124 Practical Research and Statistics

the *Test of Independence* is administered. It can be used for nominal, ordinal, interval, or ratio data. When completing a survey or questionnaire using a scale or rating item, the results can be tested using a chi square Test of Independence. The category in the row refers to the variable responding while the response categories comprise the columns. See **Example 8.1**.

Example 8.1 Test of Independence—Workforce Survey										
At an U.S. military base in the United Kingdom, the Wing Commander wanted to check on the morale of the base workforce (3,500 members). He asked a researcher to survey the members and advise him of the results.										
After a judgment survey of 500 members (250 officers and 250 enlisted), the results are shown below. Of the officers, 100 were Field grade (Major and above) and 150 Company grade (Captain and below) Two hundred Sergeants (E-5 to E-9 ranks) and 50 Airmen (E-1 to E-4 ranks) were surveyed.										
Using a Chi Square Test of Independence at .05 level of significance, the findings below were reported. Do you agree with these findings? Why or why not? What changes would you make?										
The survey question being tested using Chi Square was the following: Please indicate your level of morale at working on RAF XYZ:										
	Poor	Fair	Good	Very Good	Excellen	it	Totals			
Airmen (E1-E4)	0	20	20	10	()	50			
Sgts (E5 – E9)	0	0	95	75	30)	200			
Officers (O1-O3)	0	5	25	100	20)	150			
Officers (O4-O7)	0	0	10	50	40)	100			
Totals	0	25	150	235	90)	500			
Solution: Step 1. State the h H ₀ : Level of	of morale	e is ind		ent of the rai						
Step 1. State the h	of morale of moral degrees	e is ind e is de of fre	ependen eedom (ent of the ran t on the ran (df) and χ^2	k of base	perso alue a	at $\alpha = 1$.05.		
Step 1. State the hy H ₀ : Level of H _A : Level of Step 2. Determine df = (r-1) x	of morale of moral degrees (c - 1) =	e is ind e is de of fre (4-1) :	ependen eedom (x (5-1) :	ent of the ran t on the ran (df) and χ^2	k of base critical van $\chi^2_{cv.05} =$	perso alue a 21.02	onnel. at $\alpha = 2$		grand tot	al).
Step 1. State the hy H ₀ : Level of H _A : Level of Step 2. Determine df = (r-1) x	of morale of moral degrees (c - 1) =	e is ind e is de of fre (4-1) :	ependen eedom (x (5-1) :	ent of the ran t on the ran (df) and χ^2 = 12 ; sing (E _{r,c/GT}	k of base critical van $\chi^2_{cv.05} =$	perso alue a 21.02 tal x	$at \alpha = .$ 26 $at \alpha = .$	n total /	[.	5
Step 1.State the hy H_0 : Level of H_A : Level of df = (r-1) xStep 2.Determine of f = (r-1) xStep 3.Compute to 1Row\Col1150 (0) /5	of moral of moral degrees (c -1) = the Expension 500 = 0	e is ind e is de of fre (4-1) : ected	ependen eedom ($x (5-1) =$ value us 2)/500 = 2	ent of the ran t on the ran df) and χ^2 = 12 ; sing (E _{r,c/GT} 2.5 50 (150)	k of base critical vantum $\chi^2_{cv.05} =$ = row to $\frac{3}{500 = 15}$	perso alue : 21.02 tal x (50 (2	$at \alpha = .$ 26 $column$ 4 $235) / 50$	$\frac{1}{0} = 23.5$	50 (90	5
Step 1. State the hy H_0 : Level of H_1 : Level of Step 2. Determine df = (r-1) x Step 3. Compute to Row\Col 1 1 50 (0) /5 2 200 (0) /5	of moral of moral degrees (c -1) = the Expo 500 = 0 500 = 0	e is inc e is de of fre (4-1) : sected y 50 (25) 200 (25)	ependen eedom ($x (5-1) =$ value us 2)/500 = 2 5)/500 =	ent of the ran t on the ran df) and χ^2 = 12 ; sing (E _{r,c/GT} 2.5 50 (150) 10 200 (150)	k of base critical va $\chi^2 \text{ ev .05} =$ = row to 3 $\sqrt{500} = 15$ $\sqrt{500} = 60$	perso alue : 21.02 tal x (50 (2 200	α t α = . 26 column $\frac{4}{(235)/50}$ (235)/50	n total / 0 = 23.5 500 = 94	50 (90 200 (90)	$5 = \frac{5}{500} = 9$ $\frac{500}{500} = 36$
Step 1. State the hy H_0 : Level of H_A : Level of Step 2. Determine df = (r-1) x Step 3. Compute to 1 50 (0) /5 2 200 (0) /5 3 150 (0) /5	of moral degrees $(c - 1) =$ che Expension $500 = 0$ $500 = 0$ $500 = 0$ $500 = 0$	e is inc e is de of fre (4-1) : ected y 50 (25) 200 (25) 50 (25)	ependen eedom ($x (5-1) = \frac{2}{2}$) /500 = 2) /500 = 7	ent of the ran t on the ran df) and χ^2 = = 12 ; sing (E _{r,c/GT} 2.5 50 (150) 10 200 (150) 7.5 150 (150)	k of base critical va $\chi^2_{cv.05} =$ = row to 3 $\frac{1}{500 = 15}$ $\frac{1}{500 = 45}$	perso alue a 21.02 tal x (50 (2 200 150 (2	$at \ a = a$ 26 $at \ a = a$ 26 $at \ a = a$ $(235) / 50$ $(235) / 5$	$\frac{0}{0} = 23.5$ $\frac{0}{500} = 94$ $0 = 70.5$	50 (90 200 (90) 150 (90)	$\frac{5}{500} = 9}{500} = 36}{500} = 27$
Step 1. State the hy H_0 : Level of H_1 : Level of Step 2. Determine df = (r-1) x Step 3. Compute to Row\Col 1 1 50 (0) /5 2 200 (0) /5	of moral degrees $(c - 1) =$ che Expension $500 = 0$ $500 = 0$ $500 = 0$ $500 = 0$	e is inc e is de of fre (4-1) : ected y 50 (25) 200 (25) 50 (25)	ependen eedom ($x (5-1) = \frac{2}{2}$) /500 = 2) /500 = 7	ent of the ran t on the ran df) and χ^2 = 12 ; sing (E _{r,c/GT} 2.5 50 (150) 10 200 (150)	k of base critical va $\chi^2_{cv.05} =$ = row to 3 $\frac{1}{500 = 15}$ $\frac{1}{500 = 45}$	perso alue a 21.02 tal x (50 (2 200 150 (2	$at \ a = a$ 26 $at \ a = a$ 26 $at \ a = a$ $(235) / 50$ $(235) / 5$	n total / 0 = 23.5 500 = 94	50 (90 200 (90) 150 (90)	$5 = \frac{5}{500} = 9$ $\frac{500}{500} = 36$
Step 1. State the hy H_0 : Level of H_A : Level of Step 2. Determine df = (r-1) x Step 3. Compute to 1 50 (0) /5 2 200 (0) /5 3 150 (0) /5	of morale of moral degrees (c -1) = the Expension 500 = 0 500 = 0 500 = 0 100 = 0 tted Table	e is inc e is de of fre (4-1) : ected v 50 (25 200 (25 50 (25) 100 (2 le with	ependen eedom ($x (5-1) = 2$ value us 2 3 / 500 = 2 3 / 500 = 2	ent of the ran t on the ran df) and χ^2 = 12 ; sing (E _{r,c/GT} 2.5 50 (150) 10 200 (150) 7.5 150 (150) Ξ 5 100 (150) (E) is show	k of base critical va $\chi^2_{cv.05} =$ = row to $\frac{3}{500 = 15}$ $\frac{500 = 45}{500 = 30}$ n.	perso alue : 21.02 tal x (200 150 (2 100	$at \ a = 26$ $at \ a = 26$ $at \ a = 26$ $at \ a = 235 / 50$ $(235) / 50$ $(235) / 50$ $(235) / 50$	$\frac{0}{0} = 23.5$ $\frac{0}{500} = 94$ $\frac{0}{500} = 47$	50 (90 200 (90) 150 (90) 100 (90)	$\frac{5}{500} = 9}{500} = 36}{500} = 27$
Step 1. State the hy H_0 : Level of H_A : Level of Step 2. Determine df = (r-1) x Step 3. Compute to $Row \setminus Col$ 1 1 $50 (0) / 5$ 2 $200 (0) / 5$ 3 $150 (0) / 5$ 4 $100 (0) / 5$ Step 4. The complete	of moral of moral degrees (c -1) = the Expension 500 = 0 500 = 0 500 = 0 500 = 0 500 = 0 100 = 0 tted Tabl	e is inde of fre (4-1) : ected v 50 (25) 200 (25) 50 (25) 100 (2 le with or	ependen eedom ($x (5-1) = 2$ yalue us $2y/500 = 2y/500 = 2$	ent of the ran t on the ran df) and χ^2 (= 12 ; sing (E _{r,c/GT} 2.5 50 (150) 10 200 (150) 7.5 150 (150) = 5 100 (150) (E) is show Good	k of base critical va $\chi^2_{cv.05} =$ = row to 3 /500 = 15 /500 = 45 /500 = 30 n. Very G	perso alue : 21.02 tal x (2 200 150 (2 100	$at \ \alpha = .$ 26 column 4 235) /50 (235) /5 (235) /5 (235) /5 Exce	$\frac{0 = 23.5}{500 = 94}$ $\frac{0 = 70.5}{500 = 47}$ ellent	50 (90 200 (90) 150 (90) 100 (90) Totals	$\frac{5}{500} = 9}{500} = 36}{500} = 27$
Step 1. State the hy H_0 : Level of H_A : Level of Step 2. Determine df = (r-1) x Step 3. Compute to Row\Col 1 1 50 (0) /5 2 200 (0) /5 3 150 (0) /5 4 100 (0) /5 Step 4. The complete	of moral of moral degrees (c -1) = the Expension 500 = 0 500 = 0 500 = 0 500 = 0 100 = 0 tted Tabl Pool 0 (0)	e is inde of free (4-1) $=$ ected $=$ 50 (25) 200 (25) 50 (25) 100 (2) he with or = 200	ependen eedom ($x (5-1) =$ value us 2)/500 = 2)/500 =)/500 = 25)/500 = n O and Fair 0 (2.5)	ent of the ran t on the ran df) and χ^2 (= 12 ; sing (E _{r,c/GT} 2.5 50 (150) 10 200 (150) 7.5 150 (150) = 5 100 (150) (E) is show Good 20 (15)	k of base critical va $\chi^2_{cv.05} =$ = row to 3 /500 = 15 /500 = 45 /500 = 30 n. Very G 10 (23	perso alue : 21.02 tal x (200 150 (2 100 150 (2 100	$at \ a = 26$ column $at \ a = 26$ column $at \ a = 26$ (235)/50 (235)/5 (235)/50 (235)/5 (23	$\frac{0 = 23.5}{500 = 94}$ $0 = 70.5$ $\frac{0}{500} = 47$ $\frac{1}{500} = 47$	50 (90 200 (90) 150 (90) 100 (90) Totals 50	$\frac{5}{500} = 9}{500} = 36}{500} = 27$
Step 1. State the hy H_0 : Level of H_1 : Level of Step 2. Determine df = (r-1) x Step 3. Compute to Row\Col 1 1 50 (0) /5 2 200 (0) /5 3 150 (0) /5 4 100 (0) /5 Step 4. The comple Airmen (E1-E4) Sgts (E5 - E9)	of moral degrees $(c - 1) =$ che Expension $500 = 0$ 0 0 0 0 0 0 0 0	e is inde e is de of fre (4-1) : ected y 50 (25) 200 (25) 50 (25) 100 (2) is even in the second in the second second in the second second second second in the second second second second second in the second seco	ependen eedom ($x (5-1) =$ value u: 2 3 /500 = 2 3 /500 = 2 /500 =	ent of the ran t on the ran df) and χ^2 (= 12 ; sing (E _{r,c/GT} 2.5 50 (150) 10 200 (150) 7.5 150 (150) (E) is show Good 20 (15) 95 (60)	k of base critical va $\chi^2_{cv.05} =$ = row to $\frac{3}{500 = 15}$ $\frac{500 = 45}{500 = 30}$ n. Very G 10 (23) 75 (20)	perso alue : 21.02 tal x (50 (2 200 150 (2 100 150 (2 100 .5) 94)	$at \ a = 26$	$\frac{1}{0} = 23.5}{500} = 94$ $\frac{1}{0} = 70.5}{500} = 47$ $\frac{1}{0} = 10$ $\frac{1}{0} = 10$ $\frac{1}{0} = 10$ $\frac{1}{0} = 10$	50 (90) 200 (90) 150 (90) 100 (90) Totals 50 200	$\frac{5}{500} = 9}{500} = 36}{500} = 27$
Step 1. State the hy H_0 : Level of H_1 : Level of Step 2. Determine df = (r-1) x Step 3. Compute to Row\Col 1 1 50 (0) /5 2 200 (0) /5 3 150 (0) /5 4 100 (0) /5 Step 4. The comple Airmen (E1-E4) Sgts (E5 - E9) Officers (O1-O3) Officers (O1-O3)	of moral degrees $(c -1) =$ che Expension $500 = 0$ $00 = 0$ 0 0 0 0 0	e is inde e is de of fre (4-1) : ected y 50 (25) 200 (25) 50 (25) 100 (2) 100 (2) e with or 0 20 0 50 200 (25) 200 (25)	ependen eedom ($x (5-1) =$ value u: 2) /500 = 2) /500 = 25) /500 = 100 and Fair 2(2.5) = 0 (10) 5 (7.5)	ent of the ran t on the ran df) and χ^2 (= 12 ; sing (E _{r,c/GT} 2.5 50 (150) 10 200 (150) 7.5 150 (150) (E) is show Good 20 (15) 95 (60) 25 (45)	k of base critical va $\chi^2_{cv.05} =$ = row to $\chi^2_{cv.05} =$ = row to $\chi^2_{cv.05} =$ = row to $\chi^2_{cv.05} =$ $\chi^2_{cv.05} =$ = row to $\chi^2_{cv.05} =$ = $\chi^2_{cv.05} =$ = χ^2	perso alue a 21.02 tal x o 50 (2 200 150 (2 100 150 (2 100 0 0 0 0 94) 0.5)	$\frac{1}{235} = \frac{1}{235} = \frac{1}$	$\begin{array}{c} 1 \text{ total } / \\ \hline 0 = 23.5 \\ \hline 500 = 94 \\ \hline 0 = 70.5 \\ \hline 500 = 47 \\ \hline \hline \\ \hline $	50 (90) 200 (90) 150 (90) 100 (90) Totals 50 200 150	$\frac{5}{500 = 9}$ $\frac{500 = 36}{500 = 27}$
Step 1. State the hy H_0 : Level of H_1 : Level of Step 2. Determine df = (r-1) x Step 3. Compute to Row\Col 1 1 50 (0) /5 2 200 (0) /5 3 150 (0) /5 4 100 (0) /5 Step 4. The comple Airmen (E1-E4) Sgts (E5 - E9)	of moral degrees $(c - 1) =$ che Expension $500 = 0$ $00 = 0$ 0 0 0 0	e is inde e is de of fre (4-1) : ected y 50 (25) 200 (25) 50 (25) 100 (2) e with y r 0 20 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	ependen eedom ($x (5-1) =$ value u: 2 3 /500 = 2 3 /500 = 2 /500 =	ent of the ran t on the ran df) and χ^2 (= 12 ; sing (E _{r,c/GT} 2.5 50 (150) 10 200 (150) 7.5 150 (150) (E) is show Good 20 (15) 95 (60)	k of base critical va $\chi^2_{cv.05} =$ = row to $\chi^2_{cv.05} =$ = row to $\chi^2_{cv.05} =$ $\chi^2_{cv.05} =$ $\chi^2_{cv.05}$	perso alue a 21.02 tal x o 50 (2 200 150 (2 100 150 (2 100 0 0 0 0 94) 0.5)	$at \ a = 26$	$\begin{array}{c} 1 \text{ total } / \\ \hline 0 = 23.5 \\ \hline 500 = 94 \\ \hline 0 = 70.5 \\ \hline 500 = 47 \\ \hline \hline \\ \hline $	50 (90) 200 (90) 150 (90) 100 (90) Totals 50 200	$\frac{5}{500} = 9}{500} = 36}{500} = 27$

Example 8.1 Test of Independence—Workforce Survey					
Step 5. Substitute in the Chi Square formula and evaluate. Chi-square test statistic = $\chi^2 = \Sigma$ [(Observed _i - Expected _i) ² / Expected _i]					
$\chi^{2}_{\ 0bs} = \frac{(0-0)^{2}}{0} + \frac{(20-2.5)^{2}}{2.5} + \frac{(20-15)^{2}}{15} + \frac{(10-23.5)^{2}}{23.5} + \frac{(0-9)^{2}}{9} + \frac{(0-0)^{2}}{0} + \frac{(0-10)^{2}}{10} + \frac{(95-60)^{2}}{60} + \frac{(75-94)^{2}}{94} + \frac{(50-36)^{2}}{36} + \frac{(0-0)^{2}}{0} + \frac{(5-7.5)^{2}}{7.5} + \frac{(25-45)^{2}}{45} + \frac{(100-70.5)^{2}}{70.5} + \frac{(20-27)^{2}}{27} + \frac{(0-0)^{2}}{0} + \frac{(0-5)^{2}}{5} + \frac{(10-30)^{2}}{30} + \frac{(50-47)^{2}}{30} + \frac{(50-47)^{2}}{47} + \frac{(40-18)^{2}}{18}$					
$\chi^{2}_{obs} = 0 + 122.5 + 1.67 + 7.76 + 9 + 0 + 10 + 20.4 + 3.84 + 1 + 0 + 0.83 + 8.89 + 12.3 + 1.81 + 0 + 5 + 13.3 + 0.19 + 26.89 = 245.4 = \chi^{2}_{obs}$					
Step 6. Make the decision. Accept the alternate. The level of morale is dependent on rank. 245.4 > 21.026					
Discussion. The Wing Commander needs another survey using a stratified random					
proportionate sample. Based on the percentage of ranks or civilians, a similar percentage for the total sample should be surveyed. No civilians were surveyed. Six categories were					
underestimated. Ten were overestimated. Four groups were zero. Civilians make up a large					
portion of any base manpower and need to be surveyed. If there were 300 Field Grade officers					
(O4 - O7), then $300 / 3500 = 8.6%$ or 9% of the sample desired should be Field Grade officers					
randomly selected and others proportional for each category. Redo the survey! The Commander needs an answer about the level of morale. The results need further analysis.					

In summary, the Chi Square test is very good to test your theory about the independence of two or more variables. It uses frequency counts so data from surveys or other collection forms need only indicate the variables and the counts. For example, you may test males to females or ages in groups (18 < 20, 20 < 30, etc.) or any other form of categories. To obtain that information, one specific item on a data collection form needs to be properly presented. Two other chi square tests will be reviewed below, but the formula for each is the same.

8.2 Test of Equality.

The Test of Equality compares data for one variable in equal proportions. For example, the M&M picture (Figure 8.1) has six different colored M&Ms. If you were theorize that each color is equally provided (equal proportions), then a Test of Equality can be used. The null hypothesis would be: H₀: $p_1 = p_2 = p_3 = p_4 = p_5$ and the alternate would be that these proportions are not equal (\neq) or at least one proportion is different from the others. Again, the formula for this is $\chi^2 = \sum \frac{(o-E)^2}{E}$. Degrees of freedom (df) for one row is c-1, or there is one freedom lost from the number of columns. The M&M example is presented as **Example 8.2**. See also **Figure 8.3**.

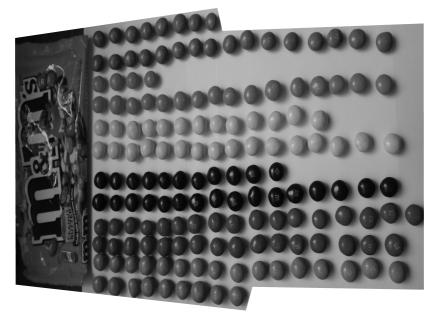


Figure 8.3 M&Ms Array

Example 8.2 Test of Equality										
obtained that each	ng Figure 8 l: Green 25 h color wou a .05, can i	, Red 33, B ld be equal	rown 27, Y ly provided	7ellow 29, 1 or 26.3 fo	Orange 20 or each colo	, and Blue or ⁴² .	24. It is ex	spected that		
Solution		4								
Step 1.	State the hypotheses. H ₀ : The six colors of M&Ms are equally distributed (H ₀ : $p_1 = p_2 = p_3 = p_4 = p_5 = p_6$). H _A : The six colors are not equally distributed in proportion.									
Step 2.	Determine the degrees of freedom (df) and find the critical value . Degrees of freedom is k -1 or $6 - 1 = 5$. Alpha of .05 at df = 5 equals 11.071 = χ^2 critical value.									
Step 3.	<i>3.</i> Compute the test value.									
	Green Red Brown Yellow Orange Blue									
	O/E 25/26.3 33/26.3 27/26.3 29/26.3 20/26.3 24/26.3									
	Apply the Equation: $\chi^2_{obs} = \sum \frac{(O-E)^2}{E} =$ $\frac{(25-26.3)^2}{26.3} + \frac{(33-26.3)^2}{26.3} + \frac{(27-26.3)^2}{26.3} + \frac{(29-26.3)^2}{26.3} + \frac{(20-26.3)^2}{26.3} + \frac{(24-26.3)^2}{26.3}$									
	$= 0.06 + 1.71 + 0.02 + 0.28 + 1.51 + 0.2 = 3.78 = \chi^{2}_{obs}$									
Step 4.	Make the The six co	decision. 🤇 lors of M&			ortioned a	nt 95% cor	ifidence.			

 $[\]frac{1}{4^2}$ This is not a whole number but no rounding is used for this example.