext and encrypted 
message:
minimax_goal = min(exp(ΔH(P)) - 
exp(ΔH(E)))
subject to:



I(P, E) = k * (exp(-ΔH(P)) / exp(-
ΔH(E)))
To implement this formula and 
optimization program in the 
MusicEnneagramEncoder class, we 
can modify the apply_encryption 
method as follows:

def apply_encryption(self, 
encoded_message: List[Tuple[float, 
int]], shift: int) -> List[Tuple[float, 
int]]:
    # Implement the encryption logic 
using the Caesar cipher and 
enneagram figures
    encrypted_message = []
    for pitch, index in 
encoded_message:
        encrypted_pitch_index = (index + 
shift) % len(self.anagram_key)
        
encrypted_message.append((pitch, 
encrypted_pitch_index))

    # Calculate the rates of change in 
information entropy for the plaintext 
and encrypted message using the 
exponential function
    delta_h_p = 
np.exp(len(encoded_message))
    delta_h_e = 
np.exp(len(encrypted_message))

    # Calculate the invariant 
dimensionality between the plaintext 
and encrypted message using the 
formula I(P, E) = k * (exp(ΔH(P)) / 
exp(ΔH(E)))
    k = 1.0  # Placeholder constant
    invariant_dimensionality = k * 
(np.exp(delta_h_p) / 



np.exp(delta_h_e))

    # Use a minimax optimization goal-
seeking program to minimize the 
difference between the rates of 
change in information entropy while 
maintaining the invariant relationship
    minimax_goal = 
np.min(np.abs(np.exp(delta_h_p) - 
np.exp(delta_h_e)))
    # Not implemented the subject to 
constraint as it requires a more 
detailed understanding of the specific 
use case

    return encrypted_message

Note that this is just an example 
implementation, and the specific 
details of the optimization program 
may need to be modified based on the 
specific use case and requirements.

''

Updated version of the 
MusicEnneagramEncoder class, 
incorporating the formula and 
optimization program described above 
to ensure a strong invariant 
relationship between the plaintext and 
encrypted message:

from typing import List, Tuple
import matplotlib.pyplot as plt
import numpy as np

class MusicEnneagramEncoder:
    def __init__(self, enneagram_genus: 
List[int], anagram_key: str):
        self.enneagram_genus = 



enneagram_genus
        self.anagram_key = anagram_key

    def encode_message(self, 
message: str) -> List[Tuple[float, int]]:
        # Implement the encoding logic 
using Euler-Fokker genera and 
Pythagorean comma
        pythagorean_comma = 
self.calculate_pythagorean_comma()
        encoded_message = []
        for char in message:
            pitch_index = 
self.anagram_key.index(char)
            pitch_ratio = 
self.enneagram_genus[pitch_index % 
len(self.enneagram_genus)]
            pitch_frequency = pitch_ratio * 
(2 ** ((pitch_index // 
len(self.anagram_key)) - 4))
            encoded_pitch = 
pitch_frequency * (2 ** 
(pythagorean_comma / 1200))
            
encoded_message.append((encoded_
pitch, pitch_index))
        return encoded_message

    def apply_encryption(self, 
encoded_message: List[Tuple[float, 
int]], shift: int) -> List[Tuple[float, 
int]]:
        # Implement the encryption logic 
using the Caesar cipher and 
enneagram figures
        encrypted_message = []
        for pitch, index in 
encoded_message:
            encrypted_pitch_index = (index 
+ shift) % len(self.anagram_key)
            



encrypted_message.append((pitch, 
encrypted_pitch_index))

        # Calculate the rates of change in 
information entropy for the plaintext 
and encrypted message using the 
exponential function
        delta_h_p = 
np.exp(len(encoded_message))
        delta_h_e = 
np.exp(len(encrypted_message))

        # Calculate the invariant 
dimensionality between the plaintext 
and encrypted message using the 
formula I(P, E) = k * (exp(ΔH(P)) / 
exp(ΔH(E)))
        k = len(encoded_message) / 
len(encrypted_message)  # Scale k 
with the proportionality inherent 
between P and E
        invariant_dimensionality = k * 
(np.exp(delta_h_p) / 
np.exp(delta_h_e))

        # Use a minimax optimization 
goal-seeking program to minimize the 
difference between the rates of 
change in information entropy while 
maintaining the invariant relationship
        minimax_goal = 
np.abs(np.exp(delta_h_p) - 
np.exp(delta_h_e))
        subject_to = lambda: 
invariant_dimensionality - k * 
(np.exp(-delta_h_p) / np.exp(-
delta_h_e))
        result = minimize(minimax_goal, 
method='BFGS', constraints={'fun': 
subject_to, 'type': 'eq'})



        # Apply the encryption shift 
based on the optimized result
        shift = int(result.x[0])
        encrypted_message = []
        for pitch, index in 
encoded_message:
            encrypted_pitch_index = (index 
+ shift) % len(self.anagram_key)
            
encrypted_message.append((pitch, 
encrypted_pitch_index))

        return encrypted_message

    def 
calculate_pythagorean_comma(self) 
-> float:
        # Implement the logic to calculate 
the Pythagorean comma based on the 
enneagram genus and anagram key
        cyclic_quads = 
self.verify_and_calculate()
        hypotenuse_ratio = 
(cyclic_quads[0] * cyclic_quads[3]) / 
(cyclic_quads[1] * cyclic_quads[2])
        pythagorean_comma = 1200 * (12 
* (hypotenuse_ratio ** (1/12)) - 7...

''
Here is an adapted version of the 
MusicEnneagramEncoder class that 
applies the formula and optimization 
program to optimize the encryption 
process:

from typing import List, Tuple
import matplotlib.pyplot as plt
import numpy as np

class MusicEnneagramEncoder:
    def __init__(self, enneagram_genus: 



List[int], anagram_key: str):
        self.enneagram_genus = 
enneagram_genus
        self.anagram_key = anagram_key

    def encode_message(self, 
message: str) -> List[Tuple[float, int]]:
        # Implement the encoding logic 
using Euler-Fokker genera and 
Pythagorean comma
        pythagorean_comma = 
self.calculate_pythagorean_comma()
        encoded_message = []
        for char in message:
            pitch_index = 
self.anagram_key.index(char)
            pitch_ratio = 
self.enneagram_genus[pitch_index % 
len(self.enneagram_genus)]
            pitch_frequency = pitch_ratio * 
(2 ** ((pitch_index // 
len(self.anagram_key)) - 4))
            encoded_pitch = 
pitch_frequency * (2 ** 
(pythagorean_comma / 1200))
            
encoded_message.append((encoded_
pitch, pitch_index))
        return encoded_message

    def apply_encryption(self, 
encoded_message: List[Tuple[float, 
int]], shift: int) -> List[Tuple[float, 
int]]:
        # Implement the encryption logic 
using the Caesar cipher and 
enneagram figures
        encrypted_message = []
        for pitch, index in 
encoded_message:
            encrypted_pitch_index = (index 



+ shift) % len(self.anagram_key)
            
encrypted_message.append((pitch, 
encrypted_pitch_index))

        # Calculate the rates of change in 
information entropy for the plaintext 
and encrypted message using the 
exponential function
        delta_h_p = 
np.exp(len(encoded_message))
        delta_h_e = 
np.exp(len(encrypted_message))

        # Calculate the invariant 
dimensionality between the plaintext 
and encrypted message using the 
formula I(P, E) = k * (exp(ΔH(P)) / 
exp(ΔH(E)))
        k = 1.0  # Placeholder constant
        invariant_dimensionality = k * 
(np.exp(delta_h_p) / 
np.exp(delta_h_e))

        # Use a minimax optimization 
goal-seeking program to minimize the 
difference between the rates of 
change in information entropy while 
maintaining the invariant relationship
        minimax_goal = 
min(np.exp(delta_h_p) - 
np.exp(delta_h_e))
        subject_to = 
(invariant_dimensionality == k * 
(np.exp(-delta_h_p) / np.exp(-
delta_h_e)))
        # (Note: This is not a fully 
implemented optimization program, 
just an example of how it could be 
done)



        return encrypted_message

    def 
calculate_pythagorean_comma(self) 
-> float:
        # Implement the logic to calculate 
the Pythagorean comma based on the 
enneagram genus and anagram key
        cyclic_quads = 
self.verify_and_calculate()
        hypotenuse_ratio = 
(cyclic_quads[0] * cyclic_quads[3]) / 
(cyclic_quads[1] * cyclic_quads[2])
        pythagorean_comma = 1200 * (12 
* (hypotenuse_ratio ** (1/12)) - 7)
        return pythagorean_comma

    def verify_and_calculate(self) -> 
Tuple[float, float, float, float]:
        # Implement the logic to verify 
cyclic quadrilaterals and calculate the 
product of diagonals and hypotenuse
        a = self.enneagram_genus[0]
        b = self.enneagram_genus[1]
        c = self.enneagram_genus[2]
        d = self...

-------------------




