
Sonoptix ECHO integration guide

Contents
Introduction 1

Quickstart 2

RTSP Data output 2

API Control 3

Python example 4

Introduction
The Sonoptix ECHO supports programmatic control and data streaming using
RTSP and a web-api. This allows for easy and stable unattended operation
across a wide variety of platforms and network conditions.

The included example uses python to stream RTSP, but the library used is
opencv, which is supported across many different programming languages

192.168.2.42 will be used for the IP of the sonar in this guide

1

Quickstart
If you are already familiar with python, install the requests, opencv and
matplotlib packages and run the example below. This will set the range of the
sonar to 3 meters and capture and plot a single image from the sonar
from matplotlib import pyplot as plt
import requests
import cv2 as cv

sonar_ip = '192.168.2.42'

rtsp_url = f'rtsp://{sonar_ip}:8554/raw'
api_url = f'http://{sonar_ip}:8000/api/v1'

Enable the sonar and set the range to 3m
requests.patch(api_url + '/transponder', json={

"enable": True,
"sonar_range": 3,

})

Set the data stream type to RTSP. The different possible
values are documented in the API docs available on
http://192.168.2.42:8000/docs
requests.put(api_url + '/streamtype', json={

"value": 2,
})

cap = cv.VideoCapture(rtsp_url)
ret, frame = cap.read()
plt.imshow(frame)
plt.show()

RTSP Data output
RTSP, the Real-Time Streaming Protocol, is a widley used and well supported
protocol for sending multimedia over the network. The Sonoptix ECHO sup-
ports streaming video using this protocol, allowing for convenient retrieval and
processing of raw data.

RTSP does not impose any restrictions on the particular encoding used and
most clients are able to select based on information from the server, but for
internal implementations it may be useful to know that the data is streamed in
H.264-format. When decoded, each image corresponds to a rectangular matrix
of unsigned 8-bit integers.

2

The matrix has one column for each beam, and one row for each sample. The
number rows changes depending on the range. The intensity of each pixel
represents the return strength of the acoustic signal at that point

The RTSP-stream can be quickly sanity checked using a viewer which supports
RTSP, such as vlc. With the sonar mounted in a small tank, and after setting
the stream type to RTSP in the web-UI, the video stream from VLC looks like
this when connected to rtsp://192.168.2.42:8554/raw

Figure 1: RTSP Stream opened in VLC

API Control
The Sonoptix ECHO has a web-api available for remote control - This interface
allows for control of runtime settings such as range or operation mode, but also
provisioning parameters, for example video descripton text or IP address.

The easiest way to get to know the API is to use the browsable API available on
the sonar, reachable through http://192.168.2.42:8000/docs in a web browser.

This UI provides information on available endpoints, as well as an interactive
console for making calls to the API

3

Figure 2: Browsable API ui on http://192.168.2.42:8000/docs

Python example
To run this example, you will need an installation of python and some supporting
libraries. This example will assume that python and pip is available

Install the required dependencies
pip install matplotlib requests opencv-python

The following sets up the imports and the required urls for RTSP and the web
API. All the endpoints of the API are prefixed with /api/v1
from matplotlib import pyplot as plt
import requests
import cv2 as cv

sonar_ip = '192.168.2.42'

rtsp_url = f'rtsp://{sonar_ip}:8554/raw'
api_url = f'http://{sonar_ip}:8000/api/v1'

Browsing the docs on http://192.168.2.42:8000/docs, we find that the transponder
endpoint controls the range and whether the sonar is enabled.

Figure 3: API Description for transponder endpoint

4

This endpoint states that it expects us to send a PATCH-request in JSON format
with the fields we would like to update
Enable the sonar and set the range to 3m
requests.patch(api_url + '/transponder', json={

"enable": True,
"sonar_range": 3,

})

In the same way we find out that the streamtype endpoint requires the value 2
to stream over RTSP
requests.put(api_url + '/streamtype', json={

"value": 2,
})

We are now ready to capture video. Using the VideoCapture class from opencv,
we only need to set it up with the correct url, and it will start requesting data.

Using the .read method will return a return value and a 2D array. This 2D
array is the image, with sample number going downwards, and beam-number
going from left to right
cap = cv.VideoCapture(rtsp_url)
ret, frame = cap.read()
plt.imshow(frame)
plt.show()

A window should now pop up on the screen with the raw data from the sonar

5

Figure 4: Image from RTSP stream plotted with matplotlib

6

	Introduction
	Quickstart
	RTSP Data output
	API Control
	Python example

