
Transcranial Magnetic Stimulation in Autism

Spectrum Disorders: Neuropathological
Underpinnings and Clinical Correlations

Manuel F. Casanova, MD,*,† Estate M. Sokhadze, PhD,z Emily L. Casanova, PhD,z and
Xiaoli Li, PhDx,║

Despite growing knowledge about autism spectrum disorder (ASD), research findings have
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not been translated into curative treatment. At present, most therapeutic interventions pro-
vide for symptomatic treatment. Outcomes of interventions are judged by subjective end-
points (eg, behavioral assessments) which alongside the highly heterogeneous nature of
ASD account for wide variability in the effectiveness of treatments. Transcranial magnetic
stimulation (TMS) is one of the first treatments that targets a putative core pathologic fea-
ture of autism, specifically the cortical inhibitory imbalance that alters gamma frequency
synchronization. Studies show that low frequency TMS over the dorsolateral prefrontal cor-
tex of individuals with ASD decreases the power of gamma activity and increases the differ-
ence between gamma responses to target and nontarget stimuli. TMS improves executive
function skills related to self-monitoring behaviors and the ability to apply corrective
actions. These improvements manifest themselves as a reduction of stimulus bound behav-
iors and diminished sympathetic arousal. Results become more significant with increasing
number of sessions and bear synergism when used along with neurofeedback. When
applied at low frequencies in individuals with ASD, TMS appears to be safe and to improve
multiple patient-oriented outcomes. Future studies should be conducted in large popula-
tions to establish predictors of outcomes (eg, genetic profiling), length of persistence of
benefits, and utility of booster sessions.
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Introduction

Autism spectrum disorder (ASD) is a multifactorial disor-
der, associated with the combined effects of multiple

genes and environmental factors. Diagnosis depends on
behaviors including difficulty in social engagement and com-
munication along with sensory abnormalities, restricted
interests, and repetitive behaviors. It is a pervasive and het-
erogeneous disorder whose symptom expression and natural
history varies from patient to patient. Most cases are idio-
pathic with a specific etiology identified in only 5%-10% of
cases.1,2 Gross examination of the brain tends to be normal
but research studies point to an abundance of seemingly dis-
parate microscopic findings.3

John Darby is credited with having performed the first and
most comprehensive analysis on the neuropathology of
ASD.4 In his pioneering study, Darby described how known
conditions (eg, tuberous sclerosis) could give rise to an ASD
1
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phenotype. Darby went on to conjecture that many organic dis-
orders with varied clinical presentations could be funneled
through a singular pathophysiological mechanism.5 This sup-
position is similar to an earlier proposal by Bellak who claimed
a “final common pathway” or locus minoris resistentiae to the
nature of schizophrenia.3 In modern times, the final common
pathway for schizophrenia has been reconceptualized as the
dopaminergic hypothesis.6 Data derived from treatment trials
and neuroimaging studies have led to the empirical validation
of this hypothesis.7 In common to both Darby and Bellak, Mar-
garet Bauman has emphasized that researchers should “still be
hunting for what is similar,. . .for some core, unifying feature of
the brains of children with autism.”8

In ASD, the presence of heterotopias, increased cellular den-
sity at both the gray-white matter junction and the molecular
layer, minicolumnar abnormalities (minicolumnopathy), and
focal cortical dysplasias are all suggestive of a neuronal migra-
tion disorder.9-14 Indeed, abnormalities of germinal cell divi-
sion and their subsequent progenitor migration are common in
ASD. In a recent series, employing serial whole brain sections,
Wegiel et al11 reported the presence of these neuropathological
markers in 92% of cases. The findings are deemed to be suffi-
ciently frequent commonalities for researchers to propose the
use of in vivo correlates of a dysplastic process as a way of sub-
typing or stratifying ASD patients.15

The excitatory/inhibitory bias of the cerebral cortex
depends on the coordinated action of both pyramidal cells
and interneurons. Abnormalities of brain development,
wherein neurons are prevented from migrating to their
proper location within the cerebral cortex (eg, focal cortical
dysplasias), alter the integrative action of pyramidal cell-
interneuron dyads.16 Postmortem studies reveal that the ana-
tomical compartment that contains the inhibitory circuits of
the minicolumns, the peripheral neuropil space, is signifi-
cantly reduced in ASD.17,18 It is therefore unsurprising that
ASD is associated with inhibitory GABA neurotransmission
abnormalities including reduced GABAA and GABAB subunit
expression.19 The findings help explain the presence of seiz-
ures, sensory abnormalities, and cognitive deficits in ASD.12

Cell fate specification studies have shown that a variety of
interneurons develop at specific laminar locations at different
times during neurodevelopment. These cells migrate to the
cortical plate during the entire period of corticogenesis using
multiple tangential routes in order to reach their final desti-
nation.20 The large variety of interneurons, in terms of their
topography, timing of origination, and postsynaptic target-
ing, necessitates their subtyping whenever researchers assess
their role in the pathophysiology of any given disorder.
In ASD, a recent postmortem study immunolabelled inter-

neurons according to their expression of calcium-binding
proteins. In this study, the number of parvalbumin+ (PV)
interneurons was significantly reduced in all cortical areas
examined (BA46, BA47, and BA9).21 Studies of animal mod-
els add significance to these findings as decreased PV expres-
sion levels have been correlated to some behavioral deficits
that are shared with ASD.22,23 According to some research-
ers, downregulation of PV represents one point of conver-
gence that provides a “common link between apparently
unrelated ASD-associated synapse structure/function
phenotypes.”23

Parvalbumin-positive GABAergic interneurons are fast-spik-
ing cells that synchronize the activity of pyramidal cells. These
cells help generate cortical gamma oscillations (30-80 Hz) that
modulate our attention focus, while also playing an important
role in those cognitive paradigms of relevance to executive func-
tions.24,25 Knockout (PV�/�) mice display a reduction in social
behaviors, deficits in prepulse inhibition, and abnormalities in
auditory phase-locked gamma oscillations.26,27 It is therefore
unsurprising that gamma band abnormalities are associated
with the perceptual and cognitive functions that are compro-
mised in ASD.28 Furthermore, some gamma band deficits are
also observed in unaffected first degree-relatives suggesting the
hereditability of the findings.28 The seeming universality of
gamma related abnormalities in ASD has therefore been pro-
posed as a potential biomarker for the condition.29,30

The cortical dysplasia described in ASD can be found in all
lobes examined but appear in overabundance within the pre-
frontal lobes.12 Stereological analysis of dysplastic foci has
revealed the presence of smaller pyramidal cells (suggesting
shorter projections or less efficient longer ones) and a con-
comitant reduction in the total number of interneurons.12

The varied topography of the neuropathologic abnormalities
may help explain electroencephalogram (EEG) lateralization
findings in ASD that are regionally and functionally spe-
cific.31 The electrophysiological findings may predispose
affected individuals to abnormalities in social reasoning,32

dispositional mood (positive and negative affect),33 risk for
depression,34 and verbal abilities.35

A large number of studies within the medical literature
attest to a correlation between the activity of parvalbumin
cells, gamma oscillations, and social deficits. Modulation of
gamma oscillations, especially over the dorsolateral prefron-
tal cortex (DLPC), has been associated with improvements in
cognitive performance,36 alterations in the excitatory inhibi-
tory balance of the cortex, and normalization of social behav-
ior deficits in animal models of ASD.37 Similarly,
pharmacological interventions that rescue parvalbumin-
immunoreactive neurons ameliorate deficits in prepulse inhi-
bition, relieve the reduction in phase-locked gamma oscilla-
tions, and ameliorate social behavioral deficits.27

In humans, transcranial magnetic stimulation (TMS) is a
reliable method for modulating gamma band activity. TMS
therapy over the DLPC of schizophrenic patients normalizes
gamma oscillations as well as cognitive performance.26 These
effects are selective for the gamma bandwidth38 and are prob-
ably mediated by cortical changes that increase the levels of
GABA.39 These considerations led us to study the use of
TMS in ASD with the idea of rescuing gamma band abnor-
malities, and improving both cognitive functions and atten-
dant social behaviors.40,41
TMS
Although the biological effects by which TMS exerts its phys-
iological actions are still being investigated, the physical
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effects of the technique on tissue can readily be inferred from
our knowledge of electromagnetic induction. According to
Faraday’s law, induction makes reference to an electromag-
netic force (or voltage) that is created in a closed circuit due
to the influence of a nearby magnetic field. Induction hap-
pens when there is relative movement between a conductor
and a magnetic field. In the case of TMS, a burst of current
passing along a conductor creates a rapidly expanding, and
then collapsing, magnetic field. Winding the wire into an
insulated coil and increasing the current intensifies the
strength of the magnetic field while the shape of the coil
allows convergence of the magnetic flux over a specific loca-
tion. The magnetic field produced induces its effect on ana-
tomical elements wherein membrane bound anatomical
elements filled with electrolyte fluids act as the conductors.
In TMS, depending on the circuitry design, the voltage

produced by the power supply may be biphasic (sinusoidal)
or rectified to a monophasic waveform whose amplitude and
polarity may be controlled. The power supply charges a bank
of capacitors which can then be discharged using a switch
that creates a pathway leading to a coil. These capacitors are
passive electronic component that store energy in an electri-
cal field. Capacitors can discharge more rapidly than batteries
as the latter have a latency associated with the chemical reac-
tion that provides for the transfer of energy. The rate of the
charge/discharge cycle of the capacitor can be selected by the
user in order to provide for single or multiple pulses at
selected frequencies. The lack of significant resistance offered
by the wire and other components in the circuit allows for its
rapid charge and discharge in a small fraction of a second.
However, rapid rate stimulation is often limited in sustained
operations by coil heating. The end result of the TMS cir-
cuitry is a large magnetic field of up to several Tesla being
produced with a current flow of several kiloamperes.
The skull is largely invisible to magnetic fields. In the case

of TMS, the influence of the magnetic field is limited to about
3 cm from the coil with an intensity that falls exponentially
with distance. By convention, repetitive TMS of less than
1 Hz is considered low frequency stimulation. Models on
long-term potentiation suggest that low frequency TMS is
inhibitory while faster stimulation (�5 Hz) is excitatory.42

The difference in threshold may be due to the orientation
selectivity of the cerebral cortex to magnetic stimulation.43

Lower frequencies stimulation may preferentially induce cur-
rents along longitudinally oriented elements; that is, along
axons rather than across the axons.43 Accordingly, the posi-
tion of interneurons and their projections in the minicol-
umns make them especially susceptible to low frequency
TMS stimulation. Indeed, Mountcastle described the arrange-
ment of interneurons in minicolumns as a strong vertical
flow of inhibition, while other researchers have coined the
more descriptive appellation of a shower curtain of
inhibition.44,45

Topographical analysis of minicolumnar abnormalities in
ASD have shown salient deficits within the prefrontal
lobe.46,47 Since TMS is capable of affecting brain regions
interconnected to the stimulated site, we decided on target-
ing the DLPC.48,49 For the purpose of our studies it was
thought that modulating the output of the DLPC would pro-
create a beneficial cascade through many of its intercon-
nected brain regions. The high density of reciprocal cortico-
cortical and cortico-subcortical connections enables the
DLPC to assume an organizing role for those behaviors that
allow an individual to respond to stimuli by matching previ-
ous experiences to existing environmental circumstances.50

Researchers believe that the metacognitive functions of the
DLPC permits an individual to navigate the challenges of
environmental exigencies with context appropriate and goal-
oriented behavior that denote planning, self-regulation, and
self-monitoring.51 Many of these supervisory mental pro-
cesses appear to be dysfunctional in ASD, leaving affected
individuals prone to stimulus bound behaviors.52
GammaOscillations
Electrophysiological monitoring of the brain reveals the pres-
ence of oscillatory patterns of activity measured as voltage
fluctuations. The amount of information carried by these
oscillations depends on both frequency and bandwidth. For
brain oscillations, the highest frequency and largest band-
width correspond to gamma oscillations (30-80 Hz). This
frequency is directly associated with entrainment of local net-
works and the binding of perceptual features (ie, seeing orga-
nized structures as wholes rather than as their individual
constituent parts). Gamma band activity can be analyzed
within specific time windows that denote event related rhyth-
mic responses that persist after stimulus onset. Responses in
gamma band activity are classified into either evoked or
induced, depending on latency after stimulus onset. It is
believed that the phase-locked initial evoked activity (latency
of around 100 ms after stimulus) represents early sensory
processing and the binding of perceptual information within
the same cortical field.53 The induced gamma band activity
(latency of around 250 ms) is not phase-locked to the stimu-
lus. The induced component is thought to represent the
binding of feedforward and feedback processing among net-
works of cortical regions.53 For a review on gamma oscilla-
tions and ASD see Casanova et al53,54 and Rippon55

Results of electrophysiological research have shown that
gamma activity is an indicator of the co-activation of cortical
cells involved in visual processing.56 The onset of a visual
stimulus gives rise to a burst of gamma activity over occipital
sites. When more complex tasks are performed, discrete
bursts of activity are observed in additional brain regions
thought to be involved in that undertaking.57 Kanizsa illu-
sory figures have been shown to produce gamma oscillations
during visual cognitive tasks.58 EEG recordings, while trying
to identify the presence or absence of an illusory figure, have
shown an overall increase in gamma activity in ASD as com-
pared to controls.57 The authors of the latter study inter-
preted the findings as consistent with decreased signal to
noise ratio due to reduced inhibitory processing. Weak sig-
nals boosted by the presence of white noise gives rise to sto-
chastic resonance, a phenomenon capable of explaining both
the hypo- and hypersensitivities observed in ASD.54
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In the first study of TMS reported in ASD (n = 8 children
with ASD, n = 5 wait-list participants, n = 13 age-matched
controls, Autism Diagnostic Observation Schedule (ADOS)
and Autism Diagnostic Interview, Revised (ADI-R) diag-
nosed) our group measured the power of the EEG gamma
band during a Kanizsa visual attention task40 (a summary of
published TMS studies in ASD is provided in the Table).
TMS was delivered at 0.5 Hz, 2 times per week, for 3 weeks.
At baseline, the power of the gamma activity in our control
group increased during the presentation of target-stimuli as
compared to nontarget stimuli. By contrast, the power of the
gamma oscillations was higher and had a shorter latency in
our ASD group. After 6 TMS sessions the power of gamma
activity in our ASD group decreased over the frontal and
parietal locations (on the same side of the stimulation), and
there was an increased difference between gamma responses
to target and nontarget stimuli. These findings were repro-
duced in later studies using different patient populations and
number of sessions.51-53 The latter studies also noted topo-
graphical differences in evoked gamma power between fron-
tal and parietal regions (frontal>parietal) to all stimuli which
was lacking in the ASD group. The findings suggest that ana-
tomical and physiological measures of anatomical regions
taken in isolation may be of little significance in helping us to
understand the pathophysiology of ASD; rather, this complex
condition involves multiple local abnormalities along with
downstream effects on interconnected brain regions.
Our group has also examined the effects of bilateral DLPC

TMS in both event-related potential (ERP) and gamma phase
coherence. One study consisted of 18 sessions with 54 par-
ticipants using 2 groups of children with ASD (TMS and wait
list as controls, 27 individuals per group). Results indicated a
significant posttreatment increase in latency and reduction in
amplitude of frontal and fronto-central N100, N200, and
P3a ERP components to nontargets in the treatment group as
compared to the wait-list control group.53 In another study,
18 sessions of bilateral DLPC TMS was used to examine EEG
gamma phase coherence between frontal and parietal sites59

in 32 participants (TMS and wait list controls, 16 per group).
TMS had its most significant effect on induced gamma in the
frontal region of our active treatment group as suggested by
increased gamma phase coherence in response to target stim-
uli. In addition, TMS also increased induced gamma phase
coherence between ispi- and contra-lateral frontal and parie-
tal regions.
Similar to our previously reported gamma findings (vide

supra), ERP studies during a visual novelty processing tasks
have indicated that ASD individuals lack stimulus discrimi-
nation between target and nontarget stimuli as compared to
controls. This is manifested as significantly prolonged and
augmented ERP components to irrelevant distracters over
frontal and parietal recording sites.40,55 The reported changes
are especially salient for early ERP components peaking
within the first 100 milliseconds (eg, P100 and N100). These
early components are labelled as “sensory” or “exogenous” as
they depend on the physical parameters of the stimulus.
These findings are similar to those reported by Grice et al60

where autistic individuals did not show significant
differences in frontal gamma activity during the processing of
upright and inverted faces (the latter acting as “physical
parameters” of the stimuli) as opposed to clear increases in
control subjects.

We should stress that the evoked gamma component in
our studies were measured at the same time and over the
same cortical regions as the previously reported ERP compo-
nents. The findings support the idea of a disturbance in the
activation of task relevant neuronal assemblies and the per-
ceptual control of attention in ASD.53 In a neural system that
appears to be overactivated61,62 local cortical connectivity
may be enhanced at the expense of long-range connections,
thus making it difficult for ASD individuals to either direct
their attention or to activate specific perceptual systems
based on the relevance of the stimuli (eg, target vs
nontarget).53

The abovementioned studies have emphasized various
temporal and spatial scales of neural oscillations in the
gamma frequency band of autistic individuals. Current analy-
sis methods assume that these oscillations are sinusoidal and
that descriptive features of these waveforms are associated to
physiological processes and behaviors.63 In our studies, we
have observed that the ringing of gamma oscillations, at a
fading or decaying rate, is somewhat similar to what is expe-
rienced after a bell is struck or when water sloshes in a tub.64

In transmission lines this phenomenon happens when a non-
oscillating input travels through an inductive environment.
Ringing in this context usually represents reflected energy
due to faulty impedance matching. Impedance is a measure
of resistance that varies with frequency. The anatomical
equivalent of this restraining or resistive force is the inhibi-
tory stimuli offered by interneurons within the cerebral cor-
tex. This consideration is in agreement with studies claiming
an inhibitory deficit in ASD. We believe that the observed
ringing or “decay profile” at gamma frequencies is a direct
reflection of the inhibitory deficit in ASD as (1) it is accompa-
nied by an output that takes a higher value before an ampli-
tude decay followed by the stabilized response or steady
level, (2) the ringing frequency and time constant is the same
as that of the initial response suggesting it is not due to out-
side interference or parasitic properties of the system, (3) it is
patent at the highest frequency of the brain’s bandwidth
(gamma), and (4) there are multiple studies with different
techniques that support the presence of inhibitory deficits in
ASD and help explain the genesis of the gamma oscillatory
abnormalities (eg, loss of parvalbumin neurons).
Executive Function and
Repetitive Behaviors
Phasic synchronization of local oscillations may provide the
basis for functional integration across distant cortical net-
works.65-67 In ASD, features of visual and auditory process-
ing abnormalities, as well as executive function, may be
attributed to a reduced gamma synchronization and
decreased temporal binding of activity between networks



Table Summary of TMS Studies in Autism Spectrum Disorder

Authors Design N Intervention N Control Coil Placement Frequency MT Duration Montage # of Sessions
(year) Control (Mean Age) (Mean Age) (Hz) (%) (Min)

Enticott et al93 - 1(20) _ mPFC 5 1500 15 Bilateral 9
Niederhofer94 - 1(42) _ SMA 1 1200 60 _ 5
Cristancho et al95 - 1(15) _ DLPC 1 150-300 Not reported Unilateral 36 (10 Right; 26

Left)
Avirame et al96 - 2 (27.5 § 2.5) _ mPFC 5 110 30 Bilateral 27; 29
Sokhadze et al74 No 13 (15.6 § 5.8) _ Left DLPC 0.5 90 Not reported Unilateral 6
Casanova et al80 No 18 (13.1 § 2.2) _ DLPC 0.5 90 10-12 Unilateral/

Bilateral
18 (6 left; 6 right;6
bilateral)

Wang et al81 No 33 (12.88 § 3.76) _ DLPC 0.5 90 Not reported Unilateral 12 (6 left; 6 right)
Sokhadze et al82 No 32 (12.52 § 2.85) _ DLPC 0.5 90 Not reported Unilateral/

Bilateral
18 (6 left; 6 right;
6 bilateral)

Abujadi et al97 No 10 (9-17) _ Right DLPC 50 100 5 Unilateral 15
Sokhadze et al40 Waiting list 8 (18.3 § 4.8) 5 (18.3 § 4.8) Left DLPC 0.5 90 Not reported Unilateral 6
Sokhadze et al70 Waiting list 20 (13.5 § 2.5) 20 (14.1 § 2.4) DLPC 1 90 Not reported Unilateral 12 (6 left; 6 right_
Sokhadze et al75 Waiting list 20 (14.7 § 3.3) 22 (14.2 § 2.8) DLPC 1 90 60 Unilateral/

Bilateral
18 (6 left; 6 right;
6 bilateral)

Sokhadze et al98 Waiting list 27 (14.8 § 3.2) 27 (14.1 § 2.6) DLPC 1 90 Not reported Unilateral/
Bilateral

18 (6 left; 6 right;
6 bilateral)

Sokhadze et al83 Healthy
controls

25 (13.6 § 3.22) 21 (14.9 § 4.3) DLPC 1 90 Not reported Unilateral/
Bilateral

18 (6 left; 6 right;
6 bilateral)

Sokhadze et al99 Waiting list 25 (12.5 § 1.47)
30 (12.8 § 1.57)
31 (13.5 § 2.30)

26 (13.3 § 1.78) DLPC 1 90 Not reported Unilateral/
Bilateral

6;12;18

Baruth et al100 Waiting list 16 (13.9 § 5.3) 9 (13.5 § 2) DLPC 1 90 Not reported Unilateral 12 (6 left; 6 right)
Casanova et al101 Waiting list 25 (12.9 § 3.1) 20 (13.1 § 2.2) DLPC 1 90 10 Unilateral 12 (6 left; 6 right)
Kang et al102 Waiting list 16 (7.8 § 2.1) 16 (7.2 § 1.6) DLPC 1 90 Not reported Unilateral/

Bilateral
18

Fecteau et al103 Sham 10 (36.6 § 16) 10 (36.6 § 16) Left and right
pars triangularis;
left and right
pars opercularis

1 70 30 Unilateral 5 (1 per target;
1 sham)

Enticott et al104 Sham 11 (17.55 § 4.06) 11 (17.55 § 4.06) Left M1; SMA 1 100 5 Unilateral 3 (1 per target;
1 sham)

Enticott et al105 Sham 15 (33.87 § 13.07) 13 (30.54 § 9.83) dmPFC 5 100 Not reported Bilateral 10
Panerai et al106 Sham 9 (13.56 § 1.83)

6 (13.7 § 1.96)
6 (13.33 § 1.88)
6 (16.13 § 3.11)

9 (13.56 § 1.83)
5 (13.24 § 2.95)
5 (14.17 § 4.24)
4 (13.75 § 5.18)

PrMC 1; 8 90 15(1 Hz);
30 (8 Hz)

Unilateral/
Bilateral

Single and
multisession
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processing local features.53 The large intra- and inter-regional
connectivity of the prefrontal cortex enables it to orchestrate
the oscillatory dynamics of these large-scale networks that
are involved in those higher order process that provide for
goal-directed action. TMS treatment targeting the prefrontal
lobes could help normalize gamma oscillations and improve
a broad array of skills related to executive function.

Executive control involves mental skills that help regulate
other brain processes. These functions include, among
others, task monitoring, response inhibition, error detection,
and compensatory behavior. Impairment of these functions
contributes to poor cognitive and social function that ulti-
mately impedes adaptation to novel, complex, or ambiguous
situations.68 Failure of these functions could result in exces-
sive or repetitive motor activity, and stimulus-bound behav-
iors of the type typically seen in schizophrenia, obsessive
compulsive disorder, and ASD.

Several of our studies have investigated whether TMS can
change some of the core deficits of ASD, more specifically,
those impairments in self-monitoring which comprise part of
our supervisory attentional system.53,69-71 In this regard we
examined error sensitivity by measuring ERP associated with
responses to errors, that is, error-related negativity (ERN)
and positivity (Pe), reaction time (RT), error rate, and poster-
ror reaction time change. Baseline measures in our ASD pop-
ulation showed a reduced ERN and altered Pe along with a
lack of posterror RT slowing. In the TMS treatment group,
ERN became significantly more negative and the number of
omission errors decreased. The RT did not change, but post-
error RT became slower. There were no changes in RT, error
rate, posterror RT slowing, nor in ERN/Pe measures in the
wait-list group. The baseline results suggest that individuals
with ASD have a reduced sensitivity for detecting or monitor-
ing errors and executing corrective actions. This deficit might
manifest itself as those perseverative behaviors that are com-
monly described as symptoms of ASD. The results of the cur-
rent study also indicate that TMS may have facilitated
attention and target discrimination by improving conflict res-
olution during the sorting of task-relevant from task-irrele-
vant stimuli.

TMS to the DLPC provides for improvement in behaviors
as noted in caregivers’ reports. The most notable change was
a decrease of T-score of the Repetitive Behavior Scale-
Revised,72 along with decreased irritability, lethargy/social
withdrawal and hyperactivity rating scores of the Aberrant
Behavior Checklist questionnaire.73 It should be noted that
we found significant reductions in irritability as a result of 12
sessions of bilateral stimulation,51 whereas reductions in
repetitive behavior acquired significance after only 6 sessions
of stimulation to the left DLPC.55,74 These differences
increased with the total number of treatment sessions. These
improvements in measures of aberrant behavior and repeti-
tive/stereotyped behaviors have been reproduced in several
of our studies where similar parameters and length of TMS
intervention were used in children and adolescents with
ASD.71,75

Many children and adolescents with ASD exhibit symp-
toms of an imbalanced autonomic nervous system.76,77
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Researchers believe that, in some cases, the abnormal auto-
nomic balance propitiates the expression of autistic symp-
toms, that is, low psychophysiological flexibility, rigid social
communication abilities, and the autonomic arousal typical
of anxiety.78,79 Our laboratory has used time and frequency
domain analysis of heart rate variability (HRV), skin conduc-
tance level, and rTMS to study autonomic control in ASD.80-
82 Following 12-18 sessions of low frequency rTMS treat-
ment, time-domain analysis of heart rate variability showed a
significant increase in R-R cardio-interval length and a
higher standard deviation of R-R intervals. Frequency-
domain HRV results in our ASD subjects showed an
increase of high frequency (HF) power in HRV, and a
decrease in the LF/HF ratio (LF; low frequency). Electro-
dermal activity also showed a decrease in the form of lower
tonic skin conductance level. The results indicate that in
ASD normalization of autonomic parameters by TMS is
mediated by concomitant changes in both the parasympa-
thetic (enhancement) and sympathetic (diminution) tone.
Normalization of autonomic parameters may prove an
important therapeutic intervention in ASD directed at pre-
venting sudden cardiac death associated with diminished
heart rate variability and treating the excessive sympathetic
arousal associated with anxiety.
TMS has been used along with EEG-based gamma neuro-

feedback to examine the possibility of therapeutic synergism.
Results of 18 sessions of integrated neuromodulation treat-
ment (N = 20 active group, n = 22 waitlist controls) improved
ERP indices of attention to targets, reduce over-reactivity to
nontargets, significantly reduced motor response errors to
target stimuli, enhanced response-locked potentials reflective
of error monitoring and correction (eg, ERN, posterror RT
slowing), and reduced both repetitive and stereotypic behav-
iors.75 These results show the usefulness of gamma band
oscillations for neurofeedback application and the added
benefit when used in conjunction to TMS.
In summary, the cerebral cortex’s inherent excitatory/

inhibitory bias demands the presence of dampening mecha-
nisms to maintain a proper set point when acquiring and
processing stimuli. This bias is altered in ASD individuals
and manifested as gamma oscillation abnormalities, deficits
in executive function, and stimulus bound behaviors. TMS is
a noninvasive therapeutic intervention capable of modulating
evoked and induced gamma oscillations and altering mal-
adaptive behaviors.83 Recent reviews of the literature suggest
that TMS is safe and effective when used in ASD.54,84-91

Selecting appropriate outcome measures is of importance
due to limitations in presently available sham procedures
that help define differences between active and control popu-
lations.92 It is therefore of importance that the selection pro-
cess for outcome measures extends beyond subjective
methods, such as behavioral screening, and into unbiased
electrophysiological measures that maximize both internal
and statistical validity. In addition, objective measures of
quality care should be instituted and analyzed by themselves
rather than being considered surrogate measures of out-
comes. We have found that autonomic measures, themselves
related to behavior problems and emotional regulation, help
define functional changes associated with ASD while simulta-
neously monitoring adverse experiences.80,81 At present,
efforts should focus on developing large sample clinical trials
with targeted inclusionary/exclusionary criteria and longitu-
dinal follow-up. This will allow testing critical questions
regarding possible predictors of outcome (eg, genetic profil-
ing), length of persistence of benefits, assessing outcome
according to severity of phenotypic presentation, and utility
of booster sessions.
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