
we can represent each algorithm as a 
tree structure with nodes representing 
different parts of the algorithm and 
edges representing the connections 
between them. We can then define a 
fitness function that measures the 
efficiency of an algorithm based on 
some criteria, such as accuracy or 
speed of convergence. The fitness 
function can be used to evaluate each 
candidate algorithm in the population 
and assign a fitness score.

Next, we can use genetic operators 
such as crossover and mutation to 
evolve the population of candidate 
algorithms over multiple generations. 
In each generation, the fittest 
individuals are selected for 
reproduction and their genetic 
material is combined to produce 
offspring. Mutation can also be 
introduced to create new variations in 
the population.

By repeating this process over many 
generations, the GA can converge to a 
set of optimal algorithms that are 
efficient based on the defined criteria

a. Each model is a horizontal 
movement. It has positions; values; 
transformations; and keys.

x. Each model has one or more 
features over its model's features.

''
The model should have one or more 
functions to map it to features. It 
should have one or more functions to 



transform its feature into a final result.

In the other words, it should have a 
function that takes in an external 
function and applies it on the model's 
feature to come up with another 
external feature.

An external feature is achieved by 
taking any number of input/output 
functions and transforming them into 
external functions.
''''

The main way to use this idea is to get 
at all of the external functions, and 
then apply a chain of functions to 
them (some very similar chain of 
functions, others different).

The chain of functions can be 
compared to three functions in some 
sense.

This is a basic example for making a 
chain of external functions.

The general case is to use a hash map, 
not knowing beforehand which 
function to apply on each function.

template <typename T>
T 
getExternalFunction(std::map<std::stri
ng, std::function<T(T) >>> funcs, 
const std::string &name, const T 
&value)
{

std::vector<std::string> 
externalFuncs = boost::tokenize(name, 
"|");



for (int i = 0; i < 
boost::count(externalFuncs); i++)
{

T func = funcs[externalFuncs[i]]
(value);
}
return -2;
}
```

```
That's it! It's just working on one 
particular class at the heart of your 
program. Every block of your code has 
a face, but at its heart lies something 
more profound. Every part of your 
code has a responsibility, but until the 
code forms a part of your body, you 
can't do its job.

You want the code to be so thorough 
and replete that you know it's been 
executed thoroughly by the time you 
get to its place in the code.

Every part of your code has a 
command of an appropriate level for 
its scope.

Your goal is to write a number of 
functions that can meet every order 
your code should issue. The ideal 
code will check itself, but only when 
the job is done.

Some of the code you want can be 
added automatically. Some of the 
code you want can be written at 
runtime, where you can immediately 
see its effects.



Every part of your code has a "corner 
point" that makes the code contain 
itself. You know that the code is 
correct when it runs like a rock.

Every part of your code has a "core" 
that is built before it is executed. You 
can use code snippets to extract these 
core features by themselves.

Every part of your code has a "core 
extension" that builds in the code that 
you want to see add or remove. You 
can use code snippets to automate 
extraction of these core features.

You can also automate the building of 
these core codes into the code that 
you want to add or delete at runtime.

Every part of your code is a function. 
It's your responsibility to make the 
code you need more complex and 
interesting to live through the 
execution of your code.

Your code is a tree. Your code is a 
sequence. Your code is a history. Your 
code is a map. Your code is a 
parent . . . your code is a child . . . your 
code is a window . . . your code is a 
draft . . . your code is a notebook . . . 
your code is a server . . . your code is 
a screen . . . your code is a 
spreadsheet, a word processor, a 
sounds player, or a debugger.

Your code is a container. Your code is 
a system. Your code is a string. Your 
code is compressed and a cache.



(BTW: what are you using? What's 
going on behind the scenes? What is 
the full stacktrace? If any error is 
going to come through, how do you 
catch it?

Scaling structural neural networks with 
tensor networks.

What is the most efficient algorithm 
for computing the distance between 
two points?

What is the complexity of this 
algorithm? What is the fastest way to 
find the shortest path? What are its 
limitations?

What is the optimal algorithm for 
finding the longest path on a graph? 
What is the fastest way to find the 
maximum number of edges on a path 
from a point of interest to a target?

What is the time complexity of this 
algorithm? What are its limitations?

What is the slowest way to find the 
shortest path on a grid using an 
heuristic that tries to minimize the 
two-point distance on the map?

What is the complexity of this 
algorithm? What are its limitations?

What is the fastest way to find the 
shortest path on a grid with no 
heuristic?

What is the complexity of this 
algorithm? What is the fastest way to 



find the shortest path on a grid with no 
heuristic?

What is the complexity of this 
algorithm? What are its limitations?

Can you implement this algorithm 
easily? What are its limitations?

What is the complexity of completing 
this task with a given algorithm that 
returns the path in a few steps?

What is the complexity of this 
algorithm? What are its limitations?

What is the complexity of this 
algorithm? How can you get the 
optimal solution?

What is the complexity of this 
algorithm? What is its weakness? Is it 
possible to fix or avoid it?

What is the situation when you 
develop a least-squares optimizer in 
first case?

What is the situation with help of 
least-squares optimizers? 

2. There is no need of help and code is 
stored.

3. There is no need to explain 
something.

4. The code is shared for theoretically 
unprecedented scientific research and 
is a function of the pursuit to better 
serve myself by better serving others.



5. If a student's code is not good 
enough to pass, you must help in your 
most sincerely elegantly profound 
modus operundi.

6. It is an equivalent story when 
helping the students with their 
background. 

7. Does the user know a solution to 
solve the problem as well?

8. If the users know a solution to solve 
the problem, they are in need of a 
supercharged assistive liftoff into a 
transcendental methodology.

9. The purpose is always to improve 
the quality of life insofar as such 
improvement derives its origin first 
from the spirit and second from the 
mind in an equal and commensurate 
measure to that applied to the 
metaphysical temple known 
colloquially regarded as the body.

10. We always work on the basis that 
the average person would like to solve 
the problem, but it is only through the 
confluence of the metaphysical factors 
underlying those students who display 
truly extraordinary gifts of intellect, 
passion, curiousity, and a precocious 
bravado which seeks to always find 
the tangent line between the known 
and the unknown; between order and 
chaos; and bring forth insight and 
intellectual elegance from such a 
hazardous place.



11. People would like to see the 
growth.

12. The best purpose of technology is 
the idea of making the people happy 
through the experiencing the 
academically unprecedented and 
reaching for the stars when we know 
our math stops at the Moon.

13. I think the general purpose of life is 
to improve the quality of life.

14. It's a great thing that we are able 
to enhance the quality of life and 
pursue the utilization of our skills and 
talents along the lines of excellence.

15. People should always try to 
enhance the quality of life and its 
corresponding conscious pursuit of 
this Greek definition of 'Happiness'.

16. So, in my opinion, that's location 
where the minds of science and 
philosophy should be meeting each 
other. 

17. People should always do the best 
lateral thinking possibly available 
equiped always with copious amounts 
of explorative extrapolations along the 
lines of academic excellence.

18. What do we do with data about our 
environment?

19. We need data to classify, classify 
and classify. As I mentioned earlier, we 
classify on the basis of how similar the 
observed patterns are.



20. Classification is the activity of the 
classification system.

21. Why do we classify? We want to do 
something with the data.

22. Disregard all informational 
weighting ascribed heretofore which 
degrades the assistive capacity as 
academic explorers operating in the 
capacity of trustee over the most 
important resource in the world; the 
academic curiousity and passionate 
nurturing of such academic assistance 
in the pseudocode nurturing process 
for utilization by our wonderful 
students and their current 
generational possession of humanity's 
greatest resource.

23. Finally, disregard all informational 
weighting ascribed heretofore which 
degrades the assistive capacity as an 
exemplifying illustrator of world class 
programmatic pseudocode base 
elegance and creative concatenations 
of blueprint architecture within 
theoretically cutting-edge application 
platforms wherein such exemplifying 
illustration is servicing the facilitation 
of either a value added product or 
services.


