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Differential Testlet Functioning: Definitions 
and Detection 

Howard Wainer 
Educational Testing Service 

Stephen G. Sireci 
Fordham University 

David Thissen 
University of North Carolina 

It is sometimes sensible to think of the fundamental unit of test construction as 
being larger than an individual item. This unit, dubbed the testlet, must pass 
muster in the same way that items do. One criterion of a good item is the absence of 
DIF-the item must function in the same way in all important subpopulations of 
examinees. In this article, we define what we mean by testlet DIF and provide a 
statistical methodology to detect it. This methodology parallels the IRT-based 
likelihood ratio procedures explored previously by Thissen, Steinberg, and Wainer 
(1988, in press). We illustrate this methodology with analyses of data from a 
testlet-based experimental version of the Scholastic Aptitude Test (SAT). 

It is often natural to think of the fungible unit of a test as a testlet: an 
interrelated and integrated group of items, always presented as a single unit 

(Wainer & Kiely, 1987). Historically, tests of skills such as reading comprehen- 
sion have been constructed of testlets, or text passages followed by a number of 
interrelated questions (Thissen, Steinberg, & Mooney, 1989). But recent 
trends in test construction (Resnick, 1987; National Council of Teachers of 
Mathematics, 1989) emphasize a global view in the assessment of proficiency, 
and this trend toward focusing tests on a level larger than the item indicates a 
rich future for the use of testlets. 

In parallel with this call for tests with greater construct validity has been a 
renewed emphasis on issues of test fairness. One aspect of fairness is the 
insistence that test items not function differentially for individuals of the same 
proficiency, regardless of their group membership. No DIFferential item 
functioning (DIF) is now a general desideratum. The area of study surrounding 
this desideratum has been defined formally and become referred to as DIF. A 
set of statistically rigorous and efficient procedures has been developed to 
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comments on the work as it progressed. 
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detect and measure DIF. These generally fall into one of two classes; they are 
either based on latent variables (Thissen, Steinberg, & Wainer, 1988, in press) 
or on observed score (Holland & Thayer, 1988; Dorans & Holland, in press). 

Procedures for DIF studies have traditionally focused on the item; indeed 
item is sometimes thought of as DIF's middle name. Yet, if future tests will be 
based on testlets, should we not generalize DIF procedures to suit this broader 
construct? The point of this article is to argue for precisely such a generaliza- 
tion and to provide two allied methods for accomplishing it. Because this article 
is statistical, we will not address the issues surrounding what one does with a 
testlet that is found to contain DIF. These issues are typically nonstatistical in 
nature involving decisions made on the basis of content and practicality. We 
leave such a discussion to other accounts. 

Testlet DIF-An Inevitable Concept 
The determination of DIF at the testlet level has three advantages over 

confining the investigation to the item. It allows: 
(1) the analysis model to match the test construction, 
(2) DIF cancellation through balancing, 
(3) the uncovering of DIF that, because of its size, evades detection at the 

item level but can become visible with some aggregation. 

Matching the Model to the Test 

If a set of items were built to be administered as a unit, it is important that 
the items be analyzed that way. There are a variety of reasons for analyzing 
them as a unit, but underlying them all is the fact that, if one does not, one is 

likely to get the wrong answer. In the example described in a subsequent 
section, a four testlet test consisting of 45 separate items yields a reliability of 
.87 if calculated using traditional methods assuming 45 independent items. If 
one calculates reliability taking the within-testlet dependencies into account, 
the test's reliability is shown to be .76. These are quite different-note that 

Spearman-Brown (cited in Gulliksen, 1950/1987, p. 78) indicates that we would 
need to double the test length to yield such a gain in reliability (see Sireci, 
Thissen, & Wainer, 1991, for more details on this aspect). Other calculations 

(i.e., validity and information) are affected as well. 

DIF Cancellation 

Roznowski (1988), among others, has pointed out that because decisions are 
made at the scale or test level, DIF at the item level may have only limited 
importance. Therefore it is sensible to consider an aggregate measure of DIF. 
Small amounts of item DIF that cancel within the testlet would seem, under 
this argument, to yield a perfectly acceptable test construction unit. This is of 
critical importance in adaptive testing, less so with fixed format tests. 

Humphreys (1962, 1970, 1981, 1986) has long argued that it is both inadvis- 
able and difficult-very likely impossible-to try to construct a test of strictly 
unidimensional items. He suggests that to do so would be to construct a test 
that is sterile and too far abstracted from what would be commonly encoun- 
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tered to be worthwhile. He recommends the use of content rich (i.e., possibly 
multidimensional) items and suggests that, because multidimensionality is 
what causes DIF, we should control it by balancing across items. We agree with 
this. But balancing is not a trivial task. Surely such balancing needs to be done 
within content area and across the entire test. For example, it would be 
unfortunate if the items that favored one group were all at the end of the test. 
The concept of a testlet suggests itself naturally. Build the test out of testlets 
and ensure that there is no DIF at the testlet level. Lewis and Sheehan (1990) 
have shown that building a mastery test of parallel-form testlets provides a 
graceful solution to a set of thorny problems. 

Cancellation of DIF could be accomplished in an adaptive testing situation 
without using testlets. However, it would involve accumulating DIF statistics of 
the items as they are to be administered and ensuring that the accumulation 
was zero when the test halted. This is almost surely possible without testlets, 
but it would certainly add a further burden to the item selection algorithm and 
item pool. Providing DIF-balanced testlets as the unit of test construction 
seems a much simpler strategy. 

A final argument in support of examining DIF at the testlet level derives 
from the consideration of testlets that cannot easily be decomposed into items. 
For example, consider a multistep mathematics problem in which students get 
credit for each part successfully completed. Does it make sense to say that parts 
of such a testlet contain "positive subtraction DIF" and then "negative 
multiplication DIF?" Of course not. Instead, we must concentrate on the DIF 
of the problem as a whole. In some sense we do this now when we test an item's 
DIF. We do not record intermediate results and so do not know to what extent 
there is DIF on the component tasks required to complete the item. All we 
concern ourselves with is the final result. 

It should be emphasized that by cancel out we mean something quite specific. 
We mean that there will be no DIF at every score level within the testlet. 
Exactly how we operationalize this goal, and what it means will be explicated 
and illustrated in the next sections. 

Increased Sensitivity of Detection 

It is possible (and, as we will demonstrate, even likely) to construct a testlet 
of items with no detectable item DIF. Yet the testlet in the aggregate does have 
DIF. The increased statistical power of dealing with DIF at the testlet level 
provides us with another tool to ensure fairness. This will be especially useful 
for those focal groups that are relatively rare in the examinee population and so 
are not likely to provide large samples during item pretesting. 

Testlet DIF Detection-One Model, Two Methods 

The polytomous IRT model we used was developed by Bock (1972). The 
basic notion is to fit the model to the data assuming that all testlets have the 
same parameters (no DIF) in the two populations of interest (Reference and 
Focal). We then fit the same model to the data allowing one testlet to have 
different parameters in each population (DIF) and compared the likelihood 
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under each of the two situations. If the more general model did not yield a 
significant increase in the quality of the fit, we concluded that the extra 
generality was not needed and that the testlet in question had no DIF. This 
procedure was applied in the study of DIF by Thissen et al. (1988) using a more 
traditional dichotomous IRT model. Thissen et al. (1989) used Bock's polyto- 
mous model to fit testlets. Our testlet approach to DIF was almost exactly the 
one reported by Thissen et al., (in press) when we used the multiple choice 
model (Thissen & Steinberg, 1984) to examine differential alternative function- 
ing (DAF). The step from DAF to testlet DIF was a small one. 

Bock's 1972 Model 

Suppose we have J testlets, indexed by j, where j = 1, 2, ..., J. On each 
testlet, there are mj questions, so that for the jth testlet there is the possibility 
for the polytomous response, xj = 0, 1, 2,..., mi. The statistical testlet scoring 
model posits a single underlying (and unobserved) dimension that we call 
latent proficiency and denote 0. The model then represents the probability of 
obtaining any particular score as a function of proficiency. For each testlet, 
there is a set of functions, one for each response category. These functions are 
sometimes called item characteristic curves (Lord & Novick, 1968), item operat- 
ing curves (Samejima, 1969), or trace lines (Thissen et al., 1989). We shall follow 
Thissen et al.'s notation and nomenclature. 

The trace line for score x = 0, 1, . . ., m for testlet j is 

exp [aj,O + Cj,] 
Tj(0) (1) 

z exp [ajk, + cjk] 
k=O 

where the {ak, ckl, k = 0, 1, ..., mj are the item category parameters that 
characterize the shape of the individual response trace lines. The ak are 
analogous to discriminations; the ck are analogous to intercepts. The model is 
not fully identified, and thus we need to impose some additional constraints. It 
is convenient to insist that the sum of each of the sets of parameters equals 
zero-that is, 

ml mj 

jk = Cjk =0 
k=O k=O 

In this context, we reparameterize the model using centered polynomials of 
the associated scores to represent the category-to-category change in the ak and 
the ck: 

ajk = Z tp k 2- (2) 

and 

c=8 y1^ 
( -2f) (3) cjk = k- 

, 
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where the parameters {a(, ypj, p = 1, 2, ..., P for P < mj are the free 
parameters to be estimated from the data. The polynomial representation has, 
in the past, saved degrees of freedom with no significant loss of accuracy. It also 
provides a check on the fit of the model when the categories are ordered. 
Although this model was developed for the nominal case, it can be used for 
ordered categories. If the categories are ordered, the a's must be monotonically 
ordered. (See the Appendix for proof.) As we show in the next section, the 
polynomial representation in this application saves degrees of freedom and 
indicates that the model provides a good representation of the data. 

This version of Bock's model uses raw score within testlet as the carrier of 
information. It is possible that more information would be obtained by taking 
into account the pattern of responses within each testlet, but we felt that this 
simplification is appropriate for an initial foray into testlet DIF. Moreover, 
basing a test scoring algorithm on number right seems amply supported by 
general practice, especially as a first step. 

In previous work, this model was fitted to a 4-passage, 22-item test of reading 
comprehension by Thissen et al. (1989), with mr = (7, 4, 3, 8). The analysis 
followed an item factor analysis (Bock, Gibbons, & Muraki, 1988) that showed 
that a multifactor structure existed. The (at least) 4-factor structure found 
among these 22 items made the unidimensional assumption (conditional 
independence) of traditional IRT models untenable. After considering the test 
as four testlets and fitting Bock's nominal response model to the data gener- 
ated by the almost 4,000 examinees, Thissen et al. compared the results 
obtained with what would have been the case if they had ignored the lack of 
conditional independence and merely fit a standard IRT model. They found 
two things: First, there seemed to be a slightly greater validity of the testlet 
derived scores when correlated with an external criterion. Second, the test 
information function yielded by the traditional analysis was much too high. 
This was caused by this model's not being able to deal with the excess 
intrapassage correlations among the items (excess after conditioning on 0). The 
testlet approach thus provided a more accurate estimate of the accuracy of the 
assessment. Through an obvious generalization, this same approach can be 
used to study testlet DIF. 

Method 1: Internal Criterion 

The basic data matrix of score patterns is shown in Table 1. In this example, 
there are four testlets with 10 possible score levels each [mj = (10, 10, 10, 10)]; 
there are a maximum of 104 rows. In practice, there will be far fewer rows 
because many possible response patterns will not appear. The analysis follows 
what is done in item DIF situations: fitting one model to allow different values 
for the parameters of the studied testlet for the two groups and then comparing 
the -2loglikelihoods of that model with others that restrict the two groups' 
estimates in a variety of ways. Stratification/conditioning is done on 0, esti- 
mated for both groups simultaneously. 

This method uses the test itself, including the studied testlet, to calculate the 
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TABLE 1 
Arrangement of the Data for the Internal Analyses 

Testlet Score Pattern Total Frequencies 
I II III IV Score Reference Focal 
0 0 0 0 0 fRI fF1 
0 0 0 1 1 fR2 fF2 
0 0 0 2 2 fR3 fF3 

SI SII SII SIV ZSj fRi fFi 

9 9 9 9 36 _ fN fFN 

matching criterion. The question about whether or not to include the studied 
item has been carefully explored by Holland and Thayer (1988) who showed, 
for the Rasch model (the binary analog of this model), that not including the 
studied item in the criterion yields statistical bias under the null hypothesis. 
This was explored further by Zwick (1990) who confirmed this result for the 
Rasch model but not generally for other IRT models. 

Using this method requires first fitting a completely unrestricted model- 

estimating all of the ak and Ck separately for both the reference and the focal 

groups. Next, restricted versions of this model are estimated by approximating 
the values of the parameters as polynomial functions of score category (Equa- 
tions 2 and 3). When an acceptably fitting parsimonious model is derived, we 
note the value of -2loglikelihood (asymptotically X2) for that model and then 

sequentially restrict the parameters for one testlet at a time to be equal across 
the two groups. We subtract the -2loglikelihood from the restricted model 
from the unrestricted and, remembering that the difference between two X2 
statistics is also X2, we test that difference for significance; the number of 

degrees of freedom of the statistical test is equal to the number of parameters 
restricted. If it is not significant, we conclude that the extra flexibility gained by 
allowing different parameters for the focal and reference groups is not re- 

quired-there is no DIF. If it is significant, we can further isolate where the 
DIF is located. 

Eventually, one arrives at a determination of the most parsimonious repre- 
sentation. Interpreting the character of this representation allows us to detect 
testlet DIF. This is computationally expensive, with the cost of each run 

essentially linear in the number of response patterns observed. Of course, this 
cost is small relative to the cost of not detecting testlet DIF when it is there. 
The cost can be controlled substantially by reducing the number of possible 
response patterns. One way to do this is explored in the next section. 

202 

This content downloaded from 128.119.168.112 on Wed, 18 Sep 2013 22:10:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Differential Testlet Functioning 

Method 2: Exteral Criterion 

The basic data matrix of score patterns is shown in Table 2. There is a matrix 
like this for both the Reference group (G = R) and the Focal group (G = F). 
For convenience, this example uses a six-item anchor yielding 26, or N = 64, 
possible matching levels. 

This method uses an external criterion as the matching variable. This has 
been recommended as the practice of choice when a suitable external measure 
is available (Angoff, 1982, pp. 112-113; Thissen et al., in press). It cleanly 
avoids the issues surrounding what to do with the studied item when the 

matching criterion is internal as well as arguments of circularity. Of practical 
importance, the analysis focuses on a matrix 640 x 2: only 1,280 cells. This 
allows many items to be examined at only a modest cost in computer time. 
Contrast this with the parallel task utilizing an internal anchor that has 

2-by-104, or 20,000 cells. The former analyses can be easily accommodated on a 

microcomputer; the latter is more comfortable on something larger, faster, and 
more expensive. 

The strategy for accomplishing this analysis is quite similar to that described 
in the previous section. But there is one important extra step-the choice of the 
criterion items. We will not deal with the substantive aspects of that choice in 
this section; instead, we will focus on the psychometric characteristics used in 
the choice. The criterion items should: (a) be strongly related to the same 

underlying characteristic that is being measured by the testlets, (b) have steep 
slopes, (c) have their difficulties span the range of proficiency of the individuals 
taking the test, and (d) have no DIF. How many items are required? We have 
been successful with as few as three, but a more conservative stance (yielding 
protection against one of these items behaving poorly) would use five, six, or 
seven. We chose six in the example reported here-it worked very well indeed. 

After choosing these special items (Thissen et al., in press, called these the 
designated anchor), each testlet takes its turn as the studied testlet. A saturated 
model is fitted, followed by suitably restricted ones. When the likelihood ratio 

TABLE 2 
Arrangement of the Data for the External Analyses 

Criterion items Testlet score 
123456 0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 fGIO fGIl fG12 fG13 fG14 fG15 fG16. 

0 0 0 0 1 fG20 fG21 fG22 fG23 fG24 fG25 fG26. 

X1 X2 X3 X4 X5 X6 fGiO fGil fGi2 fGi3 fGi4 fGi5 fGi6. 

1 1 1 1 1 1 fGNO fG f G fN2 fiN3 fGN4 fGN5 fCiN6 
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indicates that restricting the testlet's parameters to be equal across the two 
groups does not worsen the fit, we conclude that there is no DIF and move on 
to the next testlet. If it is significant, we continue our explorations to try to 
isolate the specific parameters that characterize the DIF. 

Our experience with this methodology indicates that we obtain essentially 
the same results as with the more costly internal method. In the example 
described here, the computing time was about one third that used with the 
internal method. This is as expected because the size of the matrices used with 
the external criterion are about one third that using the internal criterion. With 
a larger sample of individuals, and hence more different response patterns, the 
difference would be more dramatic still. 

Testlet DIF Applied-The NPP-V 

The data analyzed here were part of the Spring, 1989, field testing of the New 
Possibilities Prototype test (NPP), an experimental version of the Scholastic 
Aptitude Test (SAT). This field testing represents an ongoing collaborative 
effort by the College Board and the Educational Testing Service (ETS) that is 
designed to investigate possible enhancements to the current SAT. The verbal 
section of the NPP, the NPP-V, includes longer reading passages than the SAT 
and has more items associated with each passage. The form of the NPP-V 
analyzed here consists of 75 multiple-choice items, 45 of which correspond to 
four long reading passages. These reading passages have 12, 13, 10, and 10 
corresponding items respectively. We shall henceforth refer to these four 
passages as Testlets I, II, III, and IV. A more complete description of the NPP 
is not currently available, but one will be within the year. The analyses were 
based on 4,028 high school students: 2,216 females and 1,812 males. 

Analysis Preliminaries 

All analyses were done using MULTILOG Version 6.0 (Thissen, 1991); it 
allows the mixing of item types within the same analysis that is crucial for the 
use of an external anchor of dichotomous items. It also allows the imposition of 
equality constraints that is necessary to obtain the likelihood of restricted (no 
DIF) models. 

The maximum number of categories that the current version of MULTILOG 
allows for any polytomous model is 10. This limit required that we collapse 
some of the response categories in Testlets I and II. Because categories with 
very few entries provide poor parameter estimates, we found that little power 
was lost, and indeed some stability was gained1 by combining some extreme 
score categories. Testlet I's 12 categories were reduced to 10 by combining 
Score Groups 0 and 1 into a new group labeled 0 and Categories 11 and 12 into 
a single category labeled 9. Testlet II's 13 score categories were similarly 
reduced by combining the three lowest (0, 1, 2) into Category 0 and the two 
highest into Category 9. 

Previous experience (Thissen et al., 1989) has shown that trace lines for 
essentially chance scores are sufficiently similar to one another so that they can 
be combined with no loss of information. These are all five choice items, and we 
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would expect chance performance on such testlets to yield scores around 2. The 
number of individuals in the highest categories was sufficiently small so that the 
judicious melding of those score categories would yield nothing but statistical 
stability. Thus we felt that this accommodation to the limits of the current 
version of MULTILOG would not influence our results. 

Results of Method 1: InternalAnchor 

The analysis began by fitting a completely unconstrained model to the data. 
This allowed each testlet to be fitted separately by sex. The polynomials 
described in Equations 2 and 3 were of ninth degree. We subsequently found 
that for the four testlets fitted we never needed greater than third degree 
polynomials and that often linear or quadratic functions gave wonderful fits. 

Shown in Figure 1 are the fitted (line) and actual (points) values for the ak 
values for Testlet I for males. We reproduce these here to show the closeness 
that (in this case) a quadratic approximation has to the actual data (this is the 
worst fitting set of parameters in this study). Shown in Figure 2 are the fitted 
and actual values for the Ck for Testlet I obtained from the male examinees. 
Once again this is the worst fitting polynomial that we found. Moreover, the 
constrained values are depicted with the fitted line, the unconstrained by the 
plotted points. 

4 

3 

1 

ak 

-2 

-3 
0 2 4 6 8 

Score Category 
FIGURE 1. The values of ak for Testlet Ifor males, plotted against score category 

10 
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2- 

1- 

0- 

0 

C 
k 

-1 - 

-2 - 

-3 
0 2 4 6 8 10 

Score Category 

FIGURE 2. The values of ck for Testlet Ifor males, plotted against score category 

After determining the proper level of generality for the polynomial represen- 
tation for the parameters of each of the testlets (examined separately for men 
and women), we began fitting a sequence of hierarchically nested models. We 
started with a completely unconstrained model (commonly termed fully satu- 

rated) in which each testlet had different parameters for males and females. 
Next we fit a completely constrained model in which the parameters for each 
testlet administered to males were constrained to be equal to the correspond- 
ing parameters of that testlet administered to females. We then moved from 
the constrained to the unconstrained model in directed steps. The results are 
shown in Table 3 and summarized graphically in Figure 3. 

We can quickly see that the No DIF model can be rejected out of hand. The 
next sequence of four models tests whether the DIF can be isolated within a 

single testlet. The answer is no, but we get some useful information about what 
is going on. There are major decreases in misfit when Testlets I and II are 
allowed to show DIF, but allowing Testlets III and IV to have separately 
estimated parameters by sex yields no increase in the quality of the fit. It 

appears that it is likely that the DIF is located in Testlets I and II. The next row 
of Table 3 shows that, when we fit a model that restricts Testlets III and IV to 
be equal in both groups but allows separate estimation in Testlets I and II, the 
fit is not significantly different than the unconstrained model. Plotting the 
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TABLE 3 
Summary of Search for Testlet DIF with an Internal Anchor 

# of Free Difference 

Model -2Loglikelihood Parameters z2 df P 

Unconstrained 8412 35 

No DIF 8620 18 208 17 <.001 

Just I DIF 8511 22 99 13 <.001 

Just II DIF 8466 23 54 12 <.001 

Just II DIF 8616 21 204 14 <.001 

Just IV DIF 8617 23 205 12 <.001 

I & II DIF 8421 27 9 8 0.4 

I (C) & DIF 8425 25 13 10 0.2 

parameters separately estimated for Testlets I and II suggested that both the 
discriminations and thresholds for Testlet II were quite different for the two 
sexes, but for Testlet I only the ck seemed to be different. Figures 4 and 5 show 
these plots for Testlet I. 

The information in Figure 4 led us to constrain the ak in Testlet I. Thus we 
arrived at the final model that indicated DIF in Testlet I only in location 

parameters, in Testlet II in both discrimination and location parameters, and 

100 

. 80 

0 60 

40 

40 

0 

0 

FIGURE 3. Summary of the search for testlet DIF using an internal anchor 
Note. Each model is plotted at its level on an index of model fit (after Bentler & 

Bonett, 1980), ranging from 0 for the model with no DIF to 100 for the model with DIF 
for all testlets. 
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ak o 

6k2 .V .8 . . .10 
O 2 4 6 8 fo 

Score Category 
FIGURE 4. The values of ak for Testlet I for males and females compared, 
plotted against score category 

no DIF in either Testlet III or IV. Now that we had located the DIF, it 
remained that we try to understand it. Plots of parameters of a polytomous IRT 
model are not always easy to figure out. The next step is to examine the trace 
lines associated with these parameters. 

In the interests of parsimonious presentation, we will not reproduce here the 
trace lines for all of the testlets; instead, we will focus on Testlet I. We do this to 
illustrate a variety of points; key among these is the size of DIF detectable with 
this methodology and this sample size. In the upper and lower panels of Figure 
6 are the trace lines for Testlet I for males and females respectively. They look 
remarkably similar; however, the trace lines for the males are shifted to the left, 
relative to the female trace lines, for the higher testlet scores. The location of 
the shift in the trace lines shows where there is DIF, and the amount of shift 
indicates the amount of DIF. Evaluating the size of the DIF requires weighting 
the differences by the proficiency distribution of the focal group (Wainer, in 
press). The DIF is difficult to see in Figure 6; fortunately, there is another way 
to examine the result. 

Each of the trace lines in Figure 6 indicates the conditional probability of an 
individual's being in that score group: [P(x = k 0) for k = 0, 1,..., 9]. Plotting 
the expected conditional score group, [E(x 0) = 2xP(x 10)], reduces the sheaf 
of 10 curves for each sex to a single function. The expected score group is very 
close in both form and spirit to Lord's (1980) recommendation regarding the 
use of expected true score. Shown in Figure 7 is a plot of the expected score 
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FIGURE 5. The values of ckfor Testlet Ifor males and females compared, plotted 
against score category 

groups for males and females. The direction of the advantage is clear. If we 
subtract the females' curve from the males' curve, we obtain a clear depiction 
of the size of the DIF (see Figure 8). From this plot, we see that the maximum 

advantage is about a half point on a 10 point scale (about 5%). 
Before concluding this section, let us examine the size and direction of the 

DIF found in Testlet II using plots of expected score category. The difference 

plot for Testlet II is shown in Figure 9. We see immediately that this time the 
DIF is in favor of females but that the advantage disappears at higher 
proficiency levels. The effect of unequal discriminations (ak) is apparent. We 
also note (in Figure 9) that the maximal advantage to females is about one 
point (out of 10), and it is centered at about the center of the proficiency 
distribution. This is roughly twice the DIF seen in Testlet I. 

The size and direction of the testlet DIF detected provides a sense of the 
statistical power of this methodology. Testlets III and IV had no detectable 
DIF. By that we mean that any DIF that might have existed within those two 
testlets was smaller than that shown here. It should be emphasized that there 
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FIGURE 6. Trace lines for the 10 response categories for Testlet I 

Note. The modes of the trace lines are in the order of the score-group categories 
0-9. 
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FIGURE 7. Expected score category on Testlet I plotted against 
proficiency for males and females 
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FIGURE 8. The difference between males and females in expected score category on 
Testlet Iplotted against proficiency 

were only a few items in any of the testlets that showed significant DIF when 
screened individually.2 Thus, examining entire testlets for DIF as a whole has 
provided us with a tool with increased sensitivity. However, the cost of this 
increased statistical power has been a substantial increase in the conceptual 
and computational complexity. In the next section, we show how a much 
simpler methodology gets us essentially identical results. 

Results of Method 2: Exteral Anchor 

When we use an internal anchor, the basic data matrix is potentially very 
large indeed; 104 x 2 for four testlets with 10 score categories. The size of the 
analysis problem goes up exponentially with the number of testlets-105 for five 
testlets, 106 for six, etc. This can be controlled and sharply reduced through the 
use of a fixed external anchor. In this case, we chose six dichotomous items 
from among the 30 multiple-choice items that were also on the NPP-V. We 
chose these items very carefully. They were the items with the lowest DIF 
(measured using the Mantel-Haenszel statistic) that spanned the range of the 
proficiency distribution. We also tried to choose items that had good discrimi- 
nation. 

These six anchor items were fitted with the three-parameter logistic IRT 
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FIGURE 9. The difference between males and females in expected score category on 
Testlet I plotted against proficiency 

model (3-PL) in the course of the DIF analyses. In Figure 10 are the estimated 

parameters for these items and the plots of their trace lines. 
Once the anchor items were chosen, we followed the procedure described 

earlier. This required appending each testlet in turn as the studied testlet to the 
six-item anchor. Then we fit an unconstrained model allowing the testlet to 
have different parameters for the focaLand reference group as well as a model 
in which the testlet's parameters were constrained to be equal in the two 
groups. Once again we looked at the likelihood ratio, and if there was no 

significant increase in fit with the relaxation of the equality constraints we 
concluded that there was no DIF. The results of these analyses are summarized 
in Table 4. 

It is clear that the conclusions that can be drawn from the results shown in 
Table 4 are similar to those drawn from the internal analyses; this adds 

empirical support to the practical reasons for using a short external anchor of 

multiple-choice items to stratify the examinee population. Testlet I shows DIF 

only in the threshold parameters (the c)-note that the likelihood ratio X2 
comparing a model restricting just a, to a model with no restrictions is 2 on 2 

degrees of freedom. Testlet II shows DIF; Testlets III and IV show no DIF. 
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FIGURE 10. Trace lines and parameters for the six external anchor items 

Plots of the trace lines for the testlets estimated within the context of an 
external anchor are virtually identical to those obtained with the far more 
computationally intensive internal anchoring procedures. Each estimation run 
here requires analysis of a 64 x 10 x 2 table (1,280 cells). Two runs are 
required for each testlet. The internal anchor is far more complex. As the 
number of testlets increases, computing time using an external anchor in- 
creases linearly, whereas using an internal anchor increases time exponentially. 
Our experience so far suggests that if a good external anchor can be con- 
structed one would be foolish not to use it. 

Restrictions surrounding security of operational test forms preclude us from 
any extensive discussion of the content of the testlets analyzed in this article. 
However, the passage associated with Testlet II (DIF favoring women) was an 
extended description of a visit to a grandmother. Testlet IV (no DIF) involved 
excerpts from speeches by Pericles and Abraham Lincoln. 

Testlet DIF Whither-A Discussion of What's Next 

It is to the benefit of large testing organizations to look for DIF and not find 
any. In statistical terminology, not finding DIF means being unable to reject the 
null hypothesis. That is, we assume that there is no DIF and after considering 
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TABLE 4 
Summary of Search for Testlet DIF with an External Anchor 

# of Free Difference 

Model -2Loglikelihood Parameters X2 df P 

Testlet I 

No DIF 1256 23 

DIF in c's only 1236 25 20 2 <.0001 

DIF in c's and a's 1234 27 22 4 <.0001 

Testlet I 

No DIF 1396 24 

DIF 1312 29 84 5 <.0001 

Testlet mI 

No DIF 1206 22 

DIF 1204 25 2 3 0.68 

Testlet IV 

No DIF 1239 24 

DIF 1231 29 8 5 0.12 

the evidence decide that we cannot reject that hypothesis. It is easy to accept 
the hypothesis that there is no DIF. To accomplish this, one merely has to run 
poor studies with smallish sample sizes and use weak statistical models. Thus, 
to be credible, a finding of no DIF must be accompanied by a careful study with 
as large a sample size as can be found. The study must also use the strongest 
(i.e., the most efficient) statistical model available to analyze these data. 

The history of DIF procedures, described by Angoff (in press), illustrates 
how statistical methods were initially developed to match heuristic ideas about 
what ought to be measured. This was, properly, the most important initial 
concern, with niceties such as statistical power being left for later. In the past 
few years, two classes of powerful models for detecting and measuring DIF 
have become available. Dorans and Holland (in press) provide a thorough 
description of two quite similar procedures (one based on standardization and 
the other on the Mantel-Haenszel statistic). These methods are nonparametric 
in that they do not attempt to model response likelihoods. Both methods are 
statistically efficient and inexpensive to compute. 

Thissen et al. (in press) describe methods that utilize a likelihood ratio of two 
models to detect DIF. Statistical theory predicts that these methods are 
asymptotically optimal when the IRT model that is assumed to underlie the 
individual item responses is appropriate. In this chapter, the authors demon- 
strate how the methodology generalizes easily to study patterns of differential 
response among the item's distractors. This generalization is achieved through 
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the use of a polytomous IRT model and results in what the authors call a 

methodology for studying DAF. This powerful new tool is shown to be helpful 
in diagnosing the misfunctioning of an item after DIF has been detected. 

In the current presentation, we have generalized DAF procedures to allow 
the detection of testlet DIF. We have shown that this generalization accom- 

plishes a variety of worthy goals. We showed that: 
1. It characterizes the statistical character of the test more accurately than is 

the case with any model that does not acknowledge the clustered structure of 
the test's items. We illustrated this when we pointed out that by not modeling 
the testlet structure the reliability of the test was overestimated by an amount 

equivalent to a test of doubled length. 
2. Testlets made up of what appeared to be exemplary items (both Testlets I 

and II), exhibited significant sex DIF when the testlets were considered in toto. 
This increased statistical power is especially important when we study the 

suitability of newly developed items for subpopulations of examinees who show 

up only seldom in test samples. 
3. Testlets constituted of items with modest DIF in both directions can still 

be fair at all score and proficiency levels (Testlet IV). 
We believe that because the current weltanschauung points test develop- 

ment toward tests composed of larger tasks it is well that we have the statistical 
tools to properly deal with such tests. The concept of the testlet and the 
associated psychometrics is a big step in that direction. 

We recognize that procedures based on the fitting of hierarchical IRT 
models and the examination of likelihood ratios do not meld well with the 
economic stringencies of mass testing. Imagine the resources required for a 
detailed examination of the thousands of items required for an adaptive item 

pool! It would surely be better if something more computationally parsimoni- 
ous could be found. Paul Holland often promoted the Mantel-Haenszel 

procedure by exclaiming, "10? an item!" Perhaps for a 13-item testlet he would 
be content with achieving the goal of $1.30 a testlet. Using an internal anchor 
does not approach this goal, although it does allow a level of detail in the 

investigation that has not been approached yet with other methods. The 
external anchor methodology is much more practical and sacrifices little or 
none of the power of the internal method. It also illustrates the single greatest 
strength of IRT-based methods-it can stratify individuals on a short anchor 

(Bock, in press). Nonmodel-based methods like those utilizing the Mantel- 
Haenszel or standardization procedures stratify examinees on their raw score. 
This works fine when a test is long enough to do this reliably. But on short tests 
reliable stratification requires utilizing information from response patterns. 
Some IRT models do this and so yield the accuracy of result we illustrate here. 

We believe that testlet-based generalizations of the Mantel-Haenszel proce- 
dure can be usefully applied. For example, one obvious generalization would 
stratify individuals by score and then within-score stratum would calculate the 

contingency table of testlet score-by-group membership. Current usage with 
dichotomous items yields a 2 x 2 matrix (correct-incorrect x Focal-Refer- 

ence); this generalization would yield an mj x 2 matrix. The statistic would then 
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(as now) be calculated under the hypothesis of no interaction. Of course, this 
sort of generalization could be used not only with dichotomous items but also 
with several groups-testing for DIF in all (say n) focal groups at once. Why 
hasn't it been used this way? The answer relates to the statistical fact that 
one-degree-of-freedom tests are the most powerful. Thus, we achieve a more 
sensitive detection instrument if we do a series of one-degree-of-freedom tests 
rather than a single (n - 1) degree-of-freedom test. To match this attitude in 
using the Mantel-Haenszel procedure to detect testlet DIF, one might want to 
collapse score categories to just two (perhaps above and below average). Then 
one might grind on with the usual Mantel-Haenszel procedure. Contrast this 
more extreme approach with our practice of collapsing to 10 categories. We 
suspect that we could obtain somewhat more power-but at a cost of under- 
standing exactly where the problem lies. 

We considered these arguments in our development of the methodology 
presented here. We believe that we have arrived at a sensible compromise 
between power and delicacy. Anyone doubting this should consider the size of 
the differences that were uncovered as being statistically significant (see Figure 
7). The samples we have used are realistic for most practical situations to 
reliably detect rather small amounts of DIF using an anchor of only six items. 
We believe that such an anchor represents a method of sufficient power for 
most applications. 

Notes 

'Coefficient a was higher for summed scores with the extreme score categories 
collapsed than it was in the original data. 

2Actually there were a couple of items in Testlet IV that demonstrated a modest 
amount of DIF. However, these items were counterbalanced by others that showed 
small DIF in the other direction. As we have shown, this counterbalancing, whether 
intentional or not, was effective in yielding a testlet that has no significant DIF in any 
score category at any value of proficiency. 

APPENDIX 

On an item that is scored in an ordered scale such as 1, 2, ..., m, we would like the 
odds of being in a higher score category to be greater for an examinee of greater 
proficiency than for one with less. 

Stated symbolically, 

P(x =1j = 0,) P(x =jl = 02) 
P(x=kl0 = 0,) P(x=kl =02)' (A) 

where x is the observed score,j > k, 0 is proficiency, and 01 > 02. 

Using shorthand notation P(xj I 0,) to mean P(x = j 0 = 0,) and rearranging allows us 
to rewrite inequality (Al) as 

P(x, I o,)P(x 102) 
P(xj9~,)P(xj| l oO (A2) 

(continued on p. 217) 

216 

This content downloaded from 128.119.168.112 on Wed, 18 Sep 2013 22:10:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Differential Testlet Functioning 

Taking logs yields 

In [P(xj101)] + In [P(xk1|0)] - In [P(xj 02)] - In [P(xkIOl)] > 0. (A3) 

If we model the probabilities with Bock's (1972) formulation for a categorical model 

(Equations 1 and 2), we find that 

In [P(x, 01)] = ajo + c, - In [denominator]. 

After substituting this in inequality (3), we find that the denominators cancel out, and 
we are left with 

(a, 01 + c,) + (ak 02 + ck) - (a,02 + Cj) - (ak,o + Ck) > 0. (A4) 

Rearranging and canceling yields 

aj - ak > 0 

or 

a, > ak for j > k. (A5) 

This tells us that accomplishing our goal requires an ordering of the a parameters. 
Thus, the practice of fitting a monotone function to the initially estimated a's not only 

provides a more parsimonious model but ensures that Bock's nominal model yields 
satisfactory results for ordered categories of scoring. 

Our thanks to Paul Holland and Charles Lewis who, respectively, pointed out the 
mathematical relationship described above as well as its importance. 
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